Its a quirk of history that the foundations of modern biology and as a consequence, some of the worst atrocities of the 20th century should rely so heavily on peas. Cast your mind back to school biology, and Gregor Mendel, whose 200th birthday we mark next month. Though Mendel is invariably described as a friar, his formidable legacy is not in Augustinian theology, but in the mainstream science of genetics.
In the middle of the 19th century, Mendel (whose real name was Johann Gregor was his Augustinian appellation) bred more than 28,000 pea plants, crossing tall with short, wrinkly seeds with smooth, and purple flowers with white. What he found in that forest of pea plants was that these traits segregated in the offspring, and did not blend, but re-emerged in predictable ratios. What Mendel had discovered were the rules of inheritance. Characteristics were inherited in discrete units what we now call genes and the way these units flowed through pedigrees followed neat mathematical patterns.
These rules are taught in every secondary school as a core part of how we understand fundamental biology genes, DNA and evolution. We also teach this history, for it is a good story. Mendels work, published in 1866, was being done at the same time as Darwin was carving out his greatest idea. But this genius Moravian friar was ignored until both men were dead, only to be rediscovered at the beginning of the new century, which resolved Darwinian evolution with Mendelian genetics, midwifing the modern era of biology.
But theres a lesser-known story that shaped the course of the 20th century in a different way. The origins of genetics are inextricably wedded to eugenics. Since Plato suggested the pairing of high-quality parents, and Plutarch described Spartan infanticide, the principles of population control have been in place, probably in all cultures. But in the time of Victorian industrialisation, with an ever-expanding working class, and in the wake of Darwinian evolution, Darwins half-cousin, Francis Galton, added a scientific and statistical sheen to the deliberate sculpting of society, and he named it eugenics. It was a political ideology that co-opted the very new and immature science of evolution, and came to be one of the defining and most deadly ideas of the 20th century.
The UK came within a whisker of having involuntary sterilisation of undesirables as legislation, something that Churchill robustly campaigned for in his years in the Asquith government, but which the MP Josiah Wedgwood successfully resisted. In the US though, eugenics policies were enacted from 1907 and over most of the next century in 31 states, an estimated 80,000 people were sterilised by the state in the name of purification.
American eugenics was faithfully married to Mendels laws though Mendel himself had nothing to do with these policies. Led by Charles Davenport a biologist and Galton devotee the Eugenics Record Office in Cold Spring Harbor, New York, set out in 1910 to promote a racist, ableist ideology, and to harvest the pedigrees of Americans. With this data, Davenport figured, they could establish the inheritance of traits both desirable and defective, and thus purify the American people. Thus they could fight the imagined threat of great replacement theory facing white America: undesirable people, with their unruly fecundity, will spread inferior genes, and the ruling classes will be erased.
Pedigrees were a major part of the US eugenics movement, and Davenport had feverishly latched on to Mendelian inheritance to explain all manner of human foibles: alcoholism, criminality, feeblemindedness (and, weirdly, a tendency to seafaring). Heredity, he wrote in 1910, stands as the one great hope of the human race; its saviour from imbecility, poverty, disease, immorality, and like all of the enthusiastic eugenicists, he attributed the inheritance of these complex traits to genes nature over nurture. It is from Davenport that we have the first genetic studies of Huntingtons disease, which strictly obeys a Mendelian inheritance, and of eye colour, which, despite what we still teach in schools, does not.
One particular tale from this era stands out. The psychologist Henry Goddard had been studying a girl with the pseudonym Deborah Kallikak in his New Jersey clinic since she was eight. He described her as a high-grade feeble-minded person, the moron, the delinquent, the kind of girl or woman that fills our reformatories. In order to trace the origin of her troubles, Goddard produced a detailed pedigree of the Kallikaks. He identified as the founder of this bloodline Martin Kallikak, who stopped off en route home from the war of independence to his genteel Quaker wife to impregnate a feeble-minded but attractive barmaid, with whom he had no further contact.
In Goddards influential 1912 book, The Kallikak Family: A Study in the Heredity of Feeble-Mindedness, he traced a perfect pattern of Mendelian inheritance for traits good and bad. The legitimate family was eminently successful, whereas his bastard progeny produced a clan of criminals and disabled defectives, eventually concluding with Deborah. With this, Goddard concluded that the feeble-mindedness of the Kallikaks was encoded in a gene, a single unit of defective inheritance passed down from generation to generation, just like in Mendels peas.
