header logo image

Superpower Discovered in Squids: They Can Massively Edit Their Own Genetics – SciTechDaily

May 23rd, 2020 3:42 pm

Revealing yet another super-power in the skillful squid, scientists have discovered that squid massively edit their own genetic instructions not only within the nucleus of their neurons, but also within the axon the long, slender neural projections that transmit electrical impulses to other neurons. This is the first time that edits to genetic information have been observed outside of the nucleus of an animal cell.

The study, led by Isabel C. Vallecillo-Viejo and Joshua Rosenthal at the Marine Biological Laboratory (MBL), Woods Hole, is published this week in Nucleic Acids Research.

The longfin inshore squid, Doryteuthis pealeii, long established as a research organism for fundamental biological studies. Credit: Elaine Bearer

The discovery provides another jolt to the central dogma of molecular biology, which states that genetic information is passed faithfully from DNA to messenger RNA to the synthesis of proteins. In 2015, Rosenthal and colleagues discovered that squid edit their messenger RNA instructions to an extraordinary degree orders of magnitude more than humans do allowing them to fine-tune the type of proteins that will be produced in the nervous system.

But we thought all the RNA editing happened in the nucleus, and then the modified messenger RNAs are exported out to the cell, says Rosenthal, senior author on the present study. Now we are showing that squid can modify the RNAs out in the periphery of the cell. That means, theoretically, they can modify protein function to meet the localized demands of the cell. That gives them a lot of latitude to tailor the genetic information, as needed. The team also showed that messenger RNAs are edited in the nerve cells axon at much higher rates than in the nucleus.

Top, schematic of squid anatomy showing the location of the giant axon, an unusually large neural projection that partly controls the squids jet propulsion system, used for very fast movement, attacks and escapes. Below, schematic of a neuron, showing the location of the nucleus where all RNA editing was previously thought to occur, and the axon, where local RNA editing was identified in squid. Credit: Vallecillo-Viejo et al, Nucl. Acids Res., 2020.

In humans, axon dysfunction is associated with many neurological disorders. Insights from the present study could accelerate the efforts of biotech companies that seek to harness this natural RNA editing process in humans for therapeutic benefit.

Scientists from Tel Aviv University and The University of Colorado at Denver collaborated with MBL scientists on the study.

Previously, Rosenthal and colleagues showed that octopus and cuttlefish also rely heavily on mRNA editing to diversify the proteins they can produce in the nervous system. Together with squid, these animals are known for strikingly sophisticated behaviors, relative to other invertebrates.

Reference: Spatially regulated editing of genetic information within a neuron by Isabel C Vallecillo-Viejo, Noa Liscovitch-Brauer, Juan F Diaz Quiroz, Maria F Montiel-Gonzalez, Sonya E Nemes, Kavita J Rangan, Simon R Levinson, Eli Eisenberg and Joshua J C Rosenthal, 23 March 2020, Nucleic Acids Research.DOI: 10.1093/nar/gkaa172

Original post:
Superpower Discovered in Squids: They Can Massively Edit Their Own Genetics - SciTechDaily

Related Post

Comments are closed.


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick