More than a decade ago, nanotechnology became an integral part of the overall scientific research world. Governments started funding programs specifically aimed at nanotechnology, research universities opened their facilities and coursework to the new discipline, and journals focusing on nano research became commonplace.And now, many researchers believe, its nanomedicines turn to do the same. Nanomedicinewhich has emerged as nanotechnologys most important sub-disciplineis the application of nanotechnology to the prevention and treatment of disease in the human body. It is already having an impact clinically among some of the deadliest diseases in the world.
Nanomedicine is far from the stuff of science fiction. The possibilities for nanomedicine to help us diagnose, treat and image diseases are endless. Imagine a smart nanomedicine that is able to bind to tumor cells and enhance imaging and diagnosis, at the same time as being able to deliver a gene therapy or chemotherapy agent. With the technologies available to us and our multidisciplinary teams, this will be possible in my lifetime, said Phoebe Phillips, head of the pancreatic cancer translational research group at the University of New South Wales in Sydney.
Phillips and her team have created a nanoparticle that dramatically increases its effectiveness as an anti-cancer drug for patients with pancreatic cancers, which is one of the fastest killing cancers from time of initial detection, often leaving patients with no suitable treatment options and only weeks to live.
While nanomedicine canand likely willplay a role in diagnostics, regenerative medicine, prosthetics and more, the effect the sub-discipline is currently having on the treatment of autoimmune diseases and cancers is significant.
Nanomedicine for HIVThirty years ago, a diagnosis of HIV/AIDS was essentially a guarantee of a painful, protracted death. It wasnt until 1996 that researchers discovered antiretroviral drugs, and the potent combination therapy that leads to successful management of HIV/AIDS in most cases. However, not much has changed since that discovery. Those suffering from the autoimmune disease still require daily oral dosing of three to four pills, and chronic oral dosing has significant complications that can arise from the high pill burden experienced by patients, leading to non-adherence to therapies for a variety of reasons.
Ive been working in HIV for over 20 years, Andrew Owen, professor of molecular and clinical pharmacology at the University of Liverpool (UK) told Laboratory Equipment. I was trying to understand the variability in drug exposure that occurs between different individuals and the genetic basis for that. We were finding a lot of interesting things, but they werent clinically implementable. They gave us a good understanding of why drug exposure was variable, but it didnt actually help the patients in any way.
In an attempt to solve the problem rather than just characterize it, Owen turned to nanomedicine in 2009, eventually becoming part of the first team to conduct human trials of orally dosed nanomedicines for HIV. Since then, Owen and his interdisciplinary team at the Liverpool Nanomedicine Partnership have secured more than 20 million of research funding for a multitude of nanomedicine-based approaches to HIV, such low-dose oral delivery, long-acting injectable medications and targeted delivery of antiretrovirals.
Some of Owens most important research to date tackles two of the pharmaceutical industrys biggest challenges: oral delivery of potent drugs and supply and demand.
One of the major problems that has plagued drug discovery and drug development over the last 30 years has been compatibility with oral drug delivery, Owen explained. The pharmaceutical industry has wrestled with that because they can develop very potent molecules across diseases, but actually delivering those molecules orally is very challenging. As you try to design into the molecule oral bioavailabilty, you usually get further away from the potency you want.
The Liverpool team solved this problem with the creation of Solid Drug Nanoparticles. The technology consists of combining a normal drug, in its solid form, with particles on that drug that are measurable within the nanometer scale. There are other things packed into the formulation as well, such as FDA-approved stabilizers that are proven to help disperse the drug. Owen says it is all about increasing the surface area covered by the drug.
If you imagine you take a granulated form of the drug, youre going to get big chunks of drugs in the intestinal tract when dissolution happens. But if you have nanometer-sized particles within the GI tract, then you are going to get a complete coating of the inside of the intestine after you take the drug, Owen explained. What that does is it massively increases the surface area covered by the drug, which saturates all sorts of drug influx processes within the GI tract.
