Shoppers wear face masks on Regent Street in London on 19 December, the day the U.K. government imposed new restrictions to curb a rapidly spreading new SARS-CoV-2 variant.
By Kai KupferschmidtDec. 23, 2020 , 2:30 PM
Sciences COVID-19 reporting is supported by the Pulitzer Center and the Heising-Simons Foundation.
In June, Ravindra Gupta, a virologist at the University of Cambridge, heard about a cancer patient who had come into a local hospital the month before with COVID-19 and was still shedding virus. The patient was being treated for a lymphoma that had relapsed and had been given rituximab, a drug that depletes antibody-producing B cells. That made it hard for him to shake the infection with SARS-CoV-2.
Gupta, who studies how resistance to HIV drugs arises, became interested in the case and helped treat the patient, who died in August, 101 days after his COVID-19 diagnosis, despite being given the antiviral drug remdesivir and two rounds of plasma from recovered patients, which containedantibodies against the virus. When Gupta studied genome sequences from the coronavirus that infected the patient, he discovered that SARS-CoV-2 had acquired several mutations that might have allowed it to elude the antibodies.
Now, his analysis, reported in a preprint on medRxiv earlier this month, has become a crucial puzzle piece for researchers trying to understand the importance of B.1.1.7, the new SARS-CoV-2 variant first found in the United Kingdom. That strain, which appears to spread faster than others, contains one of the mutations that Gupta found, and researchers believe B.1.1.7, too, may have originated in an immunocompromised patient who had a long-running infection. Its a perfectly logical and rational hypothesis, says infectious disease scientist Jeremy Farrar, director of the Wellcome Trust.
Scientists are still trying to figure out the effects of the mutations in B.1.1.7, whose emergence led the U.K. government to tighten coronavirus control measures and other countries in Europe to impose U.K. travel bans. But the new variant, along with research by Gupta and others, has also drawn attention to the potential role in COVID-19 of people with weakened immune systems. If they provide the virus with an opportunity to evolve lineages that spread faster, are more pathogenic, or elude vaccines, these chronic infections are not just dangerous for the patients, but might have the potential to alter the course of the pandemic.
Its still very unclear whether that is the case, but Farrar believes its important to ensure doctors take extra precautions when caring for such people: Until we know for sure, I think, treating those patients under pretty controlled conditions, as we would somebody who has drug resistant tuberculosis, actually makes sense.
Researchers concern mostly focuses on cancer patients being treated for chemotherapy and similar situations. We dont yet know about people who are immunocompromised because of HIV, for instance, Farrar says.
B.1.1.7 attracted scientists attention because it was linked to an outbreak in Englands Kent county that was growing faster than usual. Sequences showed that virus had accumulated a slew of mutations that together caused 17 amino acid changes in the virus proteins, eight of them in the crucial spike protein. Among them are at least three particularly concerning ones.
One is 69-70del, a deletion that Gupta also found in his Cambridge, U.K., patient whose virus seemed to evade the immune system. It leads to the loss of two amino acids in the spike protein. In lab experiments, Gupta found that lentivirus engineered to carry the SARS-CoV-2 spike protein with this deletion was twice as infectious.
The second is N501Y, a mutation that evolutionary biologist Jesse Bloom of the Fred Hutchinson Cancer Research Center has shown to increase how tightly the protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor, its entry point into human cells. The mutation is also present in 501Y.V2, a variant discovered by researchers in South Africa who investigated rapidly growing outbreaks in three coastal provinces. We found that this lineage seems to be spreading much faster, says Tulio de Oliveira, a virologist at the University of KwaZulu-Natal whose work first alerted U.K. scientists to the importance of N501Y. Anytime you see the same mutation being independently selected multiple times, it increases the weight of evidence that that mutation is probably beneficial in some way for the virus, Bloom says.
