Getting to the guts of local evolution
The microbiota of mammals is a product of coevolution. However, humans exhibit a range of adaptive peculiarities that can be quite geographically specific. The human microbiota also displays a variety of community compositions and a range of overlapping and redundant metabolic characteristics that can alter host physiology. For example, lactase persistence is a genetic characteristic of European populations, but in populations lacking the lactase gene, milk sugar digestion is endowed by the microbiota instead. Suzuki and Ley review the evidence for the role that the microbiota plays in local adaptation to new and changing human circumstances.
Science, this issue p. eaaz6827
When human populations expanded across the globe, they adapted genetically to local environments in response to novel selection pressures. Drivers of selection include exposure to new diets, climates, or pathogens. Humans harbor microbiotas that also respond to changes in local conditions and changes in their hosts. As a result, microbiotas may alter the adaptive landscape of the host through modification of the environment. Examples include changes to a foods nutritional value, the hosts tolerance to cold or low amounts of oxygen, or susceptibility to invading pathogens. By buffering or altering drivers of selection, the microbiota may change host phenotypes without coevolution between host and microbiota. Functions of the microbiota that are beneficial to the host may arise randomly or be acquired from the environment. These beneficial functions can be selected without the host exerting genetic control over them. Hosts may evolve the means to maintain beneficial microbes or to pass them to offspring, which will affect the heritability and transmission modes of these microbes. Examples in humans include the digestion of lactose via lactase activity (encoded by the LCT gene region) in adults and the digestion of starch by salivary amylase (encoded by the AMY1 gene)both are adaptations resulting from shifts in diet. The allelic variation of these genes also predicts compositional and functional variation of the gut microbiota. Such feedback between host alleles and microbiota function has the potential to influence variation in the same adaptive trait in the host. How the microbiota modifies host genetic adaptation remains to be fully explored.
In this paper, we review examples of human adaptations to new environments that indicate an interplay between host genes and the microbiota, and we examine in detail the LCTBifidobacterium and the AMY1Ruminococcus interactions. In these examples, the adaptive host allele and adaptive microbial functions are linked. We propose host mechanisms that can replace or recruit beneficial microbiota functions during local adaptation. Finally, we search for additional examples where microbiotas are implicated in human genetic adaptations, in which the genetic basis of adaptation is well described. These range from dietary adaptations, where host and microbial enzymes can metabolize the same dietary components (e.g., fatty acid and alcohol metabolism), through climate-related adaptations, where host and microbes can induce the same physiological pathway (e.g., cold-induced thermogenesis, skin pigmentation, and blood pressure regulation), to adaptations where hosts and microbes defend against the same local pathogens (e.g., resistance to malaria, cholera, and others). These examples suggest that microbiota has the potential to affect host evolution by modifying the adaptive landscape without requiring coevolution.
Well-studied examples of local adaptation across diverse host species can be revisited to elucidate previously unappreciated roles for the microbiota in host-adaptive evolution. In the context of human adaptation, knowledge of microbial functions and host genemicrobe associations is heavily biased toward observations made in Western populations, as these have been the most intensively studied to date. Testing many of the interactions proposed in this Review between host genes under selection and the microbiota will require a wider geographic scope of populations in their local contexts. Because genes under strong selection in humans are often involved in metabolic and other disorders and can vary between populations, future investigations of host genemicrobe interactions that relate to human adaptation may contribute to a deeper understanding of microbiota-related diseases in specific populations. Investigating host genemicrobe interactions in a wider variety of human populations will also help researchers go beyond collections of anecdotes to form the basis of a theory that takes microbial contributions to host adaptation into account in a formal framework. A better understanding of reciprocal interactions between the host genome and microbiota in the context of adaptive evolution will add another dimension to our understanding of human evolution as we moved with our microbes through time and space.
When human populations adapt genetically to new environments, their microbiotas may also participate in the process. Microbes can evolve faster than their host, which allows them to respond quickly to environmental change. They also filter the hosts environment, thereby altering selective pressures on the host. Illustrated here are examples of interactions between adaptive host alleles and adaptive microbiota functions where the microbiota likely modified the adaptive landscape in response to changes in diet (e.g., changes in levels of starch and milk consumption), exposure to local pathogens (e.g., malaria parasites and Plasmodium spp.), and changes in local climate (e.g., cold stress and hypoxia). In this paper, we discuss the resulting relationships between host-adaptive alleles and microbiota functions.
As human populations spread across the world, they adapted genetically to local conditions. So too did the resident microorganism communities that everyone carries with them. However, the collective influence of the diverse and dynamic community of resident microbes on host evolution is poorly understood. The taxonomic composition of the microbiota varies among individuals and displays a range of sometimes redundant functions that modify the physicochemical environment of the host and may alter selection pressures. Here we review known human traits and genes for which the microbiota may have contributed or responded to changes in host diet, climate, or pathogen exposure. Integrating hostmicrobiota interactions in human adaptation could offer new approaches to improve our understanding of human health and evolution.