Since 80 percent of a humans immune system is concentrated in the gut, the Solid Drug Nanoparticles are the perfect mechanism. The immune cells in the gut instinctually move toward the particles, creating a pathway for the drugs to cross the intestines, move through the lymphatic system, and finally into the systematic circulation.
In February, Owen presented the results of two trials at the Conference on Retroviruses and Opportunistic Infections (CROI) that confirmed his Solid Drug Nanoparticles can be effective at a 50 percent dose reduction. Specifically, Owen and his team applied the nanomedicine-based approach to the formulation of two drugs: efvirenz (EFV) and lopinavir (LPV). EFV is the current WHO-recommended regimen, with 70 percent of adult HIV patients in low- and middle-income countries taking the medication. At 50 percent of the dose, the patients in the trial were able to maintain plasma concentrations of the conventional dose.
Globally, the supply of drugs needed to treat every patient with HIV is outstripping manufacturing capabilitymeaning we, as a human species, cannot physically make enough HIV medication to treat everyone with the disease. A 50 percent reduction in dose means twice as many patients served with the existing drug supply.Owen and his team are working with multiple global partners to move the technology forward. For the drugs already formulated, the Medicines Patent Pool and Clinical Health Access are helping to scale up and take them to market. Meanwhile, USAIDs Project OPTIMIZE is applying the nanoparticle technology to the newest HIV drugs for use in low- and middle-income countries.
For their latest collaboration with Johns Hopkins University, the Liverpool team was just awarded $3 million to examine the use of implantable technologies that can deliver drugs for weeks, or even months.
The current oral drug regimens for HIV comprises three drugs in combinationone is the major driver for efficacy, and the other two are nucleoside reverse transcriptase inhibitors that prevent resistance to the main drug. However, current injectable formulations are only available with the main drugnone include the nucleoside reverse transcriptase inhibitors.
So, our project aims to develop the first long-acting injectable nucleoside reverse transcriptase inhibitors so that we can use them to have a fully long-acting regimen that matches the current clinical paradigm for therapy, Owen said.
The Liverpool/Hopkins team has also thought about applying their long-acting injectable technology to other chronic diseases, such as malaria and tuberculosis, as well as some cardiovascular applications.
Nanomedicine for diabetesWhen the nanoparticles he was working with as an imaging tool didnt produce the desired results, Pere Santamaria grew frustratedbut he didnt give up. Instead, the doctor and professor at the University of Calgary (Canada) changed his assumptions and pursued his experimentuntil the data came pouring in that confirmed it wasnt a failed experiment at all. Rather, it was a discovery.
The discovery of Navacims was a bit serendipitous, Santamaria told Laboratory Equipment. Thankfully I am a little OCD and I didnt let the failed experiment go.Navacims are an entirely new class of nanomedicine drugs that harness the ability to stop disease without impairing normal immunity. Santamaria has been studying Navacims for the past 17 years, ever since unintentionally developing them. He even started a spin-off company, Parvus Therapeutics, Inc., to help bring the drugs to market.
In autoimmune diseases, white blood cells, which are normally responsible for warding off foreign invaders and disease, turn on the body, attacking the good cells and causing their destruction. Each specific autoimmune disease results from an attack against thousands of individual protein fragments in the targeted organ, such as the insulin-producing pancreatic cells in the case of type 1 diabetes.
But Santamarias studies show that nanoparticles decorated with protein targets acting as bait for disease-causing white blood cells can actually be used to reprogram the cells to rightfully suppress the disease they once intended to cause.
Once the immune system recognizes the presence of a Navacim, a white blood cell is reprogrammed by epigenetic changes into a lymphocyte that no longer wants to cause tissue damage, but rather work to suppress disease. According to Santamaria, the reprogramming step is immediately followed by an expansion of that population of lymphocytesone now-good white blood cell dividing into a million.
