If you ever end up in an emergency room, the first thing that happens is a doctor or nurse will check your critical vitals: your temperature, blood pressure, respiratory rate, and pulse. If those indicate your life is at risk, your care is prioritized over others who have already been waiting or who have been seen by a doctor but require additional testing (e.g. an x-ray or blood test) or a specialist to review their symptoms. This process, called triaging, is the global standard for allocating resources in emergency care.
Triaging is a marvel of modern healthcare if it is abundantly clear that you are on deaths door. But if theres no textbook description of your condition, it can leave you needlessly suffering while the experts try to figure it out. Thats often the case for those with rare diseases, a group of conditions that are not individually common, but combined, affect an estimated 10% of the global population, some 475 million people. An estimated 80% of the 7,000 identified rare diseases are caused by DNA mutations that occur during pregnancy, meaning most of those with this category of illness are born with it. In many cases, these babies emerge from the womb with life-threatening conditions that doctorsworking the triage systemwill immediately address. However, this also tends to lead doctors to then ignore the underlying rare diseasean unnecessary medical expenditure, in the triage system framework.
I am one of the people living with a rare disease.
I was born with a number of symptoms and signs that put my life at risk a collapsed lung, a premature exit from my mothers body after only six months, and malnutrition from a hole in my amniotic sac. These problems were all treated and resolved over a multiple month stay in the hospital dictated by the triage system. I was allocated hospital resources for my life-threatening conditions until I was deemed stable enough to go home: the point at which I wouldnt die if I left the care of the hospital.
But there was another problem that was overlooked, and which wasnt diagnosed until I was five years old.
Every bone in my body was bent and every muscle atrophied or non-existent. I couldnt move my neck away from shoulder; I couldnt straighten my legs, knees, arms, wrists, ankles, toes, hands, or fingers beyond fixed, fully bent positions.
The triage system worked at saving my life, but never addressed how I would live day to day or even physically move from a single location by myself. It never addressed the underlying issue and root of the problem: a rare orthopedic genetic disease.
The life or death triage standard is one of the primary reasons that it takes, on average, seven years for people with a rare disease to get a diagnosis in the U.S.and
I am one of the lucky ones. Serendipitously, a Because of these surgeries, and additional ones Ive had since, I could feed myself, live free from a wheelchair, go to school through the post-graduate level, and hold a full-time job.
The orthopedic surgeries I neededover 29 of them in less than 30 yearshave cost millions of dollars. And these costs grow each year as I undergo additional exploratory surgery in the absence of any cure. However, these costs are still lower than what I would have incurred had I been left as the triage system deemed stable as an infant. I would have required 24-hour in-home care my entire life. I would never have been able to use the bathroom alone, to get dressed alone or to even leave the house alone. The lifetime value of a working individual according to the US Office of Management and Budget is on average $7 million to $9 million. The cost of a full-time caregiver is on average $40,320 a year; if a rare-disease patient reaches the average US life expectancy of 78 years old, the lifetime cost of full-time care is at least $3 million.
Our healthcare system needs to weigh the long-term costs of leaving behind people with rare disease, and, more specifically, evaluate the economic consequences that follow at a global scale.
Even more so, we need to weigh the costs of creating a pipeline to fill the treatment gap facing people with rare disease., Using genomic sequencing, clinicians can holistically understand the genetic roots of rare disease and even potentially cure rare disease through gene therapy, which modifies and permanently fixes abnormal genes that cause a specific rare disease at birth.
Nonetheless, identifying the root genetic cause of rare disease is the only way to begin to cure a rare disease rather than just treating the symptoms in an ad hoc fashion. While certain pharmaceutical drugs can be developed from the findings in a genomic sequence to help mitigate or lessen symptoms, the science suggests the only way to cure a rare disease is to administer an even newer science called gene therapywhich modifies and permanently fixes genes that are abnormal. Considered to be the most expensive option, a However, this nascent science is costly: gene therapy costs around $2 million for current US Food and Drug Administration (FDA)-approved options.
Insurance plans in the US rarely pay for clinical-grade whole-genomic sequencing (which can carry a price tag of up to $9,000)let alone gene therapies. Yet if the most expensive cost to cure a rare disease is $2 million, thats still far less than $3 million for a lifetime of full-time care (which excludes additional expenses). And new studies, like one the World Economic Forum released in the lead up to this years International Rare Disease Day, show that we can ultimately save money in the long term by funding more treatments and, as an added benefit, potentially develop more cures by learning when treatments work and when treatments dont work.
We cant create clinical pathways for the more than 7,000 rare diseases overnight, but we need a standard of care that goes beyond using death as the primary barometer of focus, over-simplifies the complexity of what it means to be healthy, and only considers short term costs. An economically effective, new model could center on allocating resources with the end goal to allow people to reach a level of health that provides basic mobility or basic independencea level of health allowing economic productivity. We are living in a time of unprecedented medical innovation, and our system of coverage needs to catch up. We can do better than just keeping people alive.
