In uncertain times, we are witnessing one of the greatest moments in the history of science.
A projected timeline for treatment and prevention of the novel coronavirus. Although we are living ... [+] through uncertain times, we are also witnessing one of the greatest moments in science history.
Scientists are breaking speed records in their race to develop treatments for the new coronavirus. Some are panning through old molecules hoping to find effective drugs. Others are applying the latest breakthroughs in synthetic biology to engineer sophisticated treatments and vaccines.
Ive previously talked about some synthetic biology companies that are racing to create treatments. Others like Mammoth Biosciences are developing much-needed testing. Every day brings additional reports of the latest breakthroughs from around the world. But how can we make sense of all this information?
To provide a big-picture perspective, SynBioBeta and Leaps by Bayer have partnered to help visualize the overall progress of the research community. At the heart of the project is an infographic showing the timeline to the various treatments and preventions (click here to download it). Its based on data from The Milken Institute, which recently released a detailed tracker to monitor the progress of each of the more than 60 known COVID-19 treatments and preventions currently in development.
One takeaway: the progress to develop coronavirus treatments and preventions is moving at an unprecedented pace, with historic records being broken nearly every week.
The crisis response from the global biotech community has been truly inspiring, says Juergen Eckhardt, SVP and Head of Leaps by Bayer, a unit of Bayer AG that leads impact investments into solutions to some of todays biggest challenges in health and agriculture. We are excited to partner on this visual timeline to help a broader audience understand how and when scientific innovation may bring us through this deeply challenging time.
COVID19: Projected timeline for treatment and prevention. Three paths: pre-existing drugs, antibody ... [+] therapies, and vaccines.
There are standard stages to getting a drug approved. In Phase 1 trials, a drugs safety is assessed in a small group of healthy subjects. In later stages (Phase II & III), efficacy is measured in a larger number of people, often versus a placebo. The situation with COVID-19 is predicted to become so dire so quickly, however, that many are looking to fast-track testing. This could include granting experimental drugs expanded access, for compassionate use, which would allow physicians to give them to patients who are critically ill before testing is complete.
The fastest way to safely stop COVID-19 would be to discover that an already-approved medication works against it. Repurposed drugs do not require the same extensive testing as novel medicines and may already be available in large quantities. The Milken Institutes tracker identifies 7 candidate drugs in this category.
One is the malarial medicine chloroquine, which in recent days has been touted by some as a possible miracle drug against the coronavirus. German pharmaceutical company Bayer last week donated three million tablets of chloroquine to the U.S. The FDA and academics are together investigating whether it can provide relief to COVID-19 patients.
There are hundreds if not thousands of other FDA-approved drugs on the market that are already proven safe in humans and that may have treatment potential against COVID-19, so many scientists are rapidly screening the known drug arsenal in hopes of discovering an effective compound.
Antibodies are proteins that are a natural part of the human immune system. They work around the clock in blood to block viruses and more. The problem at the moment is that because the novel coronavirus (known as SARS-CoV-2) is new, no one has had time to develop antibodies against it. No one, that is, except those who have recovered from COVID-19.
Antibodies taken from those people could help patients who are still infected. Such patient-to-patient transfers can be performed without extensive testing or lengthy approval processes so long as standard protocols are followed. It is yet unknown whether this treatment option will work for COVID-19, nor whether there will be enough recovered donors to deal with the infection at scale.
To improve this process, companies like Vancouver, Canada-based AbCellera are applying new biotechnologies.
AbCellera is using proprietary tools and machine learning to rapidly screen through millions of B cells from patients who recovered from COVID-19. B cells are responsible for producing antibodies. The company has announced a partnership with Eli Lilly on this project and aims to bring its hottest antibodies those that neutralize the virus to the clinic.
AbCellera's platform has delivered, with unprecedented speed, by far the world's largest panel of anti-SAR-CoV-2 antibodies," said Carl Hansen, Ph.D., CEO of AbCellera, in a statement. "In 11 days, we've discovered hundreds of antibodies against the SARS-CoV-2 virus responsible for the current outbreak, moved into functional testing with global experts in virology, and signed a co-development agreement with one of the world's leading biopharmaceutical companies. We're deeply impressed with the speed and agility of Lilly's response to this global challenge. Together, our teams are committed to delivering a countermeasure to stop the outbreak."
James Crowe at Vanderbilt University is also sifting through the blood of recovered patients. Using a new instrument called Beacon from a company called Berkeley Lights. Crowes team has been scouring through B cells to find antibodies that neutralize SARS-CoV-2. The technology behind this project was developed in recent years with funds from the Department of Defense.
