Originally published August 7, 2012 at 7:45 PM | Page modified August 7, 2012 at 8:25 PM
Two University of Washington scientists, using expertise in stem cells, cardiology, pathology, cell biology and the electrophysiology of the heart, are a step closer to their holy grail: regenerating a damaged heart.
Human heart-muscle cells injected into the damaged heart of a guinea pig not only strengthened the heart's ability to contract, the cells synchronized with the animal's heart and protected it from arrhythmias, rhythm disturbances that can be fatal.
Regenerating a damaged heart is the "big dream, the big vision," said Dr. Charles E. Murry, a cardiovascular biologist who co-led the research published in the most recent issue of Nature.
"This is the first demonstration that human heart-muscle grafts can electrically stabilize the injured heart, and the first demonstration that they can couple and beat in sync," Murry said.
When the researchers injected the human heart cells, grown from embryonic stem cells, into the hearts of guinea pigs with damaged hearts, they saw a "profound effect," said Dr. Michael Laflamme, the senior author.
"The animals that had received these stem-cell-derived heart-muscle cells had far fewer arrhythmias," said Laflamme.
Like Murry, he is a cardiovascular biologist, pathologist and member of the UW Center for Cardiovascular Biology and the Institute for Stem Cell and Regenerative Medicine.
To tell if the new cells were beating in rhythm with their host, the researchers inserted a sensor gene that would fluoresce green when the cells contracted. The fluorescent protein was originally discovered in the Aequorea victoria jellyfish at Friday Harbor on San Juan Island.
In the last several years, medical science has made much progress in helping patients survive acute heart attacks, Murry noted.
See more here:
UW researchers see work as step toward regenerating human heart