NIDCR-Supported Researchers Explore Basic Biology & Therapeutic Potential
More than 15 years ago, NIDCR researcher Pamela Robey, PhD, and colleagues made the surprising discovery that humanbaby teeth and wisdom teeth contain adaptable cells known as stem cells, which can transform into other cell types. These readily accessible cells raised early hopes that they might revolutionize repair of teeth and oral tissues, and possibly lead to new therapies for diabetes, heart disease, and neural conditions.
But scientists soon realized that the complex biology of dental stem cells made it challenging to move from animal models to human patients. The US FDA has yet to approve the use of dental stem cells in medical procedures, Robey says.
Based on current evidence, clinical use of dental stem cells may be closest to fruition for root canal therapy or repair of bone defects caused by gum disease. However, the possibility of regenerating whole teeth and other uses may be many more decades down the road.
To fully explore the potential of these versatile cells, NIDCR supports a range of scientists who are working to better understand dental stem cells and their therapeutic promise.
Basic Questions
One area of inquiry addresses a needle-in-the-haystack issue: sorting out the relatively scarce stem cells from the other cell types in dental tissue. To be used in experiments or in the clinic, dental stem cells must first be identified, isolated through a process called enrichment, then assessed to ensure theyre at the right stage of development.
In order to identify and enrich stem cells, NIDCR-supported researchers are looking for proteins or genes specifically expressed by dental stem cells that can serve as identifiers, or markers, to distinguish them from other cells. We have pretty good markers for the mature progeny of dental stem cells, Robeysays. But more and better markers are needed to isolate highly enriched stem cell populations that will enable high-quality experiments.
Nadya Lumelsky, PhD, director of NIDCRs Tissue Engineering and Regenerative Medicine Program, notes that highly enriched dental stem cell populations will also be key to developing potential therapies. Separating the irrelevant cells from a population means that a higher fraction are true stem cells, which means the replacement tissue is higher quality and can more reliably repair defects, Lumelsky says. Better methods of enriching and expanding dental stem cells will also be important for generating sufficient numbers of cells to be used at the scale needed for clinical studies.
More reliable markers for dental stem cells will help scientists trace the process of stem cell development and differentiation as it naturally occurs in the body during normal growth or after tissue injury or damage. Much research has been done on dental stem cell behavior in culture. But stem cells in a dish behave differently from stem cells in their natural environment, Robey notes. Some insights into the natural behavior of dental stem cells have been gleaned through studies of mice and their continuously renewing incisors. Yet the differences between mouse and human dental stem cells remain unclear.
Identifying the cellular and molecular signals that guide stem cell repair processes in the body will help researchers develop strategies for recreating these processes in stem cell therapies. It could also help scientists learn how to reliably prompt cells to differentiate into one cell type and not anotherin the case of dental stem cells, how to produce the hard tissue called dentin instead of pulp, for instance.
Instead of removing and re-implanting stem cells, alternative approaches called autotherapies employ small molecules or other minimally invasive methods to trigger stem cells healing properties inside the body. For example, some NIDCR-supported scientists are exploring ways to repair teeth by recruiting dental stem cells to the site of damage or decay and prompting them to regenerate pulp and dentin.
A Path to the Clinic
Beyond the basic investigations of dental stem cell biology, some NIDCR-supported scientists are exploring how the cells might be used in the clinic to help to repair bone and teeth. A major area of research involves the potential usedental stem cells in root canal therapy. Dental specialists perform root canal procedureswhen pulp becomes inflamed or infected. A clinician removes the dental pulp, cleans the inside of the tooth, then fills and seals the space. However, repaired teeth that lack pulp may become brittle and more likely to break. To improve root canal outcomes, several NIDCR-supported researchers are exploring the use of dental stem cells to replace inflamed tissue and regenerate healthy pulp.
Jacques Nr, DDS, PhD,at the University of Michigan, is one of these scientists. Several years ago, Nrs group loaded dental stem cells into a human tooth slice that contained a physical support structure, or scaffold, for the cells.
