Tissue-specific stem cells
Tissue-specific stem cells, which are sometimes referred to as adult or somatic stem cells, are already somewhat specialized and can produce some or all of the mature cell types found within the particular tissue or organ in which they reside. Because of their ability to generate multiple, organ-specific, cell types, they are described as multipotent. For example, stem cells found
Stem cells are the foundation cells for every organ and tissue in our bodies. The highly specialized cells that make up these tissues originally came from an initial pool of stem cells formed shortly after fertilization. Throughout our lives, we continue to rely on stem cells to replace injured tissues and cells that are lost every day, such as those in our skin, hair, blood and the lining of our gut. Stem cells have two key properties: 1) the ability to self-renew, dividing in a way that makes copies of themselves, and 2) the ability to differentiate, giving rise to the mature types of cells that make up our organs and tissues.
Tissue-specific stem cells Tissue-specific stem cells, which are sometimes referred to as adult or somatic stem cells, are already somewhat specialized and can produce some or all of the mature cell types found within the particular tissue or organ in which they reside. Because of their ability to generate multiple, organ-specific, cell types, they are described as multipotent. For example, stem cells found within the adult brain are capable of making neurons and two types of glial cells, astrocytes and oligodendrocytes. Tissue-specific stem cells have been found in several organs that need to continuously replenish themselves, such as the blood, skin and gut and have even been found in other, less regenerative, organs such as the brain. These types of stem cells represent a very small population and are often buried deep within a given tissue, making them difficult to identify, isolate and grow in a laboratory setting. Neuron Dr. Gerry Shaw, EnCor Biotechnology Inc. Astrocyte Abcam Inc. Oligodendrocyte Dhaunchak and Nave (2007). Proc Natl Acad Sci USA 104:17813-8 http://www.isscr.org Embryonic stem cells Embryonic stem cells have been derived from a variety of species, including humans, and are described as pluripotent, meaning that they can generate all the different types of cells in the body. Embryonic stem cells can be obtained from the blastocyst, a very early stage of development that consists of a mostly hollow ball of approximately 150-200 cells and is barely visible to the naked eye. At this stage, there are no organs, not even blood, just an inner cell mass from which embryonic stem cells can be obtained. Human embryonic stem cells are derived primarily from blastocysts that were created by in vitro fertilization (IVF) for assisted reproduction but were no longer needed. The fertilized egg and the cells that immediately arise in the first few divisions are totipotent. This means that, under the right conditions, they can generate a viable embryo (including support tissues such as the placenta). Within a matter of days, however, these cells transition to become pluripotent. None of the currently studied embryonic stem cell lines are alone capable of generating a viable embryo (i.e., they are pluripotent, not totipotent). Why are embryonic stem cells so valuable? Unlike tissue-specific (adult) stem cells, embryonic stem cells have the potential to generate every cell type found in the body. Just as importantly, these cells can, under the right conditions, be grown and expanded indefinitely in this unspecialized or undifferentiated state. These cells help researchers learn about early human developmental processes that are otherwise inaccessible, study diseases and establish strategies that could ultimately lead to therapies designed to replace or restore damaged tissues. Induced pluripotent stem cells One of the hottest topics in stem cell research today is the study of induced pluripotent stem cells (iPS cells). These are adult cells (e.g., skin cells) that are engineered, or reprogrammed, to become pluripotent, i.e., behave like an embryonic stem cell. While these iPS cells share many of the same characteristics of embryonic stem cells, including the ability to give rise to all the cell types in the body, it is important to understand that they are not identical. The original iPS