Imagine a world in which we can produce meat without animals, cure previously incurable diseases by editing an individuals genetic fabric, and manufacture industrial chemicals in yeast factories. The foundational technologies that could make all this possible largely exist. Rapid and ever-cheaper DNA sequencing has deepened our understanding of how biology works and tools such as CRISPR are now being used to recode biology to treat diseases or make crops less vulnerable to climate change. This is what we call the Bio Revolution.
Explored in a new McKinsey Global Institute research report, which we helped co-author, the Bio Revolution is already benefiting society. A confluence of breakthroughs in biological science and ever faster and more sophisticated computing, data analytics, and artificial intelligence technologies has powered scientific responses to the Covid-19 pandemic. Scientists sequenced the virus genome in weeks rather than months, as was the case in previous outbreaks. Bio innovations are enabling the rapid introduction of clinical trials of vaccines, the search for effective therapies, and a deep investigation of the transmission patterns of the virus.
The report estimates that bio innovations could alleviate between 1% and 3% of the total global burden of disease in the next 10 to 20 years from these applications roughly the equivalent of eliminating the global disease burden of lung cancer, breast cancer, and prostate cancer combined. Over time, if the full potential is captured, 45% of the global disease burden could be addressed using science that is conceivable today.
advertisement
As much as 60% of the physical inputs to the global economy today are either biological (such as wood for construction or animals bred for food) or nonbiological (such as cement or plastics) but could, in principle, be produced over time using biology. Nylon can already be made using genetically engineered yeast instead of petrochemicals, for instance, leather is being made from mushroom roots, and bacteria have made a type of cement.
This Bio Revolution has the potential to be as transformative to business and economies as the Digital Revolution that proceeded it, creating value in every sector, disrupting value chains, and creating new business opportunities. Businesses clearly see the potential investment in a new generation of biological technologies had already surged to more than $20 billion by 2018.
advertisement
Many applications are being commercialized. We identified a visible initial pipeline of about 400 use cases, almost all scientifically feasible today, that could create a direct economic impact of $2 trillion to $4 trillion in the next 10 to 20 years more than half of which is outside health, in sectors as diverse as agriculture and textile manufacturing.
The confluence of biology and computing is already creating new capabilities. Computing is accelerating discovery and throughput in biology. An explosion of biological data due to cheaper sequencing is being used by biotech companies and research institutes that are increasingly using robotic automation and sensors in labs. Biotech company Zymergen, for example, has found that throughput in biological screening can be increased up to 10 times. Advanced analytics, more powerful computational techniques, and AI are also being deployed to generate more acute insights during the R&D process.
New biology-based manufacturing is already cutting costs, improving performance, and reducing the impact on the environment and the natural world. In cosmetics, for instance, Amyris is now making squalane, a moisturizing oil used in many skin-care products, by fermenting sugars using genetically engineered yeast instead of processing liver oil from deep-sea sharks, which was not only expensive but threatened the species with extinction. In textiles, U.S. startup Tandem Repeat is producing self-repairing, biodegradable, and recyclable fabric using proteins encoded by squid genes.
The Bio Revolution could utterly change the food business as plant-based proteins and lab-grown meat gain popularity and in the process cut greenhouse gas emissions from deforestation and animal husbandry. One study found that cultured meat could reduce greenhouse gas emissions by 80% or more compared with conventional meat if all of the energy used in manufacturing comes from carbon-free sources.
Cultured meat and seafood are made using tissue-culture technology, a lab process by which animal cells are grown in vitro. Producers still face a major technical challenge in finding a cost-effective way of growing cells. New players such as Finless Foods, Mosa Meat, Memphis Meats, and Meatable are experimenting with different approaches, including using synthetic molecules and pluripotent stem cells to replace expensive growth factors. Cultured meat and seafood could be cost-competitive with conventional animal production systems within 10 years.
In agriculture, greater understanding of the role of the microbiome offers opportunities to improve operational efficiency and output. By profiling bacteria and fungi in the soil, Trace Genomics, for one, produces insights that help choose tailored seeds and nutrients, and enables early prediction of soil diseases. In consumer markets, ongoing research into the relationship between the gut microbiome and the skin is being used to personalize skin care. Singapore-based genomics firm Imagene Lab, for instance, offers a personalized serum based on the results of its skin DNA tests that assess traits such as premature collagen breakdown.
Such examples give a sense of the breadth of applicability of bio innovation, but there is a significant caveat: risk. Biology will preserve life through innovative treatments tailored to our genomes and microbiomes, but biology could also be the greatest threat to life if it is used to create bioweapons or genetically engineered viruses that can do lasting damage to the health of humans or ecosystems. The CRISPR gene-editing tool is revolutionizing medicine and is being applied to agriculture with great effect. But consider that CRISPR kits are now available to buy on the Internet for $100 and so-called biohackers are using them at home.
Like the Digital Revolution, the Bio Revolution comes with risks but of a different order of magnitude. If citizens already have misgivings about data being gathered about their shopping habits, how much more nervous will they be about genetic data gathered from their bodies for medical treatment or ancestry tracing data that couldnt be more personal.
Another risk is that biological organisms are, by their nature, self-sustaining and self-replicating. Genetically engineered microbes, plants, and animals may be able to reproduce and sustain themselves over the long term, potentially affecting entire ecosystems. Once Pandoras box is opened and we have already cracked the lid we may have little control over what happens next.
Unless such risks are managed, it is possible that the full potential of the Bio Revolution may not materialize. We estimate that about 70% of the total potential impact could hinge on societal attitudes and the way innovation is governed under existing regulatory regimes. Yet if the risks can be managed and mitigated, the Bio Revolution can reshape our world. Scientists, in conjunction with forward-thinking companies, are now harnessing the power of nature to solve pressing problems in medicine, agriculture, and beyond, and helping craft a response to global challenges from pandemics to climate change.
Matthias Evers is a senior partner and global leader of research and development in McKinsey & Companys pharmaceuticals and medical products practice. Michael Chui is a partner at the McKinsey Global Institute, McKinseys business and economics research arm.
View original post here:
The Bio Revolution is changing business and society - STAT - STAT
- Department of Genetic Medicine - January 6th, 2025
- Research Services | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Patient Care | Johns Hopkins Department of Genetic Medicine - January 6th, 2025
- Specialty Clinics | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Pediatric Genetic Medicine at Johns Hopkins Children's Center - January 6th, 2025
- Research Centers | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- About Us - Johns Hopkins Medicine - January 6th, 2025
- Graduate Programs & Training | Johns Hopkins Medicine - January 6th, 2025
- Request an Appointment | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021