A contemporary geneticist will frown at this, for multiple reasons. The first is the terminology feeble-minded, which was a vague, pseudopsychiatric bucket diagnosis that we presume included a wide range of todays clinical conditions. We might also reject his Mendelian conclusion on the grounds that complex psychiatric disorders rarely have a single genetic root, and are always profoundly influenced by the environment. The presence of a particular gene will not determine the outcome of a trait, though it may well contribute to the probability of it.
This is a modern understanding of the extreme complexity of the human genome, probably the richest dataset in the known universe. But a meticulous contemporary analysis is not even required in the case of the Kallikaks, because the barmaid never existed.
Martin Kallikaks legitimate family was indeed packed with celebrated achievers men of medicine, the law and the clergy. But Goddard had invented the illegitimate branch, by misidentifying an unrelated man called John Wolverton as Kallikaks bastard son, and dreaming up his barmaid mother. There were people with disabilities among Wolvertons descendants, but the photos in Goddards book show some of the children with facial characteristics that are associated with foetal alcohol syndrome, a condition that is entirely determined not by genetic inheritance, but by exposure to high levels of alcohol in utero. Despite the family tree being completely false, this case study remained in psychology textbooks until the 1950s as a model of human inheritance, and a justification for enforced sterilisation. The Kallikaks had become the founding myth of American eugenics.
The German eugenics movement had also begun at the beginning of the 20th century, and grown steadily through the years of the Weimar Republic. By the time of the rise of the Third Reich, principles such as Lebensunwertes Leben life unworthy of life were a core part of the national eugenics ideology for purifying the Nordic stock of German people. One of the first pieces of legislation to be passed after Hitler seized power in 1933 was the Law for the Prevention of Genetically Diseased Offspring, which required sterilisation of people with schizophrenia, deafness, blindness, epilepsy, Huntingtons disease, and other conditions that were deemed clearly genetic. As with the Americans tenacious but fallacious grip on heredity, most of these conditions are not straightforwardly Mendelian, and in one case where it is Huntingtons the disease takes effect after reproductive age. Sterilisation had no effect on its inheritance.
The development of the Nazis eugenics programmes was supported intellectually and financially by the American eugenicists, erroneously obsessed as they were with finding single Mendelian genes for complex traits, and plotting them on pedigrees. In 1935, a short propaganda film called Das Erbe (The Inheritance) was released in Germany. In it, a young scientist observes a couple of stag beetles rutting. Confused, she consults her professor, who sits her down to explain the Darwinian struggles for life and shows her a film of a cat hunting a bird, cocks sparring. Suddenly she gets it, and exclaims, to roars of laughter: Animals pursue their own racial policies!
The muddled propaganda is clear: nature purges the weak, and so must we.
The film then shows a pedigree of a hunting dog, just the type that you might get from the Kennel Club today. And then, up comes an animation of the family tree of the Kallikaks, on one side Erbgesunde Frau and on the other, Erbkranke Frau genetically healthy and hereditarily defective women. On the diseased side, the positions of all of the miscreants and deviants pulse to show the flow of undesirable people through the generations, as the voiceover explains. Das Erbe was a film to promote public acceptance of the Nazi eugenics laws, and what follows the entirely fictional Kallikak family tree is its asserted legacy: shock images of seriously disabled people in sanatoriums, followed by healthy marching Nazis, and a message from Hitler: He who is physically and mentally not healthy and worthy, may not perpetuate his suffering in the body of his child. Approximately 400,000 people were sterilised under this policy. A scientific lie had become a pillar of genocide in just 20 years.
Science has and will always be politicised. People turn to the authority of science to justify their ideologies. Today, we see the same pattern, but with new genetics. After the supermarket shootings in Buffalo in May, there was heated discussion in genetics communities, as the murderer had cited specific academic work in his deranged manifesto, legitimate papers on the genetics of intelligence and the genetic basis of Jewish ancestry, coupled with the persistent pseudoscience of the great replacement.
Science strives to be apolitical, to rise above the grubby worlds of politics and the psychological biases that we are encumbered with. But all new scientific discoveries exist within the culture into which they are born, and are always susceptible to abuse. This does not mean we should shrug and accept that our scientific endeavours are imperfect and can be bastardised with nefarious purpose, nor does it mean we should censor academic research.
But we should know our own history. We teach a version of genetics that is easily simplified to the point of being wrong. The laws in biology have a somewhat tricksy tendency to be beset by qualifications, complexities and caveats. Biology is inherently messy, and evolution preserves what works, not what is simple. In the simplicity of Mendels peas is a science which is easily co-opted, and marshalled into a racist, fascist ideology, as it was in the US, in Nazi Germany and in dozens of other countries. To know our history is to inoculate ourselves against it being repeated.
