During the coronavirus pandemic, it's unlikely that AI doctors would work at all: the depth of moral decisions that need to be made simply can't be accommodated by a program.Vidal Balielo Jr.
By now, its almost old news that artificial intelligence (AI) will have a transformative role in medicine. Algorithms have the potential to work tirelessly, at faster rates and now with potentially greater accuracy than clinicians.
In 2016, it was predicted that machine learning will displace much of the work of radiologists and anatomical pathologists. In the same year, a University of Toronto professor controversially announced that we should stop training radiologists now. But is it really the beginning of the end for some medical specialties?
AI excels in pattern identification in determining pathologies that look certain ways, according to Elliot Fishman, a radiology and oncology professor at Johns Hopkins University and a key proponent of AI integration into medicine. Ultimately, specialties that rely heavily on visual pattern recognition notably radiology, pathology, and dermatology are those believed to be at the greatest risk. With the advent of virtual primary care services, such as Babylon, General Practice may also have to adapt in the future.
Pattern recognition functions
In January of this year, an article in Nature reported that AI systems outperformed doctors in breast cancer detection. This was carried out by an international team, including researchers from Google Health and Imperial College London on mammograms obtained from almost 29,000 women. Screening mammography currently plays a critical role in early breast cancer detection, ensuring early initiation of treatment and yielding improved patient prognoses. False negatives are a significant problem in mammography. The study found AI use was associated with an absolute reduction of 9.4% and 2.7% reduction in false negatives, in the USA and UK, respectively. Similarly, use of the AI system led to a reduction of 5.7% and 1.2% in the USA and UK respectively for false positives. The study suggested that AI outperformed the six radiologists individually, and was equivalent to the current double-reading system of two doctors currently used in the UK. These developments have already had perceptible consequences in practice: algorithms eliminate the need for a second radiologist when interpreting mammograms. However, critically, one radiologist remains responsible for the diagnosis.
AI can also be deployed to predict the cognitive decline that leads to Alzheimers disease... allowing early intervention and treatment
Earlier studies have also yielded similar results: a 2017 study published in Nature examined the use of algorithms in dermatology. The study, from Stanford University, involved an algorithm developed by computer scientists using an initial database of 130,000 skin disease images. When compared to the success rates of 21 dermatologists, the algorithm was almost equally successful. Likewise, in a study conducted by the European Society for Medical Oncology, it was found that AI exceeded the performance of 58 international dermatologists. A system reliant on a form of machine learning known as Deep Learning Convolutional Neural Network (CNN) missed fewer melanomas (the most lethal form of skin cancer), and misdiagnosed benign moles (or nevi) as malignant less often than the group of dermatologists.
Further applications in medicine
However, the prospects of AI technology extend beyond the clear applications in cancer diagnosis and radiology: recent studies have also demonstrated that AI may be able to detect genetic diseases in infants by rapid whole-genome sequencing and interpretation. Considering that time is critical in treating gravely ill children, such automated techniques can be crucial in diagnosing children who are suspected of having genetic diseases.
In addition, AI can also be deployed to predict the cognitive decline that leads to Alzheimers disease. Such computational models can be highly valuable at the individual level, allowing early intervention and treatment planning. FDA approval has also been granted to a number of companies for such technologies; these include Imagens OsteoDetect, an algorithm intended to aid wrist fracture detection. In addition, algorithms may have functions in other specialties such as anaesthesiology in monitoring and responding to physiological signs.
Limitations of AI
Despite the benefits that AI integration into clinical practice can provide, the technology is not without limitations. Machine learning algorithms are highly dependent on the quality and quantity of the data input, typically requiring millions of observations to function at suitable levels. Biases in data collection can heavily impact performance; for instance, racial or gender representation in the original data set can lead to differences in diagnostic abilities of the system for different groups, consequently leading to disparities in patient outcomes. Considering that certain pathologies, including melanoma, present differently between races and with different incidences, this can often lead to both later diagnoses and poorer outcomes for racial minorities, as found in a number of studies. Volunteer bias of the data collected is also a pertinent consideration; for example, although lactate concentration is a good predictor of death, this is not routinely measured in healthy individuals.
