Base editors, which convert one nucleotide to another without a double-strand DNA break, have the potential to treat diseases caused by mutant genes. One drawback, though, is that the DNA that encodes CRISPR base editors is longtoo long to fit in the adeno-associated viruses (AAVs) most commonly used for gene therapy. In a study published in Molecular Therapy on January 13, researchers split the DNA encoding a base editor into two AAV vectors and injected them into a mouse model of inherited amyotrophic lateral sclerosis (ALS). The strategy disabled the disease-causing gene, improving the animals symptoms and prolonging their lives.
Wed like to be able to make gene editing tools that can fit inside an AAV vector. Unfortunately, some of the tools are so big that they cant fit inside, so in this study, they were able to come up with a solution to that by using a split protein, says David Segal, a biochemist at the University of California, Davis, who was not involved in the work. Its not the first time that that system has been used, but its the first time its been applied to this kind of base editor.
Pablo Perez-Pinera, a bioengineer at University of Illinois at Urbana-Champaign, and colleagues developed a strategy to split the base editor into two chunks. In a study published in 2019, they generated two different AAV vectors, each containing a portion of coding DNA for an adenine-to-thymine base editor. They also included sequences encoding so-called inteinsshort peptides that when they are expressed within proteins stick together and cleave themselves out, a bit like introns in RNA. The researchers built the inteins into the vectors such that when the inteins produced by the two vectors dimerized, bringing the two base editor parts together, and then excised themselves, they left behind a full-length, functional base editor.
When Perez-Pinera told Thomas Gaj, also a bioengineer at the University of Illinois at Urbana-Champaign, about the strategy, Gaj tells The Scientist,they immediately set out to test it in a mouse model of ALS. The transgenic mice have about 25 copies of the human gene, superoxide dismutase 1(SOD1), with mutations that cause ALS in people. The animals display motor neuron loss and muscle atrophy, plus their neurons accumulate inclusionsdense spots in the gray and white matter of their spinal cords that include SOD1 proteinbefore dying at about four months of age on average. The symptoms and life expectancy in the 20 percent of ALS patients with mutations in SOD1vary based on which mutation they have, but most have muscle weakness and motor neuron death, as well as inclusions containing SOD1 protein.
Instead of using the adenine-to-thymine base editor, the researchers developed a cytosine-to-thymine converter using the coding sequence of Streptococcus pyogenes Cas9 and a guide RNA that targets both wild type and mutant human SOD1 to create an early stop codon. This doesnt affect the mouse SOD1. In human cells, the split base editor seemed to be even more efficient than when the editor was transfected at full length, hitting about 29 percent of the target sites, compared to the full-length editors 19 percent.
Next the authors packaged their split base editor into two AAV backbones and injected them or a control AAV into the animals lumbar cerebrospinal fluid when they were around two months old. The vectors ended up primarily in astrocytes, as well as in neurons and microglia. While the researchers didnt see a difference in symptom onset at around three months, the mice that received the base editor maintained their weight and lived about 10 percent longer than controls. The treated mice also had fewer SOD1-positive inclusions and healthier motor neurons.
In this cross section of the spinal cord of a mouse model of amyotrophic lateral sclerosis (ALS), researchers delivered a CRISPR base editing system (yellow) to astrocytes (red) in order to disable the expression of a mutant gene and reduce symptoms.
Colin Lim, University of Illinois
Using base editors to disable the mutant SOD1 gene in astrocytes (a cell type that normally supports healthy nervous system function but in SOD1-ALS exerts toxicity onto motor neurons) led to a marked slowing in disease progression, Gaj writes in an email to The Scientist. Since many persons with ALS are diagnosed following the onset of symptoms, pre-clinical strategies that can meaningfully slow the disease are especially important and should be further studied.
This is a good indication that base editing actually can be used to treat ALS, says Baisong Lu, a gene therapy researcher at Wake Forest School of Medicine who did not participate in the work. He cautions that off-target effectsthe base editor can edit both DNA and RNAand how long the AAV delivery method lasts are both in need of more work before this technique would be safe for people.
The dual AAV strategy could also be expensive, says Mimoun Azzouz, a neuroscientist at the University of Sheffield in the United Kingdom. Thinking about the clinical development and marketing and the commercialization of this product, you need to manufacture two viruses, and you need to assess these two viruses for safety, so the cost can be extremely high.
Despite the challenges, the strategy shows promise for translation to humans, Perez-Pinera writes in an email to The Scientist.AAVs are already approved by the Food and Drug Administration for gene therapy, he explains. Plus, using a humanized model of the diseasea mouse that contains the human sequence of the target genemeans that the method validated in mouse models can be translated to people without adapting them to target a different sequence. People who develop ALS due to a mutation in SOD1also have one good copy of the gene, just like the mice, which have a functioning mouse copy.
We injected animal models shortly before disease onset. While injecting the animals earlier could improve the outcome of the disease as demonstrated in other studies, the reality is that ALS is not typically diagnosed until the patient experiences symptoms. Our study predicts what can be expected from treating a patient recently diagnosed with the disease, Perez-Pinera writes.