Basically they turn the tables on the immune system, and then there is a very sophisticated series of downstream cellular events that arise from that reprogramming event that involves the recruitment of other lymphocytes and other cell types that completely suppress the inflammation in the organ that is being infected, Santamaria explained. This happens extremely efficiently and comprehensively. This is an approach that can efficiently, selectively and specifically blend a complex response without impairing basic immunity.
In addition, the design of Navacims is modular, meaning the nanomedicine can be applied to severalif not allautoimmune diseases, including multiple sclerosis and rheumatoid arthritis. Navacims can be altered to target different diseases by simply changing a small portion of the bait molecules on the nanoparticles. Santamarias studies have shown this to work in about seven autoimmune diseases thus far.
In April, Santamarias company Parvus entered into a license and collaboration agreement with Novartis for Navacims. Under the terms of the agreement, Novartis receives exclusive worldwide rights to use Parvus Navacim technology to develop and commercialize products for the treatment of type 1 diabetes, and will be responsible for clinical-stage development and commercialization. Parvus will still be responsible for conducting ongoing preclinical work in the diabetes area, with some research funding from Novartis.
Weve had such a long time to prove ourselves, that this is not a flash in the pan, that this is something serious and robust, Santamaria said. We know so much about the mechanisms of our actions, and so much granularity. I think there are no other drugs that have reached the clinic with this level of understanding. That was painful in the beginning for us, but in the end its going to be good.
Here is the original post:
The Promise of Nanomedicine - Laboratory Equipment
- Post-doctoral Fellow in Drug Delivery, Nanomedicine & Advanced Therapeutics - Times Higher Education - January 6th, 2025
- Enhancing localized chemotherapy with anti-angiogenesis and nanomedicine synergy for improved tumor penetration in well-vascularized tumors -... - November 27th, 2024
- what is nanomedicine The British Society for Nanomedicine - November 16th, 2024
- Nanomedicine: Principles, Properties, and Regulatory Issues - October 6th, 2024
- Center for Nanomedicine - Johns Hopkins Medicine - October 6th, 2024
- Delivering the power of nanomedicine to patients today - October 6th, 2024
- Emerging Applications of Nanotechnology in Healthcare and Medicine - October 6th, 2024
- Tiny skin-stabbing stars designed to get meds through the epidermis - October 6th, 2024
- Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate ... - October 6th, 2024
- Montgomery County, Kansas - Kansas Historical Society - October 6th, 2024
- The Nanomedicine Revolution - PMC - National Center for Biotechnology ... - October 6th, 2024
- Fawn Creek township, Montgomery County, Kansas (KS) detailed profile - October 6th, 2024
- Fawn Creek, Montgomery County, Kansas Population and Demographics - October 6th, 2024
- An Introduction to Nanomedicine - AZoNano - October 6th, 2024
- Nanomedicine Market is expected to show growth from 2024 to 2030, reported by Maximize Market Research - openPR - October 6th, 2024
- Oro Rx Healthcare LLP Unveils Oroceuticals: The Next-Gen Nutrition Delivery Tech - Hindustan Times - October 27th, 2023
- Leapfrogging as pharma leader of the worldNational Policy on Research and Development and Innovation in Pharma-MedTech Sector in India - The Sangai... - October 27th, 2023
- What will Indian healthcare look like in 2047? Robotics, AI, biotech will shape the future - The Economic Times - February 16th, 2023
- Going Beyond Target Or Mechanism Of Disease: Disruptive Innovation In Drug Delivery Systems - Forbes - September 12th, 2022