Continue reading here:
The role of the microbiota in human genetic adaptation - Science
- Genetic Discrimination Is Coming for Us All - The Atlantic - November 16th, 2024
- Family connection: Genetics of suicide - WNEM - November 16th, 2024
- Study links heart shape to genetic risk of cardiovascular diseases - News-Medical.Net - November 16th, 2024
- Genetic architecture of cerebrospinal fluid and brain metabolite levels and the genetic colocalization of metabolites with human traits - Nature.com - November 16th, 2024
- Genetic connectivity of wolverines in western North America - Nature.com - November 16th, 2024
- Toward GDPR compliance with the Helmholtz Munich genotype imputation server - Nature.com - November 16th, 2024
- Leveraging genetic variations for more effective cancer therapies - News-Medical.Net - November 16th, 2024
- Bringing precision to the murky debate on fish oil - University of Arizona News - November 16th, 2024
- International experts gathered in Tashkent to tackle rare disease for Uzbekistan - EurekAlert - November 16th, 2024
- Mercys Story: Living life with 22q, a genetic condition - WECT - November 16th, 2024
- Cold case with ties to Houghton County solved through genetic genealogy after 65 years - WLUC - November 16th, 2024
- 23andMe customer? Here's what to know about the privacy of your genetic data. - CBS News - November 16th, 2024
- Single-cell RNA analysis finds possible genetic drivers of bone cancer - Illumina - November 16th, 2024
- Multi-trait association analysis reveals shared genetic loci between Alzheimers disease and cardiovascular traits - Nature.com - November 16th, 2024
- With 23andMe Struck by Layoffs, Can You Delete Genetic Data? Here's What We Know - CNET - November 16th, 2024
- Genetic testing firm 23andMe cuts 40% of its workforce amid financial struggles - The Guardian - November 16th, 2024
- Genetic study solves the mystery of 'selfish' B chromosomes in rye - Phys.org - November 16th, 2024
- Genetic changes linked to testicular cancer offer fresh insights into the disease - Medical Xpress - November 16th, 2024
- Eating less and genetics help you to live longer, but which factor carries the most weight? - Surinenglish.com - November 16th, 2024
- We must use genetic technologies now to avert the coming food crisis - New Scientist - November 16th, 2024
- NHS England to screen 100,000 babies for more than 200 genetic conditions - The Guardian - October 6th, 2024
- Largest-ever genetic study of epilepsy finds possible therapeutic targets - Medical Xpress - October 6th, 2024
- 23andMe is on the brink. What happens to all its DNA data? - NPR - October 6th, 2024
- The mountains where Neanderthals forever changed human genetics - Big Think - October 6th, 2024
- Gene Activity in Depression Linked to Immune System and Inflammation - Neuroscience News - October 6th, 2024
- Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato - Nature.com - October 6th, 2024
- Genetic and non-genetic HLA disruption is widespread in lung and breast tumors - Nature.com - October 6th, 2024
- Aneuploidy as a driver of human cancer - Nature.com - October 6th, 2024
- Myriad Genetics and Ultima Genomics to Explore the UG - GlobeNewswire - October 6th, 2024
- Biallelic and monoallelic variants in EFEMP1 can cause a severe and distinct subtype of heritable connective tissue disorder - Nature.com - October 6th, 2024
- Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimers disease continuum - Nature.com - October 6th, 2024
- Cracking the Genetic Code on Facial Features - DISCOVER Magazine - October 6th, 2024
- Ancestry vs. 23andMe: How to Pick the Best DNA Testing Kit for You - CNET - October 6th, 2024
- The Mercedes-AMG C63 is bold, but beholden to its genetics - Newsweek - October 6th, 2024
- The Austin Chronic: Texas A&Ms Hemp Breeding Program Adds Drought-Resistant Genetics to the National Collection - Austin Chronicle - October 6th, 2024
- Genetics and AI Help Patients with Early Detection of Breast Cancer Risk - Adventist Review - October 6th, 2024
- 23andMe Is Sinking Fast. Can the Company Survive? - WIRED - October 6th, 2024
- Genetic variations in remote UK regions linked to higher disease risk - Medical Xpress - October 6th, 2024
- Comprehensive mapping of genetic activity brings hope to patients with chronic pain - Medical Xpress - October 6th, 2024
- Genetics - Definition, History and Impact | Biology Dictionary - June 2nd, 2024
- Gene | Definition, Structure, Expression, & Facts | Britannica - June 2nd, 2024
- Raha Kapoor's blue eyes remind fans of her great-grandfather, Raj Kapoor; here's what genetics says - IndiaTimes - December 30th, 2023