Thank you! For your security, we've sent a confirmation email to the address you entered. Click the link to confirm your subscription and begin receiving our newsletters. If you don't get the confirmation within 10 minutes, please check your spam folder.
Contact us at editors@time.com.
See original here:
The Bad Economics of the U.S. Health Care System Shows Up Starkly in its Approach to Rare Diseases - TIME
- Patient Dies of Acute Liver Failure After Treatment With Sareptas DMD Gene Therapy Elevidys - CGTLive - March 19th, 2025
- Patient dies following muscular dystrophy gene therapy, Sarepta reports - The Associated Press - March 19th, 2025
- Duchenne patient dies after receiving Sarepta gene therapy - March 19th, 2025
- Liver Failure-Associated Death Reported in Patient Treated With Sarepta Gene Therapy Elevidys - MedCity News - March 19th, 2025
- DoD grant funds Hollings researcher's idea to pursue gene therapy for cancer - Medical University of South Carolina - March 19th, 2025
- Recon: Sarepta reports death of teen who received Duchenne gene therapy; Novartis to slash 427 jobs while revamping cardiovascular business -... - March 19th, 2025
- Data Gaps Leave Long-Term Impact of Ex Vivo Gene Therapy in DMD Uncertain - AJMC.com Managed Markets Network - March 19th, 2025
- CHO Plus Obtains U.S. Patent for Improved Production of Viral Vectors for Gene Therapy - Business Wire - March 19th, 2025
- Sarepta Shares Fall on Report of Patient Death After Gene Therapy - Bloomberg - March 19th, 2025
- Hologen AI commits up to $430M to help take MeiraGTx's Parkinson's gene therapy through phase 3 and beyond - Fierce Biotech - March 19th, 2025
- Duchenne patient on Sareptas gene therapy dies - The Business Journals - March 19th, 2025
- Im Unstoppable: New gene therapy cures first New Yorker of sickle cell anemia - PIX11 New York News - March 19th, 2025
- Boost in cancer treatment: PGI working on lab for stem cell, gene therapies - The Times of India - March 19th, 2025
- Man Cured Of Sickle Cell Disease In New York Thanks To New Gene Therapy - Forbes - March 19th, 2025
- Sarepta says teen died after its gene therapy treatment By Reuters - Investing.com - March 19th, 2025
- Innovative Gene Therapy Approach Drives Buy Rating for Insmed in DMD Treatment - TipRanks - March 19th, 2025
- Sarepta says patient dies after treatment with gene therapy - TradingView - March 19th, 2025
- Sarepta tumbles after patient dies following gene therapy treatment - TradingView - March 19th, 2025
- MeiraGTx teams with cryptic AI startup, co-founded by Eric Schmidt, to advance Parkinson's gene therapy - Endpoints News - March 19th, 2025
- Sickle cell anemia patient reunites with Long Island doctors whose gene therapy treatments made him symptom-free - Newsday - March 19th, 2025
- Extracellular vesicles for the delivery of gene therapy - Nature.com - March 9th, 2025
- Around the Helix: Cell and Gene Therapy Company Updates March 5, 2025 - CGTLive - March 9th, 2025
- Inside the secret island where wealthy people go to alter their DNA - Daily Mail - March 9th, 2025
- Regenerons Gene Therapy DB-OTO Trial Shows Promising Hearing Improvement - The Hearing Review - March 9th, 2025
- Global Cell and Gene Therapy Manufacturing Market to Reach ~USD 10 Billion by 2032 | DelveInsight - GlobeNewswire - March 9th, 2025
- College Station gene therapy company partners with nonprofit to develop treatments for rare diseases - KBTX - March 9th, 2025
- World Hearing Day 2025: Looking Back at Progress in Gene Therapy - CGTLive - March 9th, 2025
- Reflecting on a milestone year for cell and gene therapies - Pharmaceutical Technology - March 9th, 2025
- Q&A: Whats Next for Hemophilia Gene Therapy? | Newswise - Newswise - March 9th, 2025
- 'Llife-changing' gene therapy in London partially restores CT child's sight - CT Insider - March 9th, 2025
- The Genesis of Cell Therapy: Bridging Traditional Pharmacology and Gene Therapy - Technology Networks - March 9th, 2025
- Regenxbio at TD Cowen Conference: Gene Therapy Advancements - Investing.com - March 9th, 2025
- Anova Announces First Patient Enrolled to Phase 1/2a Study of DB107 for the Treatment of High-Grade Gliomas - Business Wire - March 9th, 2025
- Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS... - March 9th, 2025
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024