Professor Laurence D Hurst explains why understanding the nucleotide mutations in viruses, including SARS-CoV-2, can have significant implications for vaccine design.
With 61 codons specifying 20 amino acids, some can be encoded by more than one codon and it is often presumed that it does not matter which one a gene uses. When I first studied genetics, some books I read taught that mutations between such alternative codons (eg, GGA->GGC, both giving glycine) were called synonymous mutations, while others referred to them as silent mutations. However, are synonymous mutations really silent meaning they are identical in terms of fitness and function? Although they may specify the same amino acid, does that mean they are all the same?
Figure 1: Intronless GFP transgene expression is higher for variants of GFP with higher GC content at synonymous sites5
Perhaps one of the biggest surprises over recent years has been the discovery that versions of the same gene, differing only at synonymous sites, can not only have different properties, but effects that are not modest.1-5 For example, two versions of green fluorescent protein (GFP) differing only at synonymous sites can have orders of magnitude differences in their expression level.4 We similarly recently discovered that for an intronless transgene to express in human cell lines it needs to be GC rich, which can be achieved by altering the synonymous sites,5 as seen in Figure 1. It is no accident, we suggest, that the well-expressed endogenous intronless genes in humans (such as histones) are all GC rich and that our functional retrogenes tend to be richer in GC content than their parental genes.
The realisation that synonymous sites matter has clear relevance to the design of transgenes or other artificial genes, be these for experiments, gene therapy, protein production (eg, in bacteria) or for vaccine design. In the case of vaccines, we might wish to modulate a viral protein to be effectively expressed in human cells to illicit a strong and robust immune response.6 Conversely to the design of attenuated vaccines, we seek to produce a tuned down version of the virus that can function but is weak.7
The challenge is knowing not just which synonymous sites can be altered but knowing how they should be altered. One approach is mass randomisation try many alternatives and see what works.4,8,9 In principle this is fine, but this approach requires many randomisations, which is still technically difficult for long attenuated viruses. An alternative strategy that we have been exploring is to let nature tell us; we can apply tools and ideas from population genetics to better understand what natural selection favours and disfavours and in turn to estimate the strength of selection.
it will be interesting to see if we can learn a lesson from nature as to how to weaken a virus
Estimation of the strength of selection is possible from knowledge of the site frequency spectrum, (ie, how common variants are) from which we can infer the distribution of fitness effects (DFE). If a site is under strong purifying selection, then mutations may occur in the population but these are rapidly eliminated, so variants are always rare. By contrast, if they are selectively neutral, we expect some variants to be quite common. We recently applied this methodology to show that synonymous mutations in human genes that disrupt exonic splice enhancer motifs are often under strong selection and affect many synonymous sites in our genes.10 This has implications for both diagnostics and for transgene design for gene therapy, as we often remove introns in heterologous genes, so freeing up these residues from their role in specifying exons ceases.11
The same DFE methodology cannot easily be applied to viruses, as the methods assume free recombination (ie, we assume one mutation does not impact the fate of others in the same genome). However, other population genetical tools can still be applied. Recently, we examined SARS-CoV-2 and identified the profile of mutations that we see at four-fold degenerate sites.12 From this profile we could estimate what the synonymous site composition would be, assuming that the only forces are mutational biases and neutral evolution (ie, no selection). We observed that in this genome there is a strikingly strong C->U mutation bias and a G->U one. In the raw data this is not so obvious as G and C are quite rare. However, the mutability of the sites per occurrence of the site reveals the underlying patterns.
