Mar 12th 2020
THE INTERCONNECTEDNESS of the modern world has been a boon for SARS-CoV-2. Without planes, trains and automobiles the virus would never have got this far, this fast. Just a few months ago it took its first steps into a human host somewhere in or around Wuhan, in the Chinese province of Hubei. As of this week it had caused over 120,000 diagnosed cases of covid-19, from Troms to Buenos Aires, Alberta to Auckland, with most infections continuing to go undiagnosed (see article).
But interconnectedness may be its downfall, too. Scientists around the world are focusing their attention on its genome and the 27 proteins that it is known to produce, seeking to deepen their understanding and find ways to stop it in its tracks. The resulting plethora of activity has resulted in the posting of over 300 papers on MedRXiv, a repository for medical-research work that has not yet been formally peer-reviewed and published, since February 1st, and the depositing of hundreds of genome sequences in public databases. (For more coverage of covid-19 see our coronavirus hub.)
The assault on the vaccine is not just taking place in the lab. As of February 28th Chinas Clinical Trial Registry listed 105 trials of drugs and vaccines intended to combat SARS-CoV-2 either already recruiting patients or proposing to do so. As of March 11th its American equivalent, the National Library of Medicine, listed 84. This might seem premature, considering how recently the virus became known to science; is not drug development notoriously slow? But the reasonably well-understood basic biology of the virus makes it possible to work out which existing drugs have some chance of success, and that provides the basis for at least a little hope.
Even if a drug were only able to reduce mortality or sickness by a modest amount, it could make a great difference to the course of the disease. As Wuhan learned, and parts of Italy are now learning, treating the severely ill in numbers for which no hospitals were designed puts an unbearable burden on health systems. As Jeremy Farrar, the director of the Wellcome Trust, which funds research, puts it: If you had a drug which reduced your time in hospital from 20 days to 15 days, thats huge.
Little noticed by doctors, let alone the public, until the outbreak of SARS (severe acute respiratory syndrome) that began in Guangdong in 2002, the coronavirus family was first recognised by science in the 1960s. Its members got their name because, under the early electron microscopes of the period, their shape seemed reminiscent of a monarchs crown. (It is actually, modern methods show, more like that of an old-fashioned naval mine.) There are now more than 40 recognised members of the family, infecting a range of mammals and birds, including blackbirds, bats and cats. Veterinary virologists know them well because of the diseases they cause in pigs, cattle and poultry.
Virologists who concentrate on human disease used to pay less attention. Although two long-established coronaviruses cause between 15% and 30% of the symptoms referred to as the common cold, they did not cause serious diseases in people. Then, in 2002, the virus now known as SARS-CoV jumped from a horseshoe bat to a person (possibly by way of some intermediary). The subsequent outbreak went on to kill almost 800 people around the world.
Some of the studies which followed that outbreak highlighted the fact that related coronaviruses could easily follow SARS-CoV across the species barrier into humans. Unfortunately, this risk did not lead to the development of specific drugs aimed at such viruses. When SARS-CoV-2similarly named because of its very similar genomeduly arrived, there were no dedicated anti-coronavirus drugs around to meet it.
A SARS-CoV-2 virus particle, known technically as a virion, is about 90 nanometres (billionths of a metre) acrossaround a millionth the volume of the sort of cells it infects in the human lung. It contains four different proteins and a strand of RNAa molecule which, like DNA, can store genetic information as a sequence of chemical letters called nucleotides. In this case, that information includes how to make all the other proteins that the virus needs in order to make copies of itself, but which it does not carry along from cell to cell.
The outer proteins sit athwart a membrane provided by the cell in which the virion was created. This membrane, made of lipids, breaks up when it encounters soap and water, which is why hand-washing is such a valuable barrier to infection.
The most prominent protein, the one which gives the virions their crown- or mine-like appearance by standing proud of the membrane, is called spike. Two other proteins, envelope protein and membrane protein, sit in the membrane between these spikes, providing structural integrity. Inside the membrane a fourth protein, nucleocapsid, acts as a scaffold around which the virus wraps the 29,900nucleotides of RNA which make up its genome.
Though they store their genes in DNA, living cells use RNA for a range of other activities, such as taking the instructions written in the cells genome to the machinery which turns those instructions into proteins. Various sorts of virus, though, store their genes on RNA. Viruses like HIV, which causes AIDS, make DNA copies of their RNA genome once they get into a cell. This allows them to get into the nucleus and stay around for years. Coronaviruses take a simpler approach. Their RNA is formatted to look like the messenger RNA which tells cells what proteins to make. As soon as that RNA gets into the cell, flummoxed protein-making machinery starts reading the viral genes and making the proteins they describe.
