This article originally ran on Ensia.
Which is more disruptive to a plant: genetic engineering or conventional breeding?
It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.
My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides.
One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.
It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding.
What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.
Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.
A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of "knocking out" a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.
We can use CRISPR-based genome editing to create a "targeted mutation" in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.
A substantial body of research shows proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.
Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.
Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the "coat protein." The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.
Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution.
Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can "stack" resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.
Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:
Microorganisms often can overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called "R" proteins ("R" standing for "resistance"). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.
This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.
The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.
Visit link:
When genetic engineering is the environmentally friendly choice - GreenBiz
- Genetic Engineering and Its Applications StudyBullet.com - March 9th, 2025
- The Future of Gene-Editing Treatments for Rare Diseases - March 9th, 2025
- Biotechnology & Genetic Engineering: An Overview - Sciencing - March 9th, 2025
- Hoping to revive mammoths, scientists create 'woolly mice' - NPR - March 9th, 2025
- CRISPR Breakthrough Unlocks the Genetic Blueprint for ... - SciTechDaily - March 9th, 2025
- Mice have been genetically engineered to look like mammoths - The Economist - March 9th, 2025
- Gene modification can create bigger, better tomatoes, but should we do it? - Earth.com - March 9th, 2025
- "Colossal woolly mouse" created by scientists in effort to reconstruct the woolly mammoth - CBS News - March 9th, 2025
- Biotech company hoping to revive woolly mammoth, creates woolly mouse: Study - Straight Arrow News - March 9th, 2025
- Colossal Creates the Colossal Woolly Mouse, Showcasing Breakthroughs in Multiplex Genome Editing and Trait Engineering on the Path to a Mammoth -... - March 9th, 2025
- Colossal Biosciences is one step further in quest to bring back the woolly mammoth - Austin American-Statesman - March 9th, 2025
- Biotech Company Creates 'Woolly Mouse' as a Step in Its Quest to Resurrect Woolly Mammoths Through Gene Editing - Smithsonian Magazine - March 9th, 2025
- 'We didn't know they were going to be this cute': Scientists unveil genetically engineered 'woolly mice' - Livescience.com - March 9th, 2025
- These Genetically Engineered Mice Have Thick Woolly Mammoth Hair - ExtremeTech - March 9th, 2025
- Genetically altered mouse to pave way for resurrection of wolly mammoth? - Hindustan Times - March 9th, 2025
- Turning back the aging clock: Billions of dollars are probably being wasted on genetic manipulation techniques that likely wont work - Genetic... - March 9th, 2025
- OF WOOLLY MICE AND MAMMOTHS - Particle - March 9th, 2025
- Woolly mouse unveiled by firm hoping to bring more extinct animals back to life - The National - March 9th, 2025
- How scientists created woolly mice as part of their quest to bring back the woolly mammoth - The Indian Express - March 9th, 2025
- A Woolly What? - Brownstone Research - March 9th, 2025
- $1 Million Awarded to Continue to Develop Genetically Engineered Stem Cell Products to Fight Gastroesophageal Cancer - PR Newswire - February 15th, 2025
- Engineered animals show new way to fight mercury pollution - EurekAlert - February 15th, 2025
- Genetically modified foods: benefits and applications - Meer - February 15th, 2025
- Genetically modified zebrafish and fruit flies munch on mercury to make it less toxic - Yahoo - February 15th, 2025
- Principles of Genetic Engineering - PubMed Central (PMC) - February 7th, 2025
- The next 'big thing' in genetically modified crops: Drought-tolerant and herbicide resistant wheat. Here's what you need to know - Genetic Literacy... - February 7th, 2025
- Genetic engineering and biotechnology: The future of food is here - Yourweather.co.uk - February 7th, 2025
- Scientists Just Achieved a Major Milestone in Creating Synthetic Life - Yahoo! Voices - February 7th, 2025
- Two males give birth to child in incredible science experiment; the baby is now an adult | Mint - Mint - February 7th, 2025
- Genetic Engineering - The Definitive Guide | Biology Dictionary - January 27th, 2025
- Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei - Nature.com - January 27th, 2025
- What is Genetic Engineering? - Baker Institute - January 27th, 2025
- ARCUS breakthrough: An advanced gene editing tool appears to have cured an infant of an early onset metabolic disorder - Genetic Literacy Project - January 27th, 2025
- Your cells are dying. All the time. - Genetic Literacy Project - January 27th, 2025
- How Genetic Modification is Changing the Future of Conservation - MSN - January 27th, 2025
- Researchers genetically engineer yeast to produce healthy fatty acid - University of Alberta - January 27th, 2025
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021