Normally this would be a five year program, Crowe told me. But in the rapid process his team is following, animal studies could be done in as fast as two months.
This morning, Berkeley Lights announced a Global Emerging Pathogen Antibody Discovery Consortium (GEPAD) to attack COVID-19 and other viruses. It is partnering with Vanderbilt University, La Jolla Institute for Immunology, and Emory University to accelerate the work above to the broader research community.
This collaboration also included commercial partners, including Twist Bioscience, who synthesized DNA for the project.
Our mission is to provide the raw material needed for biologists to make breakthroughs, said Twists CEO Emily Leproust. If DNA is needed, we want to make it, quickly and perfectly
Another company that specializes in DNA synthesis, SGI-DNA, is offering its tools at much reduced cost to researchers developing COVID-19 treatments. The company said that people from around the world are coming to them for help.
"There is zero time to waste," said Todd R. Nelson, Ph.D., CEO of SGI-DNA. He said that researchers need synthetic DNA and RNA, which its Bio-XP machine can provide in as little as eight hours.
Nelson continued, "In a matter of a day or two, we have built the genes thought to be critical to the development of successful vaccines against SARS-CoV-2. SGI-DNA has made them available in the form of different genetic libraries, which researchers can use to find druggable targets in a matter of hours, dramatically accelerating the time to market for therapeutics and vaccines.
Beyond searching for antibodies in recovered patients, biotechnologists have other tricks up their sleeves.
One approach involves genetically engineering laboratory mice to mimic the human immune system. These animals can then be presented with the virus or parts of the virus and allowed to recover. The hope is that their B cells would then produce effective antibodies. Because this happens in a controlled setting, biologists can better understand and engineer the process.
A company called GenScript was pursuing this strategy as early as February 4, when police escorted 8 transgenic mice immunized with the 2019 nCoV antigen to research labs in China. In 12 hours, its researchers successfully found specific antibodies in the mice that could recognize the novel virus and potentially block it from binding to cells. In less than 24 hoursagain using Berkeley Lights new Beacon instrument for working with thousands of individual, live cellsGenScript completed a series of steps that would have taken three months using previous technology.
Yet another approach involves computational approaches and artificial intelligence. Firms like Distributed Bio are using computers to reengineer antibodies to better target SARS-CoV-2. The company is optimizing antibodies that are known to target SARS-CoV-1, the virus behind the 2003 outbreak of SARS.
We believe broadly neutralizing antibodies with engineered biophysical properties will become key weapons to win the war against all coronaviruses said Jake Glanville, CEO of Distributed Bio.
Vaccines work by simulating infection, which allows the body to mount its own defense against a virus. Effective vaccines take time to develop, and they can take even longer to test. But recent progress in biotechnology is again accelerating these efforts.
Notably, Moderna has launched a Phase 1 vaccine trial against COVID-19 in record time. Patients in Seattle have already begun receiving injections of an experimental mRNA vaccine. Moderna cranked out doses of this and won approval from the FDA for testing in just 44 days an all-time record.
These programs show a massive focus on a common enemy, and a coming together of disparate firms.
Ginkgo Bioworks, a giant in the emerging field of synthetic biology, has announced a $25 million fund to help spur even more collaboration. The company is offering its laboratory equipment and know-how to anyone with a good idea of how to stop COVID-19. We dont want any scientists to have to wait. The pandemic has already arrived, so the time for rapid prototyping and scale-up is right now, said Jason Kelly, CEO of Ginkgo.
These effortsand the infographic aboveshould give you hope. Although we are all now living in uncertain times, we are also witnessing one of the greatest moments in the history of science.
It's a terrible time, and simultaneously a fantastic time to see the global science community working together to conquer this very hard and challenging disease, said Berkeley Lights CEO Eric Hobbs. We are also learning and developing the tools and technologies to ensure that we can react faster to the next threat, so that we don't get to this point again in the future.
Follow me on twitter at @johncumbers and @synbiobeta. Subscribe to my weekly newsletters in synthetic biology.
Thank you to Ian Haydon and Kevin Costa for additional research and reporting in this article. Im the founder of SynBioBeta, and some of the companies that I write aboutincluding Leaps by Bayer, Mammoth Biosciences, Distributed Bio, Twist Bioscience, SGI-DNA, Genscript, Berkeley Lights, and Ginkgo Bioworksare sponsors of the SynBioBeta conference and weekly digest heres the full list of SynBioBeta sponsors.
