header logo image

What are embryonic stem cells? [Stem Cell Information]

September 18th, 2015 5:43 pm

Embryonic stem cells, as their name suggests, are derived from embryos. Most embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitroin an in vitro fertilization clinicand then donated for research purposes with informed consent of the donors. They are not derived from eggs fertilized in a woman's body.

Growing cells in the laboratory is known as cell culture. Human embryonic stem cells (hESCs) aregenerated by transferringcells from a preimplantation-stage embryointo a plastic laboratory culture dish that contains a nutrient broth known as culture medium. The cells divide and spread over the surface of the dish. In the original protocol, the inner surface of the culture dish was coated with mouse embryonic skin cellsspecially treated so they will not divide. This coating layer of cells is called a feeder layer. The mouse cells in the bottom of the culture dish provide the cells a sticky surface to which they can attach. Also, the feeder cells release nutrients into the culture medium. Researchers have nowdevised ways to grow embryonic stem cells without mouse feeder cells. This is a significant scientific advance because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.

The process of generating an embryonic stem cell line is somewhat inefficient, so lines are not produced each time cells from the preimplantation-stage embryo are placed into a culture dish. However, if the plated cells survive, divide and multiply enough to crowd the dish, they are removed gently and plated into several fresh culture dishes. The process of re-plating or subculturing the cells is repeated many times and for many months. Each cycle of subculturing the cells is referred to as a passage. Once the cell line is established, the original cells yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for for a prolonged period of time without differentiating, and are pluripotentare referred to as an embryonic stem cell line. At any stage in the process, batches of cells can be frozen and shipped to other laboratories for further culture and experimentation.

At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells. This process is called characterization.

Scientists who study human embryonic stem cells have not yet agreed on a standard battery of tests that measure the cells' fundamental properties. However, laboratories that grow human embryonic stem cell lines use several kinds of tests, including:

As long as the embryonic stem cells in culture are grown under appropriate conditions, they can remain undifferentiated (unspecialized). But if cells are allowed to clump together to form embryoid bodies, they begin to differentiate spontaneously. They can form muscle cells, nerve cells, and many other cell types. Although spontaneous differentiation is a good indication that a culture of embryonic stem cells is healthy, it is not an efficient way to produce cultures of specific cell types.

So, to generate cultures of specific types of differentiated cellsheart muscle cells, blood cells, or nerve cells, for examplescientists try to control the differentiation of embryonic stem cells. They change the chemical composition of the culture medium, alter the surface of the culture dish, or modify the cells by inserting specific genes. Through years of experimentation, scientists have established some basic protocols or "recipes" for the directed differentiation of embryonic stem cells into some specific cell types (Figure 1). (For additional examples of directed differentiation of embryonic stem cells, refer to the NIH stem cell report available at http://stemcells.nih.gov/info/scireport/pages/2006report.aspx.)

Figure 1. Directed differentiation of mouse embryonic stem cells. Click here for larger image. ( 2008 Terese Winslow)

If scientists can reliably direct the differentiation of embryonic stem cells into specific cell types, they may be able to use the resulting, differentiated cells to treat certain diseases in the future. Diseases that might be treated by transplanting cells generated from human embryonic stem cells include diabetes, traumatic spinal cord injury, Duchenne's muscular dystrophy, heart disease, and vision and hearing loss.

Previous|III. What are embryonic stem cells?|Next

View post:
What are embryonic stem cells? [Stem Cell Information]

Related Post

Comments are closed.


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick