CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from Group C of its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy (bb1111) for adult and adolescent patients with sickle cell disease (SCD) show a complete elimination of severe VOEs and VOEs between six and 24 months of follow-up. These data are being presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020.
Now with more than two years of data, we continue to observe promising results in our studies of LentiGlobin for SCD that further illustrate its potential to eliminate the symptoms and devastating complications of sickle cell disease. Consistently achieving the complete resolution of severe vaso-occlusive events (VOEs) and VOEs between Month 6 and Month 24 follow-up is unprecedented other than with allogeneic stem cell transplantation. Importantly, our data show the potential for LentiGlobin for SCD to produce fundamentally disease-modifying effects with sustained pancellular distribution of gene therapy-derived anti-sickling HbAT87Q and improvement of key markers of hemolysis that approach normal levels, said David Davidson, M.D., chief medical officer, bluebird bio. In addition to these clinical outcomes, for the first time with a gene therapy we now have patient-reported outcomes through the validated PROMIS-57 tool, showing reduction in pain intensity at 12 months after treatment with LentiGlobin for SCD. These results provide insight into the potential real-life impact LentiGlobin for SCD may offer patients.
SCD is a serious, progressive and debilitating genetic disease. In the U.S., the median age of death for someone with sickle cell disease is 43 46 years. SCD is caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOEs.
In the HGB-206 study of LentiGlobin for SCD, VOEs are defined as episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than two hours and severe enough to require care at a medical facility. This includes acute episodes of pain, acute chest syndrome (ACS), acute hepatic sequestration and acute splenic sequestration. A severe VOE requires a 24-hour hospital stay or emergency room visit or at least two visits to a hospital or emergency room over a 72-hour period, with both visits requiring intravenous treatment.
LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.
As a hematologist, I regularly see the debilitating effects of pain events caused by sickle cell disease. Pain has an overwhelmingly negative impact on many facets of my patients lives and can lead to prolonged hospitalizations, said presenting study author Alexis A. Thompson, M.D., professor of pediatrics at Northwestern University Feinberg School of Medicine and head of hematology at Ann and Robert H. Lurie Childrens Hospital of Chicago. The results observed with LentiGlobin gene therapy for SCD include the complete elimination of severe vaso-occlusive pain episodes, which is certainly clinically meaningful, but also for the first time, we have documented patients reporting that they are experiencing improved quality of life. This degree of early clinical benefit is extraordinarily rewarding to observe as a provider."
As of the data cut-off date of August 20, 2020, a total of 44 patients have been treated with LentiGlobin for SCD in the HGB-205 (n=3) and HGB-206 (n=41) clinical studies. The HGB-206 total includes: Groups A (n=7), B (n=2) and C (n=32).
HGB-206: Group C Updated Efficacy Results
The 32 patients treated with LentiGlobin for SCD gene therapy in Group C of HGB-206 had up to 30.9 months of follow-up (median of 13.0; min-max: 1.1 30.9 months).
In patients with six or more months of follow-up whose hemoglobin fractions were available (n=22), median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin at Month 6. At last visit reported, total hemoglobin ranged from 9.6 15.1 g/dL and HbAT87Q levels ranged from 2.7 8.9 g/dL. At Month 6, the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin; median HbS was 50% and remained less than 60% at all follow-up timepoints. All patients in Group C were able to stop regular blood transfusions by three months post-treatment and remain off transfusions as of the data cut-off.
Nineteen patients treated in Group C had a history of severe VOEs, defined as at least four severe VOEs in the 24 months prior to informed consent (annualized rate of severe VOE min-max: 2.0 10.5 events) and at least six months follow-up after treatment with LentiGlobin for SCD. There have been no reports of severe VOEs in these Group C patients following treatment with LentiGlobin for SCD. In addition, all 19 patients had a complete resolution of VOEs after Month 6.
Hemolysis Markers
In SCD, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells, called hemolysis, occurs normally in the body. However, in sickle cell disease, hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.
Patients treated with LentiGlobin for SCD in Group C demonstrated near-normal levels in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 25 patients with 6 months of follow-up.
The medians for reticulocyte counts (n=23), lactate dehydrogenase (LDH) levels (n=21) and total bilirubin (n=24) continued to improve compared to screening values and stabilized by Month 6. In patients with Month 24 data (n=7), these values approached the upper limit of normal by Month 24. These results continue to suggest that treatment with LentiGlobin for SCD may improve biological markers to near-normal levels for SCD.
Pancellularity
As previously reported, assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells, as well as to assess if HbAT87Q was pancellular, or present throughout all of a patients red blood cells. In 25 patients with at least six months of follow-up, on average, more than 80% of red blood cells contained HbAT87Q, suggesting near-complete pancellularity of HbAT87Q distribution and with pancellularity further increasing over time.
HGB-206: Improvements in Health-Related Quality of Life
Health-related quality of life (HRQoL) findings in Group C patients treated with LentiGlobin for SCD in the HGB-206 study were generated using the Patient Reported Outcomes Measurement Information System 57 (PROMIS-57), a validated instrument in SCD.
Data assessing pain intensity experienced by nine Group C patients were analyzed according to baseline pain intensity scores relative to the general population normative value: 2.6 on a scale of 0-10, where 10 equals the most intense pain. Data were assessed at baseline, Month 6 and Month 12.
Of the five patients with baseline scores worse than the population normative value average, four demonstrated clinically meaningful reductions in pain intensity at Month 12; the group had a mean score of 6.0 at baseline and a mean score of 2.4 at Month 12. Of the four patients with better than or near population normative values at baseline, two reported improvement and two remained stable with a mean score of 2.3 at baseline and 0.8 at Month 12.
HGB-206: Group C Safety Results
As of August 20, 2020, the safety data from Group C patients in HGB-206 remain generally consistent with the known side effects of hematopoietic stem cell collection and myeloablative single-agent busulfan conditioning, as well as underlying SCD. One non-serious, Grade 2 adverse event (AE) of febrile neutropenia was considered related to LentiGlobin for SCD. There were no serious AEs related to LentiGlobin for SCD.
One patient with significant baseline SCD-related and cardiopulmonary disease died 20 months post-treatment; the treating physician and an independent monitoring committee agreed his death was unlikely related to LentiGlobin for SCD and that SCD-related cardiac and pulmonary disease contributed.
LentiGlobin for SCD Data at ASH
The presentation of HGB-206 Group C results and patient reported outcomes research are now available on demand on the ASH conference website:
About HGB-206
HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=32). A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.
About LentiGlobin for SCD (bb1111)
LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.
The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.
LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.
bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.
LentiGlobin for SCD is investigational and has not been approved in any geography.
About bluebird bio, Inc.
bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.
bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.
bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.
Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.
LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.
Forward-Looking Statements
This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for LentiGlobin for Sickle Cell Disease to treat SCD; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials; the risk that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidates, resulting in delay to our anticipated timelines for regulatory submissions, including our applications for marketing approval; and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.
Follow this link:
Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe...