Transplanting these constructs into mice resulted in dental pulp tissue approximating normal dental pulp, Nr says. His group is now addressing a common barrier to much of the regenerative medicine field: providing a blood supply to regenerated tissue. Integrating blood vessels is vital for effective tissue regeneration, and dental pulp is no exception.
Nrs group has directed dental pulp stem cells to generate structures resembling blood vessels that integrate with the mouses own vasculature. How this happens is still unclear, though, and his group continues to explore the question. Understanding the molecular signals that guide this process will allow us to develop a successful pulp regeneration strategy for eventual clinical use, Nr says. The findings from this research may also apply to the use of dental stem cells in other therapeutic contexts, such as potential bone regeneration.
Other researchers are looking for markers to identify and isolate bone-forming dental stem cells. These studies also entail finding the precise molecular recipe to prompt the cells to form bone.
Once dental stem cells are implanted in a defect, whether tooth or bone, the proper physical and chemical atmospherecalled a microenvironmentis necessary to keep the cells growing and alive. NIDCR-supported scientists are working to optimize stem cell microenvironments for given therapies. One important facet is optimizing scaffolds for the cells. Regenerative therapies cant work without the proper structure to corral and guide cell growth, and different tissues require different scaffolds.
While much work remains to be done before dental stem cells enter the clinic, Nr remains optimistic that the cells easy accessibility and regenerative properties make them a valuable asset.
These unique cells may translate into helping patients in the not-too-distant future, Nr says. Its important to strike the right balance between caution and hope.
References
Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018 Sep;561(7724):455-457. doi: 10.1038/d41586-018-06756-9.
Zhang Z, Nor F, Oh M, Cucco C, Shi S, Nr JE. 36. Wnt/-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells. Stem Cells. 2016 Jun;34(6):1576-87. doi: 10.1002/stem.2334.
Bento LW, Zhang Z, Imai A, Nr F, Dong Z, Shi S, Araujo FB, Nr JE. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res. 2013 Jan;92(1):51-7. doi: 10.1177/0022034512466263. Epub 2012 Oct 31.
Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, Santos CF, Nr JE. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010 Aug;89(8):791-6. doi: 10.1177/0022034510368647. Epub 2010 Apr 15.
Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nr JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008 Aug;34(8):962-9. doi: 10.1016/j.joen.2008.04.009.
Miura M, Gronthos S. Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. May 13;100(10):5807-12. Epub 2003 Apr 25.
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13625-30.
Original post:
The Quest to Understand Dental Stem Cells | National ...
- 4 Reasons To Save Baby Teeth And Ways To Preserve Them - MomJunction - October 6th, 2024
- Stem Cells May Help In Treatment of Tuberculosis, But Challenges Remain: Study - News18 - April 23rd, 2023
- Buccal Fat Pad as a Potential Source of Stem Cells for Bone ... - Hindawi - December 20th, 2022
- Difference Between Adult and Embryonic Stem Cells - December 20th, 2022
- Nicklas Brendborg: Keeping your mouth clean is one of the few easy things you can do to extend your life - EL PAS USA - November 17th, 2022
- A Breakthrough in the Era of Calcium Silicate-Based Cements: A Critical Review - Cureus - September 4th, 2022
- Effect of Puerarin on New Bone Formation In Vivo | DDDT - Dove Medical Press - August 27th, 2022
- The Tokyo Medical and Dental University (TMDU) team succeeded with the world's first Mini Organ transplantation to a patient with Ulcerative Colitis... - August 27th, 2022
- Stem cell-based biological tooth repair and regeneration - PMC - June 26th, 2022
- Where Stem Cells Are Found, & the Difference That Makes | Cryo-Cell - June 26th, 2022
- Stem Cells International | Hindawi - June 26th, 2022
- The surprising science of breast milk - BBC - June 26th, 2022