Considering the magnitude of what is at stake raises the question of whether it is appropriate to rely solely on machines without any human input.
Other key problems which may arise include how algorithms overfit predictions based on random errors in the data, resulting in unstable estimates which vary between data samples. In addition, clinicians may take a more cautious approach when making a diagnosis. Therefore, it may appear that a human underperforms compared to an algorithm since their actions may yield a lower accuracy in tumour identification, however this approach could lead to a lower number of critical cases missed.
Ultimately, the tendency for humans to favour propositions given by automated systems over non-automated ones, known as automation bias, may exacerbate these problems.
Attempts to replace GPs with AI have been unsuccessful
The success of AI integration into clinical practice crucially depends on the receptiveness of patients. Babylon, a start-up company based in the UK, was developed to give medical advice to patients using chat services. Although Babylon has been referred to as the biggest disruption in medical practice in years and a game-changer in UK media as quoted on Babylons website it is questionable how successful the service has been so far Babylon has been slow in recruiting patients and this month, it came under fire for data breaches. The fact that patients lose access to their regular GP if they sign up to Babylon is perhaps a key contributing factor for Babylons slow take-off. Therefore, it appears that human contact is highly valued by patients, after all, at least for some medical specialties.
Potential effect of COVID-19
The COVID-19 pandemic, with its requirements for social distancing, could potentially accelerate the use of AI. COVID-related restrictions could change the perception of patients about remote medical consultations, paving the way for increased receptiveness to primary healthcare apps including Babylon. The pandemic has also highlighted the inadequacies in fast internet access throughout the country. This may encourage increased government investment into broadband infrastructure, which may, in turn, facilitate broader penetration of AI technology. The increased pressure on the NHS may also encourage greater use of algorithms to delegate menial tasks as seen in specialties such as radiology already.
The future
AI will likely become an indispensable tool in clinical medicine, facilitating the work of professionals by automating mundane, albeit essential tasks. By reducing the medical workload, this could allow healthcare professionals to dedicate greater efforts to other aspects of their work, including patient interaction. As emphasised by the President of the Royal College of Radiologists, radiologists can instead focus more of their time on interventional radiology and in managing more complex cases to a much greater extent. Indeed, innovation may aid clinicians and augment their decision-making capabilities to improve their efficiency and diagnostic accuracy, however it remains doubtful whether technology can fully replace these roles. After all, considering the magnitude of what is at stake human life raises the question of whether it is appropriate to rely solely on machines without any human input. Therefore, it remains likely that human involvement will need to continue across medical specialties, although this may be in a reduced or adapted form.
Varsity is the independent newspaper for the University of Cambridge, established in its current form in 1947. In order to maintain our editorial independence, our newspaper and news website receives no funding from the University of Cambridge or its constituent Colleges.
We are therefore almost entirely reliant on advertising for funding, and during this unprecedented global crisis, we have a tough few weeks and months ahead.
In spite of this situation, we are going to look at inventive ways to look at serving our readership with digital content for the time being.
Therefore we are asking our readers, if they wish, to make a donation from as little as 1, to help with our running cost at least until we hopefully return to print on 2nd October 2020.
Many thanks, all of us here at Varsity would like to wish you, your friends, families and all of your loved ones a safe and healthy few months ahead.
Read more here:
The rise of AI in medicine - Varsity Online
- Department of Genetic Medicine - January 6th, 2025
- Research Services | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Patient Care | Johns Hopkins Department of Genetic Medicine - January 6th, 2025
- Specialty Clinics | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Pediatric Genetic Medicine at Johns Hopkins Children's Center - January 6th, 2025
- Research Centers | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- About Us - Johns Hopkins Medicine - January 6th, 2025
- Graduate Programs & Training | Johns Hopkins Medicine - January 6th, 2025
- Request an Appointment | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021