First contact between a virion and a cell is made by the spike protein. There is a region on this protein that fits hand-in-glove with ACE2, a protein found on the surface of some human cells, particularly those in the respiratory tract.
ACE2 has a role in controlling blood pressure, and preliminary data from a hospital in Wuhan suggest that high blood pressure increases the risks of someone who has contracted the illness dying of it (so do diabetes and heart disease). Whether this has anything to do with the fact that the viruss entry point is linked to blood-pressure regulation remains to be seen.
Once a virion has attached itself to an ACE2 molecule, it bends a second protein on the exterior of the cell to its will. This is TMPRSS2, a protease. Proteases exist to cleave other proteins asunder, and the virus depends on TMPRSS2 obligingly cutting open the spike protein, exposing a stump called a fusion peptide. This lets the virion into the cell, where it is soon able to open up and release its RNA (see diagram).
Coronaviruses have genomes bigger than those seen in any other RNA virusesabout three times longer than HIVs, twice as long as the influenza viruss, and half as long again as the Ebola viruss. At one end are the genes for the four structural proteins and eight genes for small accessory proteins that seem to inhibit the hosts defences (see diagram). Together these account for just a third of the genome. The rest is the province of a complex gene called replicase. Cells have no interest in making RNA copies of RNA molecules, and so they have no machinery for the task that the virus can hijack. This means the virus has to bring the genes with which to make its own. The replicase gene creates two big polyproteins that cut themselves up into 15, or just possibly 16, short non-structural proteins (NSPs). These make up the machinery for copying and proofreading the genomethough some of them may have other roles, too.
Once the cell is making both structural proteins and RNA, it is time to start churning out new virions. Some of the RNA molecules get wrapped up with copies of the nucleocapsid proteins. They are then provided with bits of membrane which are rich in the three outer proteins. The envelope and membrane proteins play a large role in this assembly process, which takes place in a cellular workshop called the Golgi apparatus. A cell may make between 100 and 1,000 virions in this way, according to Stanley Perlman of the University of Iowa. Most of them are capable of taking over a new celleither nearby or in another bodyand starting the process off again.
Not all the RNA that has been created ends up packed into virions; leftovers escape into wider circulation. The coronavirus tests now in use pick up and amplify SARS-CoV-2-specific RNA sequences found in the sputum of infected patients.
Because a viral genome has no room for free riders, it is a fair bet that all of the proteins that SARS-CoV-2 makes when it gets into a cell are of vital importance. That makes each of them a potential target for drug designers. In the grip of a pandemic, though, the emphasis is on the targets that might be hit by drugs already at hand.
The obvious target is the replicase system. Because uninfected cells do not make RNA copies of RNA molecules, drugs which mess that process up can be lethal to the virus while not necessarily interfering with the normal functioning of the body. Similar thinking led to the first generation of anti-HIV drugs, which targeted the process that the virus uses to transcribe its RNA genome into DNAanother thing that healthy cells just do not do.
Like those first HIV drugs, some of the most promising SARS-CoV-2 treatments are molecules known as nucleotide analogues. They look like the letters of which RNA or DNA sequences are made up; but when a virus tries to use them for that purpose they mess things up in various ways.
The nucleotide-analogue drug that has gained the most attention for fighting SARS-CoV-2 is remdesivir. It was originally developed by Gilead Sciences, an American biotechnology firm, for use against Ebola fever. That work got as far as indicating that the drug was safe in humans, but because antibody therapy proved a better way of treating Ebola, remdesivir was put to one side. Laboratory tests, though, showed that it worked against a range of other RNA-based viruses, including SARS-CoV, and the same tests now show that it can block the replication of SARS-CoV-2, too.
There are now various trials of remdesivirs efficacy in covid-19 patients. Gilead is organising two in Asia that will, together, involve 1,000 infected people. They are expected to yield results in mid- to late-April. Other nucleotide analogues are also under investigation. When they screened seven drugs approved for other purposes for evidence of activity against SARS-CoV-2, a group of researchers at the State Key Laboratory of Virology in Wuhan saw some potential in ribavirin, an antiviral drug used in the treatment of, among other things, hepatitis C, that is already on the list of essential medicines promulgated by the World Health Organisation (WHO).