- A Year of DMD Gene Therapy Trial Failures - AJMC.com Managed Markets Network - November 3rd, 2024
- Hemophilia B: Gene Therapy Shows Promise - Medscape - November 3rd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 30, 2024 - CGTLive - November 3rd, 2024
- 2024 PharmaVoice 100s: Cell and Gene Therapy Pioneers - PharmaVoice - November 3rd, 2024
- Cell therapy weekly: support for commercialization of complex therapies - RegMedNet - November 3rd, 2024
- Lexeo shares early data on Alzheimers gene therapy - Endpoints News - November 3rd, 2024
- Medicaid Aiming to Improve Patient Access to High-Cost Therapies - AJMC.com Managed Markets Network - November 3rd, 2024
- The Significance of Gene Therapy in Neuromuscular Medicine at the 2025 MDA Conference: Paul Melmeyer, MPP - Neurology Live - November 3rd, 2024
- OHSU researchers identify gene that could be key to future HIV vaccine - OHSU News - November 3rd, 2024
- Purespring gene therapy reduces kidney scarring in mice and is stably expressed in pigs - Fierce Biotech - November 3rd, 2024
- Data Roundup: October 2024 Features Update for TCR-Based Autologous Cell Therapy in Melanoma, the First Clinical Demonstration of Therapeutic RNA... - November 3rd, 2024
- NewBiologix Launches Xcell to Accelerate, Optimize, and Scale Gene and Cell Therapy Production - Business Wire - November 3rd, 2024
- Vertex Pharmaceuticals and CRISPR Therapeutics Casgevy: the 200 Best Inventions of 2024 - TIME - November 3rd, 2024
- Addressing gene and cell therapy commercialization challenges - TechTarget - November 3rd, 2024
- University of Pennsylvania gene therapy spinout Interius BioTherapeutics doses patient, achieves CAR therapy first - The Business Journals - November 3rd, 2024
- Roche will aim to tackle gene therapy challenges through Dyno deal - The Pharma Letter - November 3rd, 2024
- Behind the Breakthroughs: How to Turn $1,000,000 CAR Ts into Real Medicines - Inside Precision Medicine - November 3rd, 2024
- Terumo automates manufacturing to expand cell & gene therapies - European Pharmaceutical Manufacturer - November 3rd, 2024
- 12-Year-Old Leaves Washington DC Hospital As The First Patient To Receive Approved Gene Therapy For Sickle Cell Disease - AfroTech - November 3rd, 2024
- Lexeo Therapeutics Announces Positive Interim Data for - GlobeNewswire - November 3rd, 2024
- New FDA designations granted to NCATS for rare disease therapies. - NCBI - October 22nd, 2024
- $1.8 Million Awarded to Study the Durability of Gene Therapy - University of Arkansas Newswire - October 22nd, 2024
- By the numbers: US leads charge of cell and gene therapies - BioWorld Online - October 22nd, 2024
- University of Arkansas Researcher Awarded $1.8M for Gene Therapy Study - Arkansas Business - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - StockTitan - October 22nd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 16, 2024 - CGTLive - October 22nd, 2024
- Japan mulls ways to boost cell, gene therapy approvals - BioWorld Online - October 22nd, 2024
- A New Type of Gene Therapy Shows Promise for Treating Retinitis Pigmentosa - Managed Healthcare Executive - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 2 - BioPharm International - October 22nd, 2024
- When a Miracle Cure Is Left on the Shelf - Bloomberg - October 22nd, 2024
- Genethon to Showcase the Latest Advances in Gene Therapies for Multiple Diseases at the ESGCT 31 - Business Wire - October 22nd, 2024
- MeiraGTx's gene therapy improves motor function and quality of life in phase 2 Parkinson's trial - Fierce Biotech - October 22nd, 2024
- 5 Sickle Cell Therapies to Watch Following Pfizers Oxbryta Exit - BioSpace - October 22nd, 2024
- Fiocruz and GEMMABio announce partnership for the development of gene therapies - Fiocruz - October 22nd, 2024
- JPMA on Japans Biotech Industry: Cancer, Cardiovascular, and Aging Lead Diseases; Antibody, Cell, and Gene Therapies Top the Innovation List -... - October 22nd, 2024
- Cell and Gene Therapy Clinical Trial Market is expected to reach USD 119.3 Billion by 2032 at a 24.9% of CAGR - PharmiWeb.com - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 3 - Pharmaceutical Technology Magazine - October 22nd, 2024
- The role of quality assurance in accelerating drug development for emerging therapies - pharmaphorum - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - The Manila Times - October 22nd, 2024
- Nucleic Acid and Gene Therapies in Neuromuscular Disorders Market is projected to grow at a CAGR of - PharmiWeb.com - October 22nd, 2024