cells were produced by using viruses to insert extra copies of three to four genes known to be important in embryonic stem cells into the specialized cell. It is not yet completely understood how these three to four reprogramming genes are able to induce pluripotency; this question is the focus of ongoing research. In addition, recent studies have focused on alternative ways of reprogramming cells using methods that are safer for use in clinical settings. Disease- or patient-specific pluripotent stem cells One of the major advantages of iPS cells, and one of the reasons that researchers are very interested in studying them, is that they are a very good way to make pluripotent stem cell lines that are specific to a disease or even to an individual patient. Disease-specific stem cells are powerful tools for studying the cause of a particular disease and then for testing drugs or discovering other approaches to treat or cure that disease. The development of patientspecific stem cells is also very attractive for cell therapy, as these cell lines are from the patient themselves and may minimize some of the serious complications of rejection and immunosuppression that can occur following transplants from unrelated donors. Moving stem cells into the clinic Clinical translation is the process used to turn scientific knowledge into real world medical treatments. Researchers take what they have learned about how a tissue usually works and what goes wrong in a particular disease or injury and use this information to develop new ways to diagnose, stop or fix what goes wrong. Before being marketed or adopted as standard of care, most treatments are tested through clinical trials. Sometimes, in attempting new surgical techniques or where the disease or condition is rare and does not have a large enough group of people to form a clinical trial, certain treatments might be tried on one or two people, a form of testing sometimes referred to as innovative medicine. For more information on how science becomes medicine, please visit http://www.closerlookatstemcells.org. Current therapies Blood stem cells are currently the most frequently used stem cells for therapy. For more than 50 years, doctors have been using bone marrow transplants to transfer blood stem cells to patients, and more advanced techniques for collecting blood stem cells are now being used to treat leukemia, lymphoma and several inherited blood disorders. Umbilical cord blood, like bone marrow, is often collected as a source of blood stem cells and in certain cases is being used as an alternative to bone marrow transplantation. Additionally, some bone, skin and corneal diseases or injuries can be treated by grafting tissues that are derived from or maintained by stem cells. These therapies have also been shown to be safe and effective. Potential therapies Other stem cell treatments, while promising, are still at very early experimental stages. For example, the mesenchymal stem cell, found throughout the body including in the bone marrow, can be directed to become bone, cartilage, fat and possibly even muscle. In certain experimental models, these cells also have some ability to modify immune functions. These abilities have created considerable interest in developing ways of using mesenchymal stem cells to treat a range of musculoskeletal abnormalities, cardiac disease and some immune abnormalities such as graft-versus-host disease following bone marrow transplant. Remaining challenges Despite the successes we have seen so far, there are several major challenges that must be addressed before stem cells can be used as cell therapies to treat a wider range of diseases. First, we need to identify an abundant source of stem cells. Identifying, isolating and growing the right kind of stem cell, particularly in the case of rare adult stem cells, are painstaking and difficult processes. Pluripotent stem cells, such as embryonic stem cells, can be grown indefinitely in the lab and have the advantage of having the potential to become any cell in the body, but these processes are again very complex and must be tightly controlled. iPS cells, while promising, are also limited by these concerns. In both cases, considerable work remains to be done to ensure that these cells can be isolated and used safely and routinely. Second, as with organ transplants, it is very important to have a close