The third worrisome change is P681H, which alters the site where the spike protein has to be cleaved to enter human cells. It is one of the sites on spike where SARS-CoV-2 differs from SARS-CoV-1, the virus that caused the worldwide outbreak of severe acute respiratory syndrome in 2003, and the change there may allow it to spread more easily. This one is probably as important as N501Y, says Christian Drosten, a virologist at Charit University Hospital in Berlin.
So far, SARS-CoV-2 typically acquires only one to two mutations per month. And B.1.1.7 is back to this pace now, suggesting it doesnt mutate faster normally than other lineages. Thats why scientists believe it may have gone through a lengthy bout of evolution in a chronically infected patient who then transmitted the virus late in their infection. We know this is rare but it can happen, says World Health Organization epidemiologist Maria Van Kerkhove. Stephen Goldstein, a virologist at the University of Utah, agrees. Its simply too many mutations to have accumulated under normal evolutionary circumstances. It suggests an extended period of within-host evolution, he says.
People with a weakened immune system may give the virus this opportunity, as Guptas data show. More evidence comes from a paper published in The New England Journal of Medicine on 3 December that described an immunocompromised patient in Boston infected with SARS-CoV-2 for 154 days before he died. Again, the researchers found several mutations, including N501Y. It suggests that you can get relatively large numbers of mutations happening over a relatively short period of time within an individual patient, says William Hanage of the Harvard T.H. Chan School of Public Health, one of the authors. (In patients who are infected for a few days and then clear the virus, there simply is not enough time for this, he says.) When such patients are given antibody treatments for COVID-19 late in their disease course, there may already be so many variants present that one of them is resistant, Goldstein says.
Its simply too many mutations to have accumulated under normal evolutionary circumstances. It suggests an extended period of within-host evolution.
The question is whether the mutations arising in such patients could also help the virus spread more rapidly. In research published a few years ago, Bloom showed some of the mutations that arose in influenza viruses in immunocompromised patients later spread globally. Its totally possible that whats happening in immunocompromised patients could foreshadow what happens in the future with the pandemic, Bloom says. But adaptations that help a virus outperform other viruses in a patient can also be very different from what a virus needs to better transmit from patient to patient, he says.
U.K. scientists and others were initially cautious about concluding that B.1.1.7s mutations made the virus better at spreading from person to person. But the new variant is rapidly replacing others, says Mge evik, an infectious disease specialist at the University of St.Andrews. We cant really rule out the possibility that seasonality and human behavior explain some of the increase, she says. But it certainly seems like there is something to do with this variant. Drosten says he was initially skeptical, but has become more convinced as well.
But exactly what impact each mutation has is much more difficult to assess than spotting them or showing theyre on the rise, says Seema Lakdawala, a biologist at the University of Pittsburgh. Animal experiments can help show an effect, but they have limitations. Hamsters already transmit SARS-CoV-2 virus rapidly, for instance, which could obscure any effect of the new variant. Ferrets transmit it less efficiently, so a difference may be more easily detectable, Lakdawala says. But does that really translate to humans? I doubt it. A definitive answer may be months off, she predicts.
One hypothesis that scientists are discussing is that the virus has increased how strongly it binds to the ACE2 receptor on human cells, and that this allows it to better infect children than before, expanding its playing field. But the evidence for that is very thin so far, evik says. Even if children turn out to make up a higher proportion of people infected with the new variant, that could be because the variant spread at a time when there was a lockdown but schools were open. Another hypothesis is that P681H helps the virus better infect cells higher up in the respiratory tract, from where it can spread more easily than from deep in the lungs, Drosten says.
One important question is whether the South African or U.K. lineage might lead to more severe disease or even evade vaccine-induced immunity. So far there is little reason to think so. Although some mutations have been shown to let the virus evade monoclonal antibodies, vaccines and natural infections both appear to lead to a broad immune response that targets many parts of the virus, says Shane Crotty of the La Jolla Institute for Immunology. It would be a real challenge for a virus to escape from that. The measles and polio viruses have never learned to escape the vaccines targeting them, he notes: Those are historical examples suggesting not to freak out.