This article was amended on 20 June 2022. The mass shooting in Buffalo, US, in May 2022 was at a supermarket, not a school as an earlier version said.
Control: The Dark History and Troubling Present of Eugenics by Adam Rutherford is published by Weidenfeld & Nicolson (12.99). To support the Guardian and Observer order your copy at guardianbookshop.com. Delivery charges may apply
Visit link:
Where science meets fiction: the dark history of eugenics - The Guardian
- 11-minute video on human genetics can make people more accepting of others, reveals new study - Hindustan Times - February 24th, 2025
- Advancing Cancer Genetic Testing to Improve Prevention and Patient Treatment - The Scientist - February 24th, 2025
- Environmental factors, lifestyle choices have greater impact on health than genes, study finds - ABC News - February 24th, 2025
- Study finds lifestyle, environment have greater impact on lifespan than genetics - CBS Boston - February 24th, 2025
- Safeguard repressor locks hepatocyte identity and blocks liver cancer - Nature.com - February 24th, 2025
- Mass spectrometry-based mapping of plasma protein QTLs in children and adolescents - Nature.com - February 24th, 2025
- The Avestagenome Project and TIGS Sign Strategic Alliance to Advance Research in Rare Genetic Disorders - The Tribune India - February 24th, 2025
- Researchers make breakthrough discovery after studying genetics of trees: 'There is a need for proactive conservation' - MSN - February 24th, 2025
- iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation - Nature.com - February 24th, 2025
- Beyond genetics: The biggest factors that influence health and aging - Earth.com - February 24th, 2025
- Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia - Nature.com - February 24th, 2025
- How a uniquely human genetic tweak changed the voices of mice - NPR - February 24th, 2025
- Genetic evidence identifies a causal relationship between EBV infection and multiple myeloma risk - Nature.com - February 24th, 2025
- Genetic markers of early response to lurasidone in acute schizophrenia - Nature.com - February 24th, 2025
- Bupa to offer first genetic test for disease prediction in UK - The Times - February 24th, 2025
- Advancing Therapeutic Knowledge of Genetic Influence in ALS: Matthew B. Harms, MD - Neurology Live - February 24th, 2025
- Association of dietary carbohydrate ratio, caloric restriction, and genetic factors with breast cancer risk in a cohort study - Nature.com - February 24th, 2025
- Evaluation of polygenic scores for hypertrophic cardiomyopathy in the general population and across clinical settings - Nature.com - February 24th, 2025
- Familiar autism-linked genes emerge from first analysis of Latin American cohort - The Transmitter: Neuroscience News and Perspectives - February 24th, 2025
- Almost 90% of people would agree to genetic testing to tailor medication use, survey finds - Medical Xpress - February 24th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies 298 Regions of the Genome That Increase Risk for the Condition - Mount Sinai - January 27th, 2025
- Study Sheds Light On The Origin Of Earth Lifes Genetic Code - Astrobiology News - January 27th, 2025
- Largest study on the genetics of bipolar disorder to date gives new insights into the underlying biology - Medical Xpress - January 27th, 2025
- Genetic Swiss Army Knife: New Tool For Gene Editing And Therapy - Forbes - January 27th, 2025
- Uhm Ji-won says the power of genetics is undeniable with Hyun Bin and Son Ye-jin's son - - January 27th, 2025
- Integrative proteogenomic analysis identifies COL6A3-derived endotrophin as a mediator of the effect of obesity on coronary artery disease -... - January 27th, 2025
- Genetic analysis reveals the genetic diversity and zoonotic potential of Streptococcus dysgalactiae isolates from sheep - Nature.com - January 27th, 2025
- Eight psychiatric disorders share the same genetic causes, study says - Medical Xpress - January 27th, 2025
- Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk - Nature.com - January 27th, 2025
- Predictive Genetic Testing and Consumer Genomics Market - GlobeNewswire - January 27th, 2025
- Evolution without sex: How mites have survived for millions of years - EurekAlert - January 27th, 2025
- Our Understanding of Rules that Produce Lifes Genetic Code May Require a Revision - DISCOVER Magazine - January 27th, 2025
- Personalized therapy for rare genetic diseases: Patient-derived organoids offer new hope - Medical Xpress - January 27th, 2025
- The One Thing That's More Important for Longevity Than Your Genes - Parade Magazine - January 27th, 2025
- Complete recombination map of the human genome created - Medical Xpress - January 27th, 2025
- Evidence of genetic determination of annual movement strategies in medium-sized raptors - Nature.com - January 27th, 2025