match between the donor tissue and the recipient; the more closely the tissue matches the recipient, the lower the risk of rejection. Being able to avoid the lifelong use of immunosuppressants would also be preferable. The discovery of iPS cells has opened the door to developing patient-specific pluripotent stem cell lines that can later be developed into a needed cell type without the problems of rejection and immunosuppression that occur from transplants from unrelated donors. Third, a system for delivering the cells to the right part of the body must be developed. Once in the right location, the new cells must then be encouraged to integrate and function together with the bodys other cells. http://www.isscr.org Glossary Blastocyst A very early embryo that has the shape of a ball and consists of approximately 150-200 cells. It contains the inner cell mass, from which embryonic stem cells are derived, and an outer layer of cells called the trophoblast that forms the placenta. Cell line Cells that can be maintained and grown in a dish outside of the body. Clinical translation The process of using scientific knowledge to design, develop and apply new ways to diagnose, stop or fix what goes wrong in a particular disease or injury. Differentiation The process of development with an increase in the level of organization or complexity of a cell or tissue, accompanied by a more specialized function. Embryo The early developing organism; this term denotes the period of development between the fertilized egg and the fetal stage. Embryonic stem cell Cells derived from very early in development, usually the inner cell mass of a developing blastocyst. These cells are self-renewing (can replicate themselves) and pluripotent (can form all cell types found in the body). Induced pluripotent stem (iPS) cell Induced pluripotent cells (iPS cells) are stem cells that were engineered (induced) from non-pluripotent cells to become pluripotent. In other words, a cell with a specialized function (for example, a skin cell) that has been reprogrammed to an unspecialized state similar to that of an embryonic stem cell. Innovative medicine Treatments that are performed on a small number of people and are designed to test a novel technique or treat a rare disease. These are done outside of a typical clinical trial framework. In vitro fertilization A procedure in which an egg cell and sperm cells are brought together in a dish to fertilize the egg. The fertilized egg will start dividing and, after several divisions, forms the embryo that can be implanted into the womb of a woman and give rise to pregnancy. Mesenchymal stem cells Mesenchymal stem cells were originally discovered in the bone marrow, but have since been found throughout the body and can give rise to a large number of connective tissue types such as bone, cartilage and fat. Multipotent stem cells Stem cells that can give rise to several different types of specialized cells, but in contrast to a pluripotent stem cell, are restricted to a certain organ or tissue types. For example, blood stem cells are multipotent cells that can produce all the different cell types that make up the blood but not the cells of other organs such as the liver or brain. Pluripotent stem cells Stem cells that can become all the cell types that are found in an implanted embryo, fetus or developed organism. Embryonic stem cells are pluripotent stem cells. Self-renewal The process by which a cell divides to generate another cell that has the same potential. Stem cells Cells that have both the capacity to self-renew (make more stem cells by cell division) and to differentiate into mature, specialized cells. Tissue-specific stem cells (also known as adult or somatic stem cells) Stem cells found in different tissues of the body that can give rise to some or all of the mature cell types found within the particular tissue or organ from which they came, i.e., blood stem cells can give rise to all the cells that make up the blood, but not the cells of organs such as the liver or brain. Totipotent stem cells Stem cells that, under the right conditions, are wholly capable of generating a viable embryo (including the placenta) and, for humans, exist until about four days after fertilization, prior to the blastocyst stage from which embryonic stem cells are derived.
More:
What Are Stem Cells - Checkbiotech.org (press release)