At a press conference yesterday, BioNTech CEO Uur ahin pointed out that the U.K. variant differed in only nine out of more than 1270 amino acids of the spike protein encoded by the messenger RNA in the very effective COVID-19 vaccine his company developed together with Pfizer. Scientifically it is highly likely that the immune response by this vaccine also can deal with the new virus, he said. Experiments are underway that should confirm that in the first week of 2021, ahin added.
Sbastien Calvignac-Spencer, an evolutionary virologist at the Robert Koch Institute, says this marks the first time countries have taken such drastic actions as the U.K. lockdown and the travel bans based on genomic surveillance in combination with epidemiological data. Its pretty unprecedented at this scale, he says. But the question of how to react to disconcerting mutations in pathogens will crop up more often as genomic surveillance expands, he predicts. People are happy they prepared for a category 4 hurricane even if predictions turn out to be wrong and the storm is less severe, Calvignac-Spencer says. This is a bit the same, except that we have much less experience with genomic surveillance than we have with the weather forecast.
Although the rise of B.1.1.7 in the United Kingdom is troubling, Farrar says he is equally concerned about the other variant spreading quickly in South Africa and that has now been detected in two travelers in the United Kingdom as well. It includes two further mutations in the part of the spike protein that binds to its receptor on human cells, K417N and E484K. These could impact the binding of the virus to human cells and also its recognition by the immune system, Farrar says. These South African mutations I think are more worrying than the constellation of the British variant. South African hospitals are already struggling, he adds. Weve always asked, Why has sub-Saharan Africa escaped the pandemic to date? Answers have focused on the relative youth of the population and the climate. Maybe if you just increase transmission a bit, that is enough to get over these factors, Farrar says.
To Van Kerkhove, the arrival of B.1.1.7 shows how important it is to follow viral evolution closely. The United Kingdom has one of the most elaborate monitoring systems in the world, she says. My worry is: How much of this is happening globally, where we dont have sequencing capacity? Other countries should beef up their efforts, she says. And all countries should do what they can to minimize transmission of SARS-CoV-2 in the months ahead, Van Kerkhove says. The more of this virus circulates, the more opportunity it will have to change, she says. Were playing a very dangerous game here.
Excerpt from:
U.K. variant puts spotlight on immunocompromised patients' role in the COVID-19 pandemic - Science Magazine
- Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation - Science | AAAS - April 5th, 2025
- Researchers Discover mRNA Vaccines Leave Lasting Mark on the Immune System - SciTechDaily - April 5th, 2025
- Scientific Journeys: Uncovering how dioxins affect the immune system - National Institutes of Health (NIH) (.gov) - April 5th, 2025
- Oligodendroglial precursor cells modulate immune response and early demyelination in a murine model of multiple sclerosis - Science | AAAS - April 5th, 2025
- Measles can ravage the immune system and brain, causing long-term damage a virologist explains - The Conversation - April 5th, 2025
- Microscopic Instigators - The University of New Mexico - April 5th, 2025
- Changes in the immune index before and after surgery in urinary malignancy patients with AIDS - Nature - April 5th, 2025
- Non-immune targeting of CXCR3 compromises mitochondrial function and suppresses tumor growth in glioblastoma - Nature - April 5th, 2025
- 8 Supplements That Will Boost Your Immune System - Verywell Health - April 5th, 2025
- Improving immunotherapy for the treatment of hepatocellular carcinoma: learning from patients and preclinical models - Nature - April 5th, 2025