- Genetic study of Alaska red king crabs suggests species is more diverse and resilient to climate change - Global Seafood Alliance - January 27th, 2025
- Smartwatches reveal insights into psychiatric illnesses and genetic links - Medical Xpress - January 27th, 2025
- Unlocking the Blueprint of Human Life With a Revolutionary DNA Map - SciTechDaily - January 27th, 2025
- Largest Genetic Study of Bipolar Disorder Identifies Nearly 300 Risk-Associated Genome Regions - Inside Precision Medicine - January 27th, 2025
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024
- Family connection: Genetics of suicide - WNEM - November 16th, 2024
- Study links heart shape to genetic risk of cardiovascular diseases - News-Medical.Net - November 16th, 2024
- Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits - Nature.com - November 16th, 2024
- Genetic connectivity of wolverines in western North America - Nature.com - November 16th, 2024
- Toward GDPR compliance with the Helmholtz Munich genotype imputation server - Nature.com - November 16th, 2024
- Leveraging genetic variations for more effective cancer therapies - News-Medical.Net - November 16th, 2024
- Bringing precision to the murky debate on fish oil - University of Arizona News - November 16th, 2024
- International experts gathered in Tashkent to tackle rare disease for Uzbekistan - EurekAlert - November 16th, 2024
- Mercys Story: Living life with 22q, a genetic condition - WECT - November 16th, 2024
- Cold case with ties to Houghton County solved through genetic genealogy after 65 years - WLUC - November 16th, 2024
- 23andMe customer? Here's what to know about the privacy of your genetic data. - CBS News - November 16th, 2024
- Single-cell RNA analysis finds possible genetic drivers of bone cancer - Illumina - November 16th, 2024
- Multi-trait association analysis reveals shared genetic loci between Alzheimers disease and cardiovascular traits - Nature.com - November 16th, 2024
- With 23andMe Struck by Layoffs, Can You Delete Genetic Data? Here's What We Know - CNET - November 16th, 2024
- Genetic testing firm 23andMe cuts 40% of its workforce amid financial struggles - The Guardian - November 16th, 2024
- Genetic study solves the mystery of 'selfish' B chromosomes in rye - Phys.org - November 16th, 2024
- Genetic changes linked to testicular cancer offer fresh insights into the disease - Medical Xpress - November 16th, 2024
- Eating less and genetics help you to live longer, but which factor carries the most weight? - Surinenglish.com - November 16th, 2024
- We must use genetic technologies now to avert the coming food crisis - New Scientist - November 16th, 2024
- NHS England to screen 100,000 babies for more than 200 genetic conditions - The Guardian - October 6th, 2024
- Largest-ever genetic study of epilepsy finds possible therapeutic targets - Medical Xpress - October 6th, 2024
- 23andMe is on the brink. What happens to all its DNA data? - NPR - October 6th, 2024
- The mountains where Neanderthals forever changed human genetics - Big Think - October 6th, 2024
- Gene Activity in Depression Linked to Immune System and Inflammation - Neuroscience News - October 6th, 2024
- Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato - Nature.com - October 6th, 2024
- Genetic and non-genetic HLA disruption is widespread in lung and breast tumors - Nature.com - October 6th, 2024
- Aneuploidy as a driver of human cancer - Nature.com - October 6th, 2024
- Myriad Genetics and Ultima Genomics to Explore the UG - GlobeNewswire - October 6th, 2024
- Biallelic and monoallelic variants in EFEMP1 can cause a severe and distinct subtype of heritable connective tissue disorder - Nature.com - October 6th, 2024
- Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimers disease continuum - Nature.com - October 6th, 2024
- Cracking the Genetic Code on Facial Features - DISCOVER Magazine - October 6th, 2024
- Ancestry vs. 23andMe: How to Pick the Best DNA Testing Kit for You - CNET - October 6th, 2024
- The Mercedes-AMG C63 is bold, but beholden to its genetics - Newsweek - October 6th, 2024
- The Austin Chronic: Texas A&Ms Hemp Breeding Program Adds Drought-Resistant Genetics to the National Collection - Austin Chronicle - October 6th, 2024
- Genetics and AI Help Patients with Early Detection of Breast Cancer Risk - Adventist Review - October 6th, 2024
- 23andMe Is Sinking Fast. Can the Company Survive? - WIRED - October 6th, 2024
- Genetic variations in remote UK regions linked to higher disease risk - Medical Xpress - October 6th, 2024
- Comprehensive mapping of genetic activity brings hope to patients with chronic pain - Medical Xpress - October 6th, 2024
- Genetics - Definition, History and Impact | Biology Dictionary - June 2nd, 2024