- Nanomedicine Market Size, Share, Types, Products, Trends, Growth, Applications and Forecast 2022 to 2028 - Digital Journal - September 12th, 2022
- Nano-preterm infants may not benefit from noninvasive versus invasive ventilation at birth - University of Alabama at Birmingham - September 12th, 2022
- Juan De Borbon - Introducing Cutting-Edge Techniques To The Healthcare Industry - CEOWORLD magazine - September 12th, 2022
- Organic thin-film sensors for light-source analysis and anti-counterfeiting applications - Nanowerk - September 12th, 2022
- Whole Exome Sequencing Market Projected to Reach CAGR of 19.0% Forecast by 2029, Global Trends, Size, Share, Growth, Future Scope and Key Player... - September 12th, 2022
- Another 'Dr. Copper' - MINING.COM - MINING.com - September 12th, 2022
- Artemisinin Combination Therapy Market Insights and Emerging Trends by 2027 - BioSpace - August 19th, 2022
- NASEM Recommends That EPA Conduct Ecological Risk Assessment of UV Filters Found in Sunscreen, Including Titanium Oxide and Zinc Oxide - JD Supra - August 19th, 2022
- Fast and noninvasive electronic nose for sniffing out COVID-19 based on exhaled breath-print recognition | npj Digital Medicine - Nature.com - August 19th, 2022
- Applications in Chronic Wound Healing | IJN - Dove Medical Press - July 25th, 2022
- Fundamental Knowledge on Nanobots - Bio-IT World - July 25th, 2022
- How different cancer cells respond to drug-delivering nanoparticles - MIT News - July 25th, 2022
- Nanorobots Market to close to USD 19576.43 million with CAGR of 12.23% during the forecast period to 2029 - Digital Journal - July 25th, 2022
- Microscopic Robots Made from White Blood Cells Could Treat and Prevent Life-Threatening Illnesses - Good News Network - July 25th, 2022
- Nano Therapy Market 2022 Growth Is Expected To See Development Trends and Challenges to 2030 This Is Ardee - This Is Ardee - July 25th, 2022
- Artificial Intelligence (AI), Cloud Computing, 5G, And Nanotech In Healthcare: How Organizations Are Preparing Best For The Future - Inventiva - July 25th, 2022
- Potassium Channels as a Target for Cancer Therapy & Research | OTT - Dove Medical Press - July 25th, 2022
- How can Nanotechnology be Used to Reverse Skin Aging? - AZoNano - May 20th, 2022
- Should Nanomaterial Synthesis Rely on Automation? - AZoNano - May 20th, 2022
- Fabrication Methods of Ceramic Nanoparticles - AZoNano - May 20th, 2022
- Explained: What are nanobots and how they can be used to help clean teeth? - Firstpost - May 20th, 2022
- Understanding the Health Risks of Graphene - AZoNano - May 20th, 2022
- Prevalence and predictors of SARS-CoV-2 | IDR - Dove Medical Press - May 20th, 2022
- Patches and robotic pills may one day replace injections - Science News for Students - May 20th, 2022
- Nanotechnology in the Nutricosmetics Industry - AZoNano - May 20th, 2022
- Nanomedicine: Nanotechnology, Biology and Medicine ... - December 22nd, 2021
- Frontiers | Nanomedicine: Principles, Properties, and ... - December 22nd, 2021
- Nanotechnology In Medicine: Huge Potential, But What Are ... - December 22nd, 2021
- Verseon Praised for Disruptive Approach to Physics- and AI-Based Drug Discovery - Digital Journal - December 22nd, 2021
- Nanotech opens up job options in variety of industries - BL on Campus - August 17th, 2021
- Homeopathic remedies that cattle farmers can use - Thats Farming - August 17th, 2021
- Healthcare Nanotechnology (Nanomedicine) Market Trend, Technology Innovations and Growth Prediction 2021-2027 The Manomet Current - The Manomet... - August 17th, 2021
- Regenerative Medicine Market Size Worth $57.08 Billion By 2027: Grand View Research, Inc. - PRNewswire - August 17th, 2021
- Nanotechnology Market Share, Industry Size, Leading Companies Outlook, Upcoming Challenges and Opportunities till 2028 - The Market Writeuo - The... - August 17th, 2021