- Redefining the immune landscape of hepatitis A virus infection - Nature - April 5th, 2025
- What Happens to Your Immune Health When You Take Vitamin C and Zinc Together? - Verywell Health - April 5th, 2025
- Diet Has A Major Impact On The Immune System - WorldHealth.net - April 5th, 2025
- Top 7 ways to boost your immune system - The Indian Express - April 5th, 2025
- Kinetics of pIgR and IgM immune responses in snakehead ( Channa argus ) to inactivated Aeromonas hydrophila via immersion and intraperitoneal... - April 5th, 2025
- What Is Man Flu? - Cleveland Clinic Health Essentials - April 5th, 2025
- Dynamics of T cell subpopulations and plasma cytokines during the first year of antineoplastic therapy in patients with breast cancer: the BEGYN-1... - April 5th, 2025
- Publication in npj Vaccines Reports Cross-reactive and Long-Lasting Immune Responses for self-amplifying mRNA (samRNA) COVID-19 Vaccine Booster... - April 5th, 2025
- 9 Supplements, Tonics, and Oils to Boost Immune Health - W Magazine - April 5th, 2025
- Preoperative pan-immuno-inflammatory values and albumin-to-globulin ratio predict the prognosis of stage IIII colorectal cancer - Nature - April 5th, 2025
- Systemic Lupus Erythematosus (Lupus) - Who gets it? | NIAMS - February 7th, 2025
- Systemic Lupus Erythematosus (Lupus) Basics - National Institute of ... - February 7th, 2025
- Long COVID: women at greater risk compared to men could immune system differences be the cause? - The Conversation - February 7th, 2025
- What is Pemphigus? Symptoms & Causes | NIAMS - February 7th, 2025
- How the immune system influences pancreatic cancer: New interactions provide therapeutic insights - Medical Xpress - February 7th, 2025
- Mitochondrias Secret Power Unleashed in the Battle Against Inflammation - SciTechDaily - February 7th, 2025
- WNT11 Promotes immune evasion and resistance to Anti-PD-1 therapy in liver metastasis - Nature.com - February 7th, 2025
- The role of the behavioral immune system in the expression of short and long-term orientation in young Chilean men during the COVID-19 pandemic - BMC... - February 7th, 2025
- Harvard nutritionist eats these 5 foods to keep her 'immune system strong' and 'energy high' - CNBC - February 7th, 2025
- Micro Immune Response On-chip (MIRO) models the tumour-stroma interface for immunotherapy testing - Nature.com - February 7th, 2025
- Personalized Therapeutic Vaccine Steers the Immune System to Fight Kidney Cancer | Newswise - Newswise - February 7th, 2025
- Identification of m6A methyltransferase-related WTAP and ZC3H13 predicts immune infiltrates in glioblastoma - Nature.com - February 7th, 2025
- Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue - Nature.com - February 7th, 2025
- Identification of the immune infiltration and biomarkers in ulcerative colitis based on liquidliquid phase separation-related genes - Nature.com - February 7th, 2025
- FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy - Nature.com - February 7th, 2025
- Young Innovators: U of S researcher uses bat immune systems to find next generation therapies - Saskatoon Star-Phoenix - February 7th, 2025
- World Cancer Day 2025: Chronic stress, immune system, and cancer risk- How are these connected? - The Times of India - February 7th, 2025
- New research unlocks key to long-lasting immune response in cancer and chronic diseases - The Peter Doherty Institute for Infection and Immunity - February 7th, 2025
- Microbial Dynamics and Immune Response to NTHi in COPD - Physician's Weekly - February 7th, 2025
- MHE Week in Review RFK Jr. Spotlight - Managed Healthcare Executive - February 7th, 2025
- Psoriasis Basics: Overview, Symptoms, and Causes - January 27th, 2025
- Vitiligo Symptoms, Treatment & Causes | NIAMS - January 27th, 2025
- The Surprising Connection Between Obesity, Parasites, and Your Immune System - SciTechDaily - January 27th, 2025
- Versatile 69p spice that boosts immune system can go in soups, smoothies and milk - Express - January 27th, 2025
- How the skins secret immune system could lead to needle-free vaccines - Gavi, the Vaccine Alliance - January 27th, 2025