We still have some distance to travel before the results in our current study can benefit ALS patients, Gaj acknowledges. The researchers are working on minimizing off target effects and on developing new delivery methods that could improve efficacy. We still have a number of important questions to answer and technological hurdles to address before we begin thinking about clinical translation.
C.K.W. Lim et al., Treatment of a mouse model of ALS by in vivo base editing,Molecular Therapy,doi:10.1016/ j.ymthe.2020.01.005, 2020.
Abby Olena is a freelance journalist based in Alabama. Find her on Twitter@abbyolena.
Read more from the original source:
Symptoms in ALS Mouse Model Improve with CRISPR Base Editing - The Scientist
- A Year of DMD Gene Therapy Trial Failures - AJMC.com Managed Markets Network - November 3rd, 2024
- Hemophilia B: Gene Therapy Shows Promise - Medscape - November 3rd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 30, 2024 - CGTLive - November 3rd, 2024
- 2024 PharmaVoice 100s: Cell and Gene Therapy Pioneers - PharmaVoice - November 3rd, 2024
- Cell therapy weekly: support for commercialization of complex therapies - RegMedNet - November 3rd, 2024
- Lexeo shares early data on Alzheimers gene therapy - Endpoints News - November 3rd, 2024
- Medicaid Aiming to Improve Patient Access to High-Cost Therapies - AJMC.com Managed Markets Network - November 3rd, 2024
- The Significance of Gene Therapy in Neuromuscular Medicine at the 2025 MDA Conference: Paul Melmeyer, MPP - Neurology Live - November 3rd, 2024
- OHSU researchers identify gene that could be key to future HIV vaccine - OHSU News - November 3rd, 2024
- Purespring gene therapy reduces kidney scarring in mice and is stably expressed in pigs - Fierce Biotech - November 3rd, 2024
- Data Roundup: October 2024 Features Update for TCR-Based Autologous Cell Therapy in Melanoma, the First Clinical Demonstration of Therapeutic RNA... - November 3rd, 2024
- NewBiologix Launches Xcell to Accelerate, Optimize, and Scale Gene and Cell Therapy Production - Business Wire - November 3rd, 2024
- Vertex Pharmaceuticals and CRISPR Therapeutics Casgevy: the 200 Best Inventions of 2024 - TIME - November 3rd, 2024
- Addressing gene and cell therapy commercialization challenges - TechTarget - November 3rd, 2024
- University of Pennsylvania gene therapy spinout Interius BioTherapeutics doses patient, achieves CAR therapy first - The Business Journals - November 3rd, 2024
- Roche will aim to tackle gene therapy challenges through Dyno deal - The Pharma Letter - November 3rd, 2024
- Behind the Breakthroughs: How to Turn $1,000,000 CAR Ts into Real Medicines - Inside Precision Medicine - November 3rd, 2024
- Terumo automates manufacturing to expand cell & gene therapies - European Pharmaceutical Manufacturer - November 3rd, 2024
- 12-Year-Old Leaves Washington DC Hospital As The First Patient To Receive Approved Gene Therapy For Sickle Cell Disease - AfroTech - November 3rd, 2024
- Lexeo Therapeutics Announces Positive Interim Data for - GlobeNewswire - November 3rd, 2024
- New FDA designations granted to NCATS for rare disease therapies. - NCBI - October 22nd, 2024
- $1.8 Million Awarded to Study the Durability of Gene Therapy - University of Arkansas Newswire - October 22nd, 2024
- By the numbers: US leads charge of cell and gene therapies - BioWorld Online - October 22nd, 2024
- University of Arkansas Researcher Awarded $1.8M for Gene Therapy Study - Arkansas Business - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - StockTitan - October 22nd, 2024
- Around the Helix: Cell and Gene Therapy Company Updates October 16, 2024 - CGTLive - October 22nd, 2024
- Japan mulls ways to boost cell, gene therapy approvals - BioWorld Online - October 22nd, 2024
- A New Type of Gene Therapy Shows Promise for Treating Retinitis Pigmentosa - Managed Healthcare Executive - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 2 - BioPharm International - October 22nd, 2024
- When a Miracle Cure Is Left on the Shelf - Bloomberg - October 22nd, 2024
- Genethon to Showcase the Latest Advances in Gene Therapies for Multiple Diseases at the ESGCT 31 - Business Wire - October 22nd, 2024
- MeiraGTx's gene therapy improves motor function and quality of life in phase 2 Parkinson's trial - Fierce Biotech - October 22nd, 2024
- 5 Sickle Cell Therapies to Watch Following Pfizers Oxbryta Exit - BioSpace - October 22nd, 2024
- Fiocruz and GEMMABio announce partnership for the development of gene therapies - Fiocruz - October 22nd, 2024
- JPMA on Japans Biotech Industry: Cancer, Cardiovascular, and Aging Lead Diseases; Antibody, Cell, and Gene Therapies Top the Innovation List -... - October 22nd, 2024
- Cell and Gene Therapy Clinical Trial Market is expected to reach USD 119.3 Billion by 2032 at a 24.9% of CAGR - PharmiWeb.com - October 22nd, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - Part 3 - Pharmaceutical Technology Magazine - October 22nd, 2024