- Global Nanomedicine Market is Expected to Grow at an Impressive CAGR by 2028 The Manomet Current - The Manomet Current - August 17th, 2021
- Complementary Protection May Be at Hand With a COVID-19-Preventing Nasal Spray - Newsweek - August 17th, 2021
- Nanorobotics Market By Player, Region, Type, Application And Sales Channel, Regions, Type and Application, Revenue Market Forecast to 2028 - Digital... - August 17th, 2021
- MagForce AG announces results of 2021 Annual General Meeting and changes to the Supervisory Board - Yahoo Eurosport UK - August 17th, 2021
- McMaster University researchers awarded more than $3M in Federal funds for projects - insauga.com - August 17th, 2021
- Global NANOTECHNOLOGY IN MEDICAL APPLICATIONS Statistics, CAGR, Outlook, and Covid-19 Impact 2016 The Bisouv Network - The Bisouv Network - February 14th, 2021
- Nanotechnology in Medical Market Demand Analysis To 2026 Lead By-Smith and Nephew, Novartis, Merck, Mitsui Chemicals, Amgen, Cytimmune KSU | The... - February 14th, 2021
- NanoViricides's Broad-Spectrum Antiviral Drug Candidate for the Treatment of COVID-19 Infections was Well Tolerated in GLP and non-GLP Animal Safety... - February 9th, 2021
- Nanorobots In Blood Market Top-Vendor And Industry Analysis By End-User Segments Till 2028 | Aries Chemical, GE Water & Process Technologies KSU... - February 9th, 2021
- Precision NanoSystems Receives Contribution from the Government of Canada to Build RNA Medicine Biomanufacturing Centre - PRNewswire - February 3rd, 2021
- Vaccine Production in BC's Future - AM 1150 (iHeartRadio) - February 3rd, 2021
- New facility to be built in Vancouver will produce 240 million vaccine doses annually | Urbanized - Daily Hive - February 3rd, 2021
- Faster tracking of treatment responses - MIT News - February 3rd, 2021
- NANOBIOTIX Announces First Patient Injected With NBTXR3 in Esophageal Cancer - Business Wire - February 3rd, 2021
- New Instrument Will Uncover Structure and Chemical Composition on Sub-Cell Scale - Georgia Tech News Center - January 12th, 2021
- Johns Hopkins Department of Otolaryngology-Head and Neck Surgery receives $15M contribution - The Hub at Johns Hopkins - January 9th, 2021
- COVID-19 Impact on Nanomedicine Market Size, Latest Trends, Growth and Share 2020 to 2026| Clinical Cardiology, Urology, Genetics, Orthopedics -... - January 9th, 2021
- Nanomedicine Market: Industry Analysis and forecast 2026: By Modality, Diseases, Application and Region - LionLowdown - January 9th, 2021
- Clene Nanomedicine Presents Blinded Interim Results from RESCUE-ALS Phase 2 Study at the 31st International Symposium on ALS/MNDResults provide... - December 16th, 2020
- Global Nanomedicine market 2020- Industry Overview, Global Trends, Market Analysis, CAGR Values and Country Level Demand To Forecast by 2027 -... - December 16th, 2020
- NHMRC awards Griffith University $4.5 million in research funding - Griffith News - December 16th, 2020
- Global Nanomedicine Market Analysis and Forecast to 2025 by Cancer Detection, Monitoring Therapy & Disease Detection - ResearchAndMarkets.com -... - December 10th, 2020
- Medical Physics Market: Growing Incidence of Chronic Diseases in Developing Regions to Drive the Market - BioSpace - December 10th, 2020
- Joseph DeSimone wins Harvey Prize in Science and Technology | The Dish - Stanford University News - December 10th, 2020
- Cancer Nanomedicine Market to Build Excessive Revenue at Healthy Growth rate at 12.50% up to 2027 - PharmiWeb.com - December 4th, 2020
- Sensing the body at all scales - MIT News - December 4th, 2020
- Healthcare Nanotechnology (Nanomedicine) Market Research Report with Revenue, Gross Margin, Market Share and Future Prospects till 2026 - The Market... - December 4th, 2020