Figure 2: The rate of mutational flux from one dinucleotide to another in the coding sequence of SARS-CoV-2. The direction of flux is indicated by the indentation of the connecting links: the inner layer represents flux out while the outermost layer represents flux into the node. The frequency of the flux exchange is represented by the width of any given link where it meets the outer axis. Dinucleotide nodes are coloured according to their GC-content. Hence, it is evident that there is high flux away from GC-rich dinucleotides whereas AU-rich dinucleotides are largely conserved.12
With knowledge of the mutational bias we then asked what the equilibrium frequency of the four nucleotides would be using four simultaneous equations. This is the nucleotide content at which for every mutation changing a particular base there is an equal and opposite one creating the same base somewhere else in the genome, ensuring overall unchanged nucleotide content. Given the strong C->U and G->U mutational biases, it is no surprise that the equilibrium content is very U rich (we estimate equilibrium U content should be about 65 percent). However, while the four-fold sites are indeed U rich, they are not that U rich, being closer to 50 percent. A clue as to why the mutation bias is so skewed to generating U comes from analysis of equilibrium UU content: UU residues are predicted to be very common, with CU residues being particularly mutable generating UU (Figure 2) this is expected due to human APOBEC proteins attacking and mutating/editing the virus.13
One probable explanation for this difference between predicted and observed nucleotide content is selection against U content. There may be many U residues appearing in the population, but many are pushed out of the population owing to purification selection, ie, because of the deleterious effects of the mutations. That such selection is happening in the SARS-CoV-2 genome is also clear from the sequence data. We estimate that for every 10 mutations that appear in the sequence databases, another six are lost because of selection prior to genome sequencing. Indeed, UU content is about a quarter of that predicted (Figure 3).
Figure 3: The predicted (under neutral mutational equilibrium) and observed dinucleotide content of SARS-CoV-2. Note the very high predicted levels of UU given the strong mutational flux to UU residues (see Figure 2) and the net underrepresentation in actual sequence.9
This leaves two problems: why is selection operating on SARS-CoV-2 and what can we do with this information? In some cases, we have a good idea as to why: many mutations to U at codon sites generate stop codons. However, we have observed that U destabilises the transcripts and is associated with lower-reported transcript levels;12 a full explanation of the causes of selection on nucleotide content therefore requires manipulation of the sequences.
The second question, what to do with this information, is perhaps more urgent. It has previously been noted that nucleotide content manipulation is a viable means to attenuate viruses.7 Currently there are three groups investigating this route to make a vaccine for SARS-CoV-2: Indian Immunologicals Ltd/Griffith University, Codagenix/Serum Institute of India and Acbadem Labmed Health Services/Mehmet Ali Aydinlar University. In prior attempts, attention has been paid to CpG levels and UpA levels (which we find to be correlated between SARS genes and between different viruses).12 CpGs attract the attention of zinc antiviral protein (ZAP) and UpA attracts an RNAase L. Not surprisingly, some viruses, including SARS-CoV-2, therefore have low levels of both dinucleotide pairs given the levels of the underlying nucleotides.
The challenge is knowing not just which synonymous sites can be altered but knowing how they should be altered
In the past, attenuation strategies have focused on modulating synonymous sites to increase CpG and UpA, making the virus more visible to antiviral proteins.14 We in turn suggest a general strategy to utilise this method and to increase U content as well.12 Given the evidence that selection on the virus is to reduce U content, while our antiviral proteins are mutating it to increase U content, it will be interesting to see if we can learn a lesson from nature as to how to weaken a virus. This is an unusual circumstance in which we predict that we should build in more of the already most common synonymous site nucleotides (U in this case) to degrade the virus. More generally, it is assumed that the most used codons are those that tend to increase the fitness of the organism. In the face of such a severe mutation bias, however, this simpler logic no longer holds.
Laurence D Hurst is Professor of Evolutionary Genetics and Director of the Milner Centre for Evolution at the University of Bath. He is currently also the President of the Genetics Society. He completed his D.Phil in Oxford, after which he won a research fellowship and then moved to Cambridge University as a Royal Society Research Fellow. While on the fellowship he assumed his current Chair at Bath University. In 2015 he was elected a Fellow of the Academy of Medical Sciences and a Fellow of the Royal Society. He is a recipient of the Genetics Society Medal and the Scientific Medal of the Zoological Society of London.