- Fevers link with a key kind of immunity is surprisingly ancient - Science News Magazine - January 27th, 2025
- Immunology - The Scientist - January 27th, 2025
- Opinion: Immune System And Ageing Why We Get More Vulnerable As We Age - ABP Live - January 27th, 2025
- 'Forever chemicals' (PFAS) may weaken immune function in children, leading to more frequent infections - U.S. Right to Know - January 27th, 2025
- Cellular Signals That Wreak Havoc in Sepsis are Revealed - LabRoots - January 27th, 2025
- New Combination Immunotherapy Targets Melanoma and Breast Cancer with Promising Results - Inside Precision Medicine - January 27th, 2025
- New Research in The Journal of Poultry Science: Trained Immunity Offers Novel Poultry Disease Prevention Strategies - PR Newswire - January 27th, 2025
- Scientists uncover how cancer cells hijack T-cells, making it harder for the body to fight back - Medical Xpress - January 27th, 2025
- MiNK Therapeutics Targets Immune Reconstitution to Combat - GlobeNewswire - January 27th, 2025
- Mitochondria may be a promising therapeutic target for inflammatory diseases - Medical Xpress - January 27th, 2025
- Explainer: What is Guillain-Barr Syndrome and how it affects the immune system - Mathrubhumi English - January 27th, 2025
- Yes, Some Vaccines Contain Aluminum. Thats a Good Thing. - The New York Times - January 27th, 2025
- You Are What You Eat? MD Breaks Down The Science Of The Gut Microbiome - mindbodygreen - January 27th, 2025
- Potential gamechanger: Researchers discover basis for immunotherapy-induced myocarditis - Healio - January 27th, 2025
- Ozempic and Wegovy may boost health, from addiction to dementia - BBC.com - January 27th, 2025
- Neutrophil diversity and function in health and disease - Nature.com - December 6th, 2024
- Harnessing the Power of the Immune System for Breast Cancer Treatment - Breast Cancer Research Foundation - December 6th, 2024
- Study Examines Neoantigen Landscapes and Their Role in Immunotherapy Efficacy - Consult QD - December 6th, 2024
- The 5 Best Teas to Support Your Immune System This Cold & Flu Season - EatingWell - December 6th, 2024
- Engineered immune cells may be able to tame inflammation - Medical Xpress - December 6th, 2024
- Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy - Nature.com - December 6th, 2024
- Opioids interfere with cancer immunotherapy, but another type of drug could help - Medical Xpress - December 6th, 2024
- RANKL cytokine restores thymus cells in old mice, reducing tumor growth and improving T cell immune response - Fierce Biotech - December 6th, 2024
- Predictive role of neutrophil percentage-to-albumin ratio, neutrophil-to-lymphocyte ratio, and systemic immune-inflammation index for mortality in... - December 6th, 2024
- Immuno-Oncology Strategic Industry Research Report 2023-2024 & 2030: Approval of Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which Target... - December 6th, 2024
- Study cracks the cold case of immunotherapy resistance - News-Medical.Net - December 6th, 2024
- New immune therapy improves survival and reduces tumor burden in glioblastoma - News-Medical.Net - December 6th, 2024
- Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis - Nature.com - December 6th, 2024
- Immune Cell Breakthrough: Scientists Discover a Hidden Ally in the Fight Against Cancer - SciTechDaily - December 6th, 2024
- Rising temperatures impact the immune system of wild monkeys - Earth.com - December 6th, 2024
- Study declaring Alzheimer's to be a "brain disease" proven to be fabricated - Earth.com - December 6th, 2024
- Warming temperatures impact immune performance of wild monkeys, U-M study shows - University of Michigan News - December 6th, 2024
- New study explores heart risks of cancer immunotherapy - News-Medical.Net - December 6th, 2024
- 'Incredible' way to boost your immune system naturally and ward of colds and flu this winter - The Mirror - December 6th, 2024
- Tis the Season to Boost Your Immune System - Mix93.3 - December 6th, 2024