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 16th, 2024
- Eat These 5 Underrated Foods To Boost Metabolism, Says An MD - mindbodygreen - November 16th, 2024
- BioRestorative Therapies IFATS 2024 Presentation to - GlobeNewswire - September 21st, 2024
- Fasting may help improve immune system; 3 reasons why one should fast at least once a week or a month - Times Now - February 24th, 2023
- Alpilean Weight Loss Reviews (Legit Or Fake) Dont Try Alpine Ice Hack Diet Before You See This! - Outlook India - February 24th, 2023
- Stevens Institute of Technology Professors Use Interdisciplinary Collaboration to Enhance the Field of 3D-Printed Tissues - India Education Diary - February 24th, 2023
- Stress can throw off circadian rhythms and lead to weight gain - Medical News Today - August 19th, 2022
- Scientists Aim to Bring the Tasmanian Tiger Back From Extinction Mother Jones - Mother Jones - August 19th, 2022
- Benefits Of Ozone Therapy In Pain Medicine - Nation World News - August 19th, 2022
- New Discovered Adipokines Associated with the Pathogenesis of Obesity | DMSO - Dove Medical Press - August 11th, 2022
- Slimvance Reviews - Does This Fat Burner Really Work? - Outlook India - August 11th, 2022
- Mesenchymal stem cells - PubMed - June 16th, 2022
- Stem cells: Sources, types, and uses - Medical News Today - June 16th, 2022
- Fat Cells - The Definitive Guide | Biology Dictionary - June 16th, 2022
- Stem Cells For Back Pain | Stem Cells For Herniated Discs - June 16th, 2022
- 2022-06-13 | OTCPK:BRTXD | Press Release | BioRestorative Therapies - Stockhouse - June 16th, 2022
- Hepatic Diseases and Associated Glucose Intolerance | DMSO - Dove Medical Press - June 16th, 2022
- Why Fitness Experts Are Obsessed With "Bulletproofing" the Body - InsideHook - June 16th, 2022
- New Stem cell conveying hydrogel could assist the heart with recuperating myocardial ischemia - Microbioz India - August 17th, 2021
- Participants Diagnosis Halts Gene Therapy Clinical Trial - The Scientist - August 17th, 2021
- The Involuted Palate, or the Savage Crinkle of Future Snacks - lareviewofbooks - August 17th, 2021
- Time to Go Sushi With Cellular Salmon; When Pet Owners Tire of Their Minions - The SandPaper - August 17th, 2021
- Adipose-derived Stem Cell Market Analysis, Key Company Profiles, Types, Applications and Forecast To 2027 The Courier - The Courier - May 27th, 2021
- Global Cell Therapy Markets, Technologies, and Competitive Landscape Report 2020-2030: Applications, Cardiovascular Disorders, Cancer, Neurological... - May 27th, 2021
- What is lab grown meat? A scientist explains the taste, production and safety of artificial foods - BBC Focus Magazine - May 27th, 2021
- Rheumatoid Arthritis Stem Cell Therapy Market share, growth drivers, demand, supply, challenges, and investment opportunities by 2028 - WhaTech - May 27th, 2021
- Obesity-Related Inflammation and Endothelial Dysfunction in COVID-19: | JIR - Dove Medical Press - May 27th, 2021
- The hunt for the master cow that will feed the world - Wired.co.uk - May 27th, 2021
- Australia's Magic Valley On How to Turn Cells From "Cell Volunteer" Lucy the Lamb Into Lamb Steaks and Chops - vegconomist - the vegan... - May 27th, 2021
- Clearing Cellular Dead Wood | In the Pipeline - Science Magazine - May 27th, 2021
- University of Pittsburgh Won't Explain its Planned Parenthood Ties | Opinion - Newsweek - May 27th, 2021
- Smart Stem Cells Made From Fat Have the Power to Heal - Freethink - February 14th, 2021
- Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease - Science - February 14th, 2021
- Their Goal: Meat That's Better Than Meat | Tufts Now - Tufts Now - January 31st, 2021
- Gut microbiota: How does it interact with the brain? - Medical News Today - December 30th, 2020
- The 10 Best Herbs for Liver Health: Benefits and Precautions - Healthline - December 19th, 2020
- Startups are racing to reproduce breast milk in the lab - MIT Technology Review - December 19th, 2020
- The facts about the danger of melanoma - The Hudson Reporter - December 19th, 2020
- And Now, a Moment for Culture(d Meat) - The Spoon - December 4th, 2020
- How to live longer: Calorie restriction may reset your biological body clock - Express - December 4th, 2020
- Future Meat is cutting costs on mass production with an unlikely cellular approach - The Spoon - November 30th, 2020