Related topicsDisease research, DNA, Gene Therapy, Genetic analysis, Genomics, Protein, Proteogenomics, Proteomics, Research & Development, RNAs, Vaccine
See the article here:
Tweaking synonymous sites for gene therapy and vaccines - Drug Target Review
- Patient Dies of Acute Liver Failure After Treatment With Sareptas DMD Gene Therapy Elevidys - CGTLive - March 19th, 2025
- Patient dies following muscular dystrophy gene therapy, Sarepta reports - The Associated Press - March 19th, 2025
- Duchenne patient dies after receiving Sarepta gene therapy - March 19th, 2025
- Liver Failure-Associated Death Reported in Patient Treated With Sarepta Gene Therapy Elevidys - MedCity News - March 19th, 2025
- DoD grant funds Hollings researcher's idea to pursue gene therapy for cancer - Medical University of South Carolina - March 19th, 2025
- Recon: Sarepta reports death of teen who received Duchenne gene therapy; Novartis to slash 427 jobs while revamping cardiovascular business -... - March 19th, 2025
- Data Gaps Leave Long-Term Impact of Ex Vivo Gene Therapy in DMD Uncertain - AJMC.com Managed Markets Network - March 19th, 2025
- CHO Plus Obtains U.S. Patent for Improved Production of Viral Vectors for Gene Therapy - Business Wire - March 19th, 2025
- Sarepta Shares Fall on Report of Patient Death After Gene Therapy - Bloomberg - March 19th, 2025
- Hologen AI commits up to $430M to help take MeiraGTx's Parkinson's gene therapy through phase 3 and beyond - Fierce Biotech - March 19th, 2025
- Duchenne patient on Sareptas gene therapy dies - The Business Journals - March 19th, 2025
- Im Unstoppable: New gene therapy cures first New Yorker of sickle cell anemia - PIX11 New York News - March 19th, 2025
- Boost in cancer treatment: PGI working on lab for stem cell, gene therapies - The Times of India - March 19th, 2025
- Man Cured Of Sickle Cell Disease In New York Thanks To New Gene Therapy - Forbes - March 19th, 2025
- Sarepta says teen died after its gene therapy treatment By Reuters - Investing.com - March 19th, 2025
- Innovative Gene Therapy Approach Drives Buy Rating for Insmed in DMD Treatment - TipRanks - March 19th, 2025
- Sarepta says patient dies after treatment with gene therapy - TradingView - March 19th, 2025
- Sarepta tumbles after patient dies following gene therapy treatment - TradingView - March 19th, 2025
- MeiraGTx teams with cryptic AI startup, co-founded by Eric Schmidt, to advance Parkinson's gene therapy - Endpoints News - March 19th, 2025
- Sickle cell anemia patient reunites with Long Island doctors whose gene therapy treatments made him symptom-free - Newsday - March 19th, 2025
- Extracellular vesicles for the delivery of gene therapy - Nature.com - March 9th, 2025
- Around the Helix: Cell and Gene Therapy Company Updates March 5, 2025 - CGTLive - March 9th, 2025
- Inside the secret island where wealthy people go to alter their DNA - Daily Mail - March 9th, 2025
- Regenerons Gene Therapy DB-OTO Trial Shows Promising Hearing Improvement - The Hearing Review - March 9th, 2025
- Global Cell and Gene Therapy Manufacturing Market to Reach ~USD 10 Billion by 2032 | DelveInsight - GlobeNewswire - March 9th, 2025
- College Station gene therapy company partners with nonprofit to develop treatments for rare diseases - KBTX - March 9th, 2025
- World Hearing Day 2025: Looking Back at Progress in Gene Therapy - CGTLive - March 9th, 2025
- Reflecting on a milestone year for cell and gene therapies - Pharmaceutical Technology - March 9th, 2025
- Q&A: Whats Next for Hemophilia Gene Therapy? | Newswise - Newswise - March 9th, 2025
- 'Llife-changing' gene therapy in London partially restores CT child's sight - CT Insider - March 9th, 2025
- The Genesis of Cell Therapy: Bridging Traditional Pharmacology and Gene Therapy - Technology Networks - March 9th, 2025
- Regenxbio at TD Cowen Conference: Gene Therapy Advancements - Investing.com - March 9th, 2025
- Anova Announces First Patient Enrolled to Phase 1/2a Study of DB107 for the Treatment of High-Grade Gliomas - Business Wire - March 9th, 2025
- Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS... - March 9th, 2025
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024