- Human genetics | Description, Chromosomes, & Inheritance - December 13th, 2023
- BASIC GENETICS INFORMATION - Understanding Genetics - NCBI Bookshelf - December 13th, 2023
- Introduction to Genetics - Open Textbook Library - December 13th, 2023
- "When them genetics kick in its all over" - NBA fans send in rib-tickling reactions as LeBron James attends Zhuri James' volleyball game -... - October 16th, 2023
- David Liu, chemist: We now have the technology to correct misspellings in our DNA that cause known genetic diseases - EL PAS USA - April 7th, 2023
- World Health Day 2023: Understanding the science of Epi-genetics and how to apply it in our daily lives - Free Press Journal - April 7th, 2023
- Genetics - National Institute of General Medical Sciences (NIGMS) - March 29th, 2023
- GENETICS 101 - Understanding Genetics - NCBI Bookshelf - March 29th, 2023
- People always think Im skinny because of good genetics theyre shocked when they see what I used to lo... - The US Sun - March 29th, 2023
- Forensics expert explains 'genetic genealogy' process believed to be used in Kohberger's arrest - KTVB.com - January 6th, 2023
- Idaho student murders: What is genetic genealogy, a tool reportedly used to help capture the suspect? - FOX 10 News Phoenix - January 6th, 2023
- What is a Genetic Counselor and How Can They Help You Navigate Your Healthcare Journey? - ABC4.com - December 3rd, 2022
- Ancient Art and Genetics Reveal Origin of World's Most Expensive Spice - The Wire Science - June 26th, 2022
- Myriad Genetics Teams Up with Epic to Make Genetic Testing Accessible to More Patients with Electronic Health Record (EHR) Integration - GlobeNewswire - June 26th, 2022
- Obesity and genetics: Expert shares insights - Hindustan Times - June 26th, 2022
- Researchers discover genetic variants that increase Alzheimer's risk - WCVB Boston - June 26th, 2022
- Where science meets fiction: the dark history of eugenics - The Guardian - June 26th, 2022
- Clinical Conference: A Discussion with BASE10 Genetics - Skilled Nursing News - June 26th, 2022
- Genetics Really Said Copy And Paste: People Are Amazed At How Similar This Woman Looks To Her Dad In These 5 Recreation Photos - Bored Panda - June 26th, 2022
- 49 Genetic Variants That Increase the Risk of Varicose Veins Identified - Technology Networks - June 26th, 2022
- Genetic relationships and genome selection signatures between soybean cultivars from Brazil and United States after decades of breeding | Scientific... - June 26th, 2022
- Earlham woman loses weight with ChiroThin after her own doctor told her "genetics" wouldn't allow that to happen | Paid Content - Local 5 -... - June 26th, 2022
- Science and genetics used to boost Fernside farm - New Zealand Herald - June 26th, 2022
- Genetics-based guidelines to buying a bull at an auction - Farmer's Weekly SA - June 26th, 2022
- Polio: we're developing a safer vaccine that uses no genetic material from the virus - The Conversation - June 26th, 2022
- 7 lifestyle habits which can halve your risk of dementia - World Economic Forum - June 26th, 2022
- Addressing the 'Trust Factor': South Carolina Researchers Tackle Health Disparities Using Genetics - Physician's Weekly - June 8th, 2022
- Dumb luck, genetics? Why have some people never caught COVID-19? | Daily Sabah - Daily Sabah - June 8th, 2022
- Genetics Breakthrough in Sea Urchins to Aid in Biomedical Research - Scripps Institution of Oceanography - June 8th, 2022
- Genetic Control Of Autoimmune Disease Mapped To Cellular Level - Bio-IT World - June 8th, 2022
- Bazelet to Supply Its Federally Legal Cannabis Genetics to DEA Approved Research Entities for Rigorous Scientific Research on the Clinical Effects of... - June 8th, 2022
- Alameda County Awaits Key Decision Regarding The Use of Genetic Testing in Asbestos Cases - JD Supra - June 8th, 2022
- Diversity in Genetic Research Is Key to Enhancing Treatment of Chronic Diseases in Africa - Technology Networks - June 8th, 2022
- CSU partners with American Hereford Association on genetics research - Beef Magazine - June 8th, 2022
- Unraveling the Tangled History of Polar Bears to Brown Bears Using Genetic Sequencing - Nature World News - June 8th, 2022
- Did My Lifestyle or Genetics Cause ATTR-CM? Learning More About This Heart Condition That Often Goes Misdiagnosed - SurvivorNet - June 8th, 2022
- Your genes affect your education. Here's why that's controversial. - Big Think - June 8th, 2022
- Study mines cancer genetics to help with targeted treatment - ABC News - April 26th, 2022