- BioRestorative Therapies Emerges from Chapter 11 Reorganization - OrthoSpineNews - November 25th, 2020
- The Adipose Tissue Derived Stem Cells market to grow in the wake of incorporation of the latest technology - The Think Curiouser - November 7th, 2020
- Global Cell Therapy Technologies, Competitive Landscape & Markets, 2019-2020 & Forecast to 2029 - ResearchAndMarkets.com - Yahoo Finance - November 7th, 2020
- Blocking energy pathway reduces GVHD while retaining anti-cancer effects of T-cells - Science Codex - November 7th, 2020
- Singapore startup Shiok Meats re-creates shrimp in the lab - Los Angeles Times - October 10th, 2020
- Aqua-Spark Announces an Investment in Singapore-based Shiok Meats, the First Cell-Based Company to Produce Clean, Sustainable, Cruelty-Free Shrimp and... - October 6th, 2020
- Orgenesis to acquire regenerative medicine company Koligo Therapeutics - Pharmaceutical Business Review - September 30th, 2020
- Heart attack patches may save lives in US and beyond - Galveston County Daily News - September 30th, 2020
- Orgenesis Announces Agreement to Acquire Koligo Therapeutics, a Leader in Personalized Cell Therapies - GlobeNewswire - September 30th, 2020
- Bariatric surgery is booming, as obese patients worry about their Covid-19 risks - The Daily Briefing - September 30th, 2020
- Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Unica News - September 30th, 2020
- Regenerative medicine and war: The next breakthrough in treating injured veterans? - Genetic Literacy Project - September 29th, 2020
- Sherrie Hewson celebrates 70th birthday with second face lift to transform her looks - The Sun - September 15th, 2020
- Two Austin Women Hope to Build the First Lab-Grown Brisket - Texas Monthly - September 15th, 2020
- FDA Clears Jointechlabs' MiniTC for Point-of-Care Fat Tissue Processing and its Broad Range of Applications - PRNewswire - August 26th, 2020
- Photos That Reveal the Hidden Side of Things - Obsev - August 26th, 2020
- Research Roundup: Lasting Immunity to COVID-19 and More - BioSpace - August 25th, 2020
- The Truth About Cosmetic Treatments review a format in need of a facelift - The Guardian - August 25th, 2020
- Survivors of Pediatric Cancers May Experience Lasting Impact on Heart, Metabolic Health Following Radiation Therapy - Pharmacy Times - August 15th, 2020
- AgeX Therapeutics Reports Second Quarter 2020 Financial Results and Provides Business Update - Business Wire - August 15th, 2020
- Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Good Night, Good Hockey - August 15th, 2020
- Meet The 12 Next-Gen Food Techs Transforming The Future Of Protein - Green Queen Media - August 15th, 2020
- Meat-lover who wants to save the planet? 3D printed steaks are your solution - ThePrint - July 12th, 2020
- Fat stem cells improve prognosis in patients with Covid-19 ... - July 11th, 2020
- Making Sense of Stem Cells and Fat Grafting in Plastic ... - July 11th, 2020
- Tip Sheet: SARS-CoV-2 antibodies, COVID-19 and health disparities, eating in tough times and immune protection in breast milk - Fred Hutch News... - July 9th, 2020
- Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain - Science Magazine - July 9th, 2020
- Fasting is not starvation or a fad, it is a discipline: Luke Coutinho - The Indian Express - July 9th, 2020
- Is Meat Grown in a Lab Really Meat? - The New York Times - July 7th, 2020
- What if mammoths are brought back from extinction? - The Economist - July 7th, 2020
- Cancer Stem Cells (CSCs) Market Recent Industry Developments and Growth Strategies Adopted by Players - Cole of Duty - July 1st, 2020
- Coronavirus symptoms: How COVID-19 can damage the brain - what to look for - Express - July 1st, 2020
- Westerleigh resident is alive because of stem cell therapy by his doctor -- for free. Heres his story. - SILive.com - June 13th, 2020
- Regenerative Therapy Options for Horses With Osteoarthritis - TheHorse.com - June 13th, 2020
- Fat cells remember their diets early in life - Massive Science - June 13th, 2020
- Patient uses fat stem cells to repair his wrist - CNN - June 10th, 2020
- FDA Warns About Stem Cell Therapies | FDA - June 10th, 2020
- Regenerative Therapies: Helping Horses Self-Heal The Horse - TheHorse.com - May 31st, 2020
- AgeX Therapeutics and Sernova to Collaborate to Engineer Universal Locally Immune Protected Cell Therapies for Type I Diabetes and Hemophilia A -... - May 31st, 2020