- The role of quality assurance in accelerating drug development for emerging therapies - pharmaphorum - October 22nd, 2024
- Cellectis to Present Data on TALE-Base Editors and Non-Viral Gene Therapy at the ESGCT 31st Annual Congress - The Manila Times - October 22nd, 2024
- Nucleic Acid and Gene Therapies in Neuromuscular Disorders Market is projected to grow at a CAGR of - PharmiWeb.com - October 22nd, 2024
- Gene therapy: advances, challenges and perspectives - PMC - October 6th, 2024
- Meeting on the Mesa to Highlight Cell and Gene Therapy Opportunities, Challenges - BioSpace - October 6th, 2024
- Ferring opens doors to Finnish manufacturing hub as supply of its bladder cancer gene therapy continues to grow - FiercePharma - October 6th, 2024
- Meet Boston's National STEM Champion who's a junior in high school studying gene therapy - CBS Boston - October 6th, 2024
- Gene therapy research offers hope for kids with life-altering condition - WCVB Boston - October 6th, 2024
- Is gene therapy the next big step in vision loss treatment? - Medical News Today - October 6th, 2024
- Protein's Role in Insulin Signaling Could Have Implications for Gene Therapy - AJMC.com Managed Markets Network - October 6th, 2024
- Scientists overcome major challenge in gene therapy and drug delivery - News-Medical.Net - October 6th, 2024
- Innovative gene therapy for hemophilia - healthcare-in-europe.com - October 6th, 2024
- The Largest Network of Research Sites Vetted to Execute Complexities of Cell & Gene Therapy (CGT) Trials Now Includes 1,500 Sites - PR Newswire - October 6th, 2024
- Weight loss drug breakthroughs, gene therapies, and more: 8 clinical trials to watch right now - Quartz - October 6th, 2024
- Cell therapy weekly: Promising Phase I results for Parkinsons disease cell therapy - RegMedNet - October 6th, 2024
- Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC - Nature.com - October 6th, 2024
- Forge Biologics Announces the FUEL AAV Manufacturing Platform to Provide Developers with a More Efficient Solution for Gene Therapy Production -... - October 6th, 2024
- Ninth Circuit Decision Marks Critical Legal Victory for U.S. FDA in Mission to Protect Patients from Unregulated Cell Therapy Products - PR Newswire - October 6th, 2024
- Gene therapy: What is it and how does it work? | Live Science - September 21st, 2024
- How Does Gene Therapy Work? Types, Uses, Safety - Healthline - September 21st, 2024
- In race to make gene therapy for age-related blindness, 4D Molecular announces positive results - STAT - September 21st, 2024
- Penn gene therapy pioneer Jim Wilson explains why he's leaving - The Business Journals - September 21st, 2024
- Whats the Meaning of Cure in Gene Therapy? - Managed Healthcare Executive - September 21st, 2024
- Ori doubles down on Charles River collaboration with promising new data on its automated cell therapy platform - FiercePharma - September 21st, 2024
- Doctors cured her sickle-cell disease. So why is she still in pain? - Nature.com - September 21st, 2024
- Gene Therapy Company Increases Focus on Mesothelioma Program - Mesothelioma.net Blog - September 21st, 2024
- Sickle cell gene therapies roll out slowly : Shots - Health News - NPR - September 21st, 2024
- Patients At Last Begin Receiving Vertex-CRISPR and Bluebird Sickle Cell Gene Therapies - BioSpace - September 21st, 2024
- Beacon Therapeutics Presents 36-Month Interim Results from Phase I/2 HORIZON Trial of AGTC-501 in Patients with XLRP - PR Newswire - September 21st, 2024
- Beacons Gene Therapy Shows Continued Promise in Trial - TipRanks - September 21st, 2024
- How stem cell and gene therapies are revolutionising healthcare - Express Healthcare - September 21st, 2024
- Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona - PR Newswire - September 21st, 2024
- 6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company - WCYB - September 21st, 2024
- Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy - NBC Washington - May 24th, 2024
- Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia - The Hindu - December 13th, 2023
- Early trials show promise for innovative gene therapy in lung cancer treatment - WJAR - October 16th, 2023
- Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |... - SeeDance News - October 16th, 2023
- How Gene Therapy Can Cure or Treat Diseases | FDA - March 21st, 2023
- Genetic Therapies - What Are Genetic Therapies? | NHLBI, NIH - March 21st, 2023
- FDA approves novel gene therapy to treat patients with a rare form of ... - December 28th, 2022
- Gene Therapy - Discover How It Works Its Types And Applications - BYJUS - December 28th, 2022
- IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases - Marketscreener.com - December 28th, 2022
- Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th... - October 31st, 2022