- Plug-and-Play Human Organ-on-a-Chip Can Be Customized to the Patient - SciTechDaily - May 8th, 2022
- Twelve Rutgers Professors Named Fellows of the American Association for the Advancement of Science - Rutgers Today - January 30th, 2022
- Mouth Sores from Chemo: Symptoms, Causes, and Treatments - Healthline - February 19th, 2021
- Tooth Regeneration Market to Exhibit Steadfast Expansion by 2027 | Unilever, Ocata Therapeutics, Integra LifeSciences, CryoLife, BioMimetic... - February 14th, 2021
- Using 3D Printing to Develop Bone-Like Structures that Contain Living Cells - AZoM - February 14th, 2021
- Fear of Covid keeps patients away from dental clinics resulting in an increased need of treatment. - ETHealthworld.com - February 9th, 2021
- 3D medical printing making strides, and helping patients do the same - MedCity News - February 9th, 2021
- Global Cord Blood Banking Industry Report 2021: Industry Trends, Expansion Technologies, Profiles of Select Cord Blood Banks and Companies -... - January 14th, 2021
- Bone Therapeutics and Rigenerand sign partnership for cell therapy process development - GlobeNewswire - January 14th, 2021
- Europe Prescription Spectacles Market to Exhibit a 5.2% CAGR and Reach USD 31.89 Billion by 2027; Increasing Incidence of Ocular Disorders to Favor... - January 14th, 2021
- Priming the Immune System to Fight Cancer - PRNewswire - December 17th, 2020
- Girl gets her smile back - and a new jaw - thanks to innovative tissue engineering procedure - Newswise - December 17th, 2020
- Bone Regeneration Material Market: Cell-based Segment to Expand Significantly - BioSpace - December 17th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030, claims Roots Analysis - Cheshire Media - November 28th, 2020
- Global Regenerative Medicine Market 2020-2025: Opportunities with the Implementation of the 21st Century Cures Act - Stockhouse - November 28th, 2020
- Molecular Diagnostics Market to Record over 7% Growth Rate and Hit USD 13873.6 Million by 2025; Advancements in this Field to Increase Productivity... - November 28th, 2020
- North America Tissue Engineering Market Report 2020: Market is Expected to Reach US$12.23 Billion by 2027 from US$4.45 Billion in 2019 -... - November 22nd, 2020
- Latest Study explores the Stem Cell Banking Market Witness Highest Growth in nea - GroundAlerts.com - November 5th, 2020
- Stem Cell Therapy Market is estimated to be worth USD 8.5 Billion by 2030 - PRnews Leader - November 5th, 2020
- Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 - PRnews Leader - November 5th, 2020
- Stem Cell Banking Market to witness an impressive growth during the forecast pe - News by aeresearch - November 2nd, 2020
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027)-by Type, Application, Population Demographics and Region - re:Jerusalem - October 10th, 2020
- The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% - Yahoo... - October 10th, 2020
- The end-use Industries to Help the Tooth Regenerations market stand in a good stead between 2018 and 2026 - The Daily Chronicle - September 18th, 2020
- Increase in Frequency of Product Innovations to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Incremental Sales to Drive the Tooth Regenerations Market from 2018 to 2026 - Lake Shore Gazette - September 15th, 2020
- Parents plea for stem cell help to save life of daughter with rare blood disorder - Mirror Online - September 2nd, 2020
- Unraveling the use of CBD in veterinary medicine - Jill Lopez - September 2nd, 2020
- Global Stem Cell Banking Market with Covid-19 Effect Analysis, Growth, Research Findings, Type, Application, Element Global Trends and Forecast to... - September 2nd, 2020
- Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG - September 2nd, 2020
- Active Data Warehousing Market to Witness Robust Expansion Throughout the Forecast Period 2020 2025 - The Daily Chronicle - August 20th, 2020
- 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration - Science Advances - August 20th, 2020
- NIH names Dr. Rena D'Souza as director of the National Institute of Dental and Craniofacial Research - National Institutes of Health - August 13th, 2020