Nucleotide analogues are not the only antiviral drugs. The second generation of anti-HIV drugs were the protease inhibitors which, used along with the original nucleotide analogues, revolutionised the treatment of the disease. They targeted an enzyme with which HIV cuts big proteins into smaller ones, rather as one of SARS-CoV-2s NSPs cuts its big polyproteins into more little NSPs. Though the two viral enzymes do a similar job, they are not remotely relatedHIV and SARS-CoV-2 have about as much in common as a human and a satsuma. Nevertheless, when Kaletra, a mixture of two protease inhibitors, ritonavir and lopinavir, was tried in SARS patients in 2003 it seemed to offer some benefit.
Another drug which was developed to deal with other RNA-based virusesin particular, influenzais Favipiravir (favilavir). It appears to interfere with one of the NSPs involved in making new RNA. But existing drugs that might have an effect on SARS-CoV-2 are not limited to those originally designed as antivirals. Chloroquine, a drug mostly used against malaria, was shown in the 2000s to have some effect on SARS-CoV; in cell-culture studies it both reduces the viruss ability to get into cells and its ability to reproduce once inside them, possibly by altering the acidity of the Golgi apparatus. Camostat mesylate, which is used in cancer treatment, blocks the action of proteases similar to TMPRSS2, the protein in the cell membrane that activates the spike protein.
Not all drugs need to target the virus. Some could work by helping the immune system. Interferons promote a widespread antiviral reaction in infected cells which includes shutting down protein production and switching on RNA-destroying enzymes, both of which stop viral replication. Studies on the original SARS virus suggested that interferons might be a useful tool for stopping its progress, probably best used in conjunction with other drugs
Conversely, parts of the immune system are too active in covid-19. The virus kills not by destroying cells until none are left, but by overstimulating the immune systems inflammatory response. Part of that response is mediated by a molecule called interleukin-6one of a number of immune-system modulators that biotechnology has targeted because of their roles in autoimmune disease.
Actemra (tocilizumab) is an antibody that targets the interleukin-6 receptors on cell surfaces, gumming them up so that the interleukin-6 can no longer get to them. It was developed for use in rheumatoid arthritis. China has just approved it for use against covid-19. There are anecdotal reports of it being associated with clinical improvements in Italy.
While many trials are under way in China, the decline in the case rate there means that setting up new trials is now difficult. In Italy, where the epidemic is raging, organising trials is a luxury the health system cannot afford. So scientists are dashing to set up protocols for further clinical trials in countries expecting a rush of new cases. Dr Farrar said on March 9th that Britain must have its trials programme agreed within the week.
International trials are also a high priority. Soumya Swaminathan, chief scientist at the WHO, says that it is trying to finalise a master protocol for trials to which many countries could contribute. By pooling patients from around the world, using standardised criteria such as whom to include and how to measure outcomes, it should be possible to create trials of thousands of patients. Working on such a large scale makes it possible to pick up small, but still significant, benefits. Some treatments, for example, might help younger patients but not older ones; since younger patients are less common, such an effect could easily be missed in a small trial.
The caseload of the pandemic is hard to predict, and it might be that even a useful drug is not suitable in all cases. But there are already concerns that, should one of the promising drugs prove to be useful, supplies will not be adequate. To address these, the WHO has had discussions with manufacturers about whether they would be able to produce drugs in large enough quantities. Generic drug makers have assured the organisation that they can scale up to millions of doses of ritonavir and lopinavir while still supplying the HIV-positive patients who rely on the drugs. Gilead, meanwhile, has enough remdesivir to support clinical trials and, thus far, compassionate use. The firm says it is working to make more available as rapidly as possible, even in the absence of evidence that it works safely.
In the lab, SARS-CoV-2 will continue being dissected and mulled over. Details of its tricksiness will be puzzled out, and the best bits of proteins to turn into vaccines argued over. But that is all for tomorrow. For today doctors can only hope that a combination of new understanding and not-so-new drugs will do some good.
Dig deeper:
This article appeared in the Briefing section of the print edition under the headline "Anatomy of a killer"
Read more here:
Understanding SARS-CoV-2 and the drugs that might lessen its power - The Economist
- Department of Genetic Medicine - January 6th, 2025
- Research Services | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Patient Care | Johns Hopkins Department of Genetic Medicine - January 6th, 2025
- Specialty Clinics | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Pediatric Genetic Medicine at Johns Hopkins Children's Center - January 6th, 2025
- Research Centers | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- About Us - Johns Hopkins Medicine - January 6th, 2025
- Graduate Programs & Training | Johns Hopkins Medicine - January 6th, 2025
- Request an Appointment | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021