Here is the original post:
Timeline Shows 3 Paths To COVID-19 Treatment And Prevention (INFOGRAPHIC) - Forbes
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021
- Gene editing, joke theft and manifesting - The Week UK - October 5th, 2021
- Opinion: Saving lives through real social justice - Agri-Pulse - October 5th, 2021
- Science, business and the humanities: CP Snow's 'Two Cultures' sixty years on - TheArticle - October 5th, 2021
- Probiotic Yeast Engineered To Produce Beta-Carotene - Technology Networks - April 17th, 2021
- In the US, Imminent Release of Genetically Modified Mosquitoes To Fight Dengue - The Wire Science - April 17th, 2021
- CRISPRoff: A New Addition to the CRISPR Toolbox - Technology Networks - April 17th, 2021
- A Massive New Gene Editing Project Is Out to Crush Alzheimer's - Singularity Hub - April 17th, 2021
- Grammar of the Genome: Reading the Influence of DNA on Disease - Baylor University - April 17th, 2021
- We cannot let China set the standards for 21st century technologies | TheHill - The Hill - April 17th, 2021
- First GMO Mosquitoes to Be Released in the Florida Keys - Singularity Hub - April 17th, 2021
- Novavax to Participate in University of Oxford Com-COV2 Study Comparing Mixed COVID-19 Vaccine Combinations - BioSpace - April 17th, 2021
- AmunBio and NorthShore University to Advance Cancer Immunotherapy with Engineered Oncolytic Viruses - OncoZine - April 17th, 2021
- StrideBio Announces a Multi-technology License and Master SRA with Duke University to Advance Next-generation Gene Therapies - BioSpace - April 17th, 2021
- ThermoGenesis : The History of Cell and Gene Therapy - marketscreener.com - April 17th, 2021
- EU's refusal to permit GMO crops led to millions of tonnes of additional CO2, scientists reveal - Alliance for Science - Alliance for Science - February 14th, 2021
- New species of fly named after Singanallur Tank - The Hindu - February 14th, 2021
- Son of Monarchs Pays Homage to the Beauty of Migration - Sierra Magazine - February 14th, 2021
- Podcast: TIME's 2020 Kid of the Year, Gitanjali Rao - All Together - Society of Women Engineers - February 14th, 2021
- Geoengineering: What could possibly go wrong? Elizabeth Kolbert's take, in her new book - Bulletin of the Atomic Scientists - February 14th, 2021
- An Introduction to PCR - Technology Networks - February 14th, 2021
- Science Talk - Evolution, cancer and coronavirus how biology's 'Theory of Everything' is key to fighting cancer and global pandemics - The Institute... - February 14th, 2021
- 22nd Century Group and KeyGene Launch Advanced Cannabis Technology Platform for Accelerated Development of New Varieties of Hemp/Cannabis Plants with... - February 14th, 2021
- Aleph Farms and The Technion Reveal World's First Cultivated Ribeye Steak - PRNewswire - February 9th, 2021
- Researchers create rice that captures more CO2 with 30 percent more yield - FoodIngredientsFirst - February 9th, 2021
- Interview: Elizabeth Kolbert on why well never stop messing with nature - Grist - February 9th, 2021
- Is Biotechnology the Answer to a More Sustainable Beauty Industry? - Fashionista - February 9th, 2021
- New Jersey arts and entertainment news, features, and event previews. - New Jersey Stage - February 9th, 2021
- CollPlant Announces Development and Global Commercialization Agreement with Allergan Aesthetics, an AbbVie company, for rhCollagen in Dermal and Soft... - February 9th, 2021
- Taysha Gene Therapies Announces Collaborations to Advance Next-Generation Mini-Gene Payloads for AAV Gene Therapies for the Treatment of Genetic... - February 9th, 2021
- A new tool to investigate bacteria behind hospital infections - MIT News - February 9th, 2021
- Outlook on the CRISPR Gene Editing Global Market to 2030 - Analysis and Forecasts - GlobeNewswire - February 9th, 2021
- Novavax Announces Start of Rolling Review by Multiple Regulatory Authorities for COVID-19 Vaccine Authorization - GlobeNewswire - February 9th, 2021
- Global Lab-On-A-Chip Market Industry Perspective, Comprehensive Analysis, and Forecast 2027||Players-Perkin Elmer Corporation, IDEX, Thermo Fisher... - February 9th, 2021
- Freeline Presents Data on its Gaucher Disease and Fabry Disease AAV-Based Gene Therapies at the 17th Annual WORLDSymposium - PharmiWeb.com - February 9th, 2021
- Global Bacterial and Plasmid Vectors Market Report 2020: Market is Expected to Recover and Reach $0520 Million in 2023 at a CAGR of 15.48% - Forecast... - January 12th, 2021
- mRNA Technology Gave Us the First COVID-19 Vaccines. It Could Also Upend the Drug Industry - TIME - January 12th, 2021