- Gene therapy: advances, challenges and perspectives - PMC - October 6th, 2024
- Meeting on the Mesa to Highlight Cell and Gene Therapy Opportunities, Challenges - BioSpace - October 6th, 2024
- Ferring opens doors to Finnish manufacturing hub as supply of its bladder cancer gene therapy continues to grow - FiercePharma - October 6th, 2024
- Meet Boston's National STEM Champion who's a junior in high school studying gene therapy - CBS Boston - October 6th, 2024
- Gene therapy research offers hope for kids with life-altering condition - WCVB Boston - October 6th, 2024
- Is gene therapy the next big step in vision loss treatment? - Medical News Today - October 6th, 2024
- Protein's Role in Insulin Signaling Could Have Implications for Gene Therapy - AJMC.com Managed Markets Network - October 6th, 2024
- Scientists overcome major challenge in gene therapy and drug delivery - News-Medical.Net - October 6th, 2024
- Innovative gene therapy for hemophilia - healthcare-in-europe.com - October 6th, 2024
- The Largest Network of Research Sites Vetted to Execute Complexities of Cell & Gene Therapy (CGT) Trials Now Includes 1,500 Sites - PR Newswire - October 6th, 2024
- Weight loss drug breakthroughs, gene therapies, and more: 8 clinical trials to watch right now - Quartz - October 6th, 2024
- Cell therapy weekly: Promising Phase I results for Parkinsons disease cell therapy - RegMedNet - October 6th, 2024
- Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC - Nature.com - October 6th, 2024
- Forge Biologics Announces the FUEL AAV Manufacturing Platform to Provide Developers with a More Efficient Solution for Gene Therapy Production -... - October 6th, 2024
- Ninth Circuit Decision Marks Critical Legal Victory for U.S. FDA in Mission to Protect Patients from Unregulated Cell Therapy Products - PR Newswire - October 6th, 2024
- Gene therapy: What is it and how does it work? | Live Science - September 21st, 2024
- How Does Gene Therapy Work? Types, Uses, Safety - Healthline - September 21st, 2024
- In race to make gene therapy for age-related blindness, 4D Molecular announces positive results - STAT - September 21st, 2024
- Penn gene therapy pioneer Jim Wilson explains why he's leaving - The Business Journals - September 21st, 2024
- Whats the Meaning of Cure in Gene Therapy? - Managed Healthcare Executive - September 21st, 2024
- Ori doubles down on Charles River collaboration with promising new data on its automated cell therapy platform - FiercePharma - September 21st, 2024
- Doctors cured her sickle-cell disease. So why is she still in pain? - Nature.com - September 21st, 2024
- Gene Therapy Company Increases Focus on Mesothelioma Program - Mesothelioma.net Blog - September 21st, 2024
- Sickle cell gene therapies roll out slowly : Shots - Health News - NPR - September 21st, 2024
- Patients At Last Begin Receiving Vertex-CRISPR and Bluebird Sickle Cell Gene Therapies - BioSpace - September 21st, 2024
- Beacon Therapeutics Presents 36-Month Interim Results from Phase I/2 HORIZON Trial of AGTC-501 in Patients with XLRP - PR Newswire - September 21st, 2024
- Beacons Gene Therapy Shows Continued Promise in Trial - TipRanks - September 21st, 2024
- How stem cell and gene therapies are revolutionising healthcare - Express Healthcare - September 21st, 2024
- Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona - PR Newswire - September 21st, 2024
- 6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company - WCYB - September 21st, 2024
- Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy - NBC Washington - May 24th, 2024
- Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia - The Hindu - December 13th, 2023
- Early trials show promise for innovative gene therapy in lung cancer treatment - WJAR - October 16th, 2023
- Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |... - SeeDance News - October 16th, 2023
- How Gene Therapy Can Cure or Treat Diseases | FDA - March 21st, 2023
- Genetic Therapies - What Are Genetic Therapies? | NHLBI, NIH - March 21st, 2023
- FDA approves novel gene therapy to treat patients with a rare form of ... - December 28th, 2022
- Gene Therapy - Discover How It Works Its Types And Applications - BYJUS - December 28th, 2022
- IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases - Marketscreener.com - December 28th, 2022
- Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th... - October 31st, 2022