- Global Cell Theraputics Market Value Estimated To Grow With A Healthy CAGR Rate During 2020-2025: Cell Theraputics Bristol-Myers Squibb Company... - July 10th, 2020
- Global Tissue-Replacement Products Market to Witness Rapid Development During the Period 2017 2025 - Lake Shore Gazette - July 10th, 2020
- Job interviews zoom without leaving the house | What's Working - The Union Leader - July 6th, 2020
- Citius Receives FDA Response on Pre-Investigational New Drug (PIND) Application for its Induced Mesenchymal Stem Cells (iMSCs) to Treat Acute... - June 30th, 2020
- Medical Professionals in the Ozarks - 417mag - June 30th, 2020
- Dental Fitting Market 2019 Break Down by Top Companies, Countries, Applications, Challenges, Opportunities and Forecast 2026 - Cole of Duty - June 10th, 2020
- Coronavirus daily news updates, June 9: What to know today about COVID-19 in the Seattle area, Washington state and the world - Seattle Times - June 10th, 2020
- Metal Fiducial Marks Market Emerging Trends, Strong Application Scope, Size, Status, Analysis and Forecast to 2025 - Cole of Duty - June 10th, 2020
- Impacts of COVID 19 on the Global Regenerative Medicine Market Size: Global Industry Analysis, Growth, Top Companies Revenue, MRFR Reveals Insights... - June 2nd, 2020
- Exceptional stem cell science on tap for ISSCR 2020 Virtual June 23-27, 2020 - 7thSpace Interactive - June 2nd, 2020
- Orthopedic Joint Replacement Market to Gain Traction; Rising Prevalence of Bone Diseases to Boost Growth, states Fortune Business Insights -... - June 2nd, 2020
- Coming Together to Solve COVID-19 Mysteries | University of Pennsylvania Almanac - UPENN Almanac - June 2nd, 2020
- Impact of Covid-19 on Stem Cell Banking Market 2020: Remarking Enormous Growth with Recent Trends | Cord Blood Registry (CBR) Systems (US), Cordlife... - May 27th, 2020
- Researchers develop nanoengineered bioink to 3D print functional bone tissue - 3D Printing Industry - May 27th, 2020
- Directional Osteo-Differentiation Effect of hADSCs on Nanotopographica | IJN - Dove Medical Press - May 8th, 2020
- Bone Therapeutics raises additional EUR 4.0 million, totalling EUR 15 million, providing runway into Q2 2021 - PharmiWeb.com - May 8th, 2020
- Coming together to solve the many scientific mysteries of COVID-19 - Penn: Office of University Communications - May 8th, 2020
- Bone Therapeutics secures EUR 11.0 million financing - PharmiWeb.com - April 30th, 2020
- GLOBAL TOOTH REGENERATION MARKET: INDUSTRY ANALYSIS AND FORECAST (2020-2027) - MR Invasion - April 28th, 2020
- Stromal Vascular Fraction Market to Register CAGR 4.5% Growth in Revenue During the Forecast Period 2019 to 2029 - Jewish Life News - April 28th, 2020
- UCLA scientists invent nanoparticle that could improve treatment for bone defects - UCLA Newsroom - April 27th, 2020
- Orthopedic Devices Market to Reach USD 71.67 Billion by 2026; Increasing Geriatric Population to Boost Growth, says Fortune Business Insights -... - April 10th, 2020
- A new way to study HIV's impact on the brain - Penn: Office of University Communications - March 28th, 2020
- Bone Therapeutics appoints Stefanos Theoharis as Chief Business Officer - OrthoSpineNews - March 28th, 2020
- Walking Sticks Stop, Drop and Clone to Survive - KQED - March 25th, 2020
- Hydrogel could be step forward in therapies to generate bones in head and neck - UCLA Newsroom - March 19th, 2020
- Cell Banking Outsourcing Market to Witness Surge in Demand Owing to Increasing End-use Adoption - Lake Shore Gazette - March 19th, 2020
- New evidence teeth can fill their own cavities - Big Think - March 16th, 2020
- These new stem cells have the ability to generate new bone - Tech Explorist - March 12th, 2020
- Bone Therapeutics announces 2019 full year results - OrthoSpineNews - March 12th, 2020
- Stem cells that can grow new bone discovered by researchers - Drug Target Review - March 6th, 2020
- Stem Cells that will aid new bone generation discovered as per latest research - Medical Herald - March 6th, 2020
- UConn Researchers Discover New Stem Cells That Can Generate New Bone - UConn Today - March 6th, 2020
- What's coming down the pike in the dental profession? - Dentistry IQ - February 26th, 2020
- On the Road to 3-D Printed Organs - The Scientist - February 26th, 2020