U-M, UCSF researchers coax cells to grow and myelinate along thin fibers, with potential use in testing treatments for neurological diseases
Newswise ANN ARBOR, Mich. Every week in his clinic at the University of Michigan, neurologist Joseph Corey, M.D., Ph.D., treats patients whose nerves are dying or shrinking due to disease or injury.
He sees the pain, the loss of ability and the other effects that nerve-destroying conditions cause and wishes he could give patients more effective treatments than whats available, or regenerate their nerves. Then he heads to his research lab at the VA Ann Arbor Healthcare System, where his team is working toward that exact goal.
In new research published in several recent papers, Corey and his colleagues from the U-M Medical School, VAAAHS and the University of California, San Francisco report success in developing polymer nanofiber technologies for understanding how nerves form, why they dont reconnect after injury, and what can be done to prevent or slow damage.
Using polymer nanofibers thinner than human hairs as scaffolds, researchers coaxed a particular type of brain cell to wrap around nanofibers that mimic the shape and size of nerves found in the body.
Theyve even managed to encourage the process of myelination the formation of a protective coating that guards larger nerve fibers from damage. They began to see multiple concentric layers of the protective substance called myelin start to form, just as they do in the body. Together with the laboratory team of their collaborator Jonah Chan at UCSF, the authors reported the findings in Nature Methods.
The research involves oligodendrocytes, which are the supporting actors to neurons -- the stars of the central nervous system. Without oligodendrocytes, central nervous system neurons cant effectively transmit the electrical signals that control everything from muscle movement to brain function.
Oligodendrocytes are the type of cells typically affected by multiple sclerosis, and loss of myelin is a hallmark of that debilitating disease.
The researchers have also determined the optimum diameter for the nanofibers to support this process giving important new clues to answer the question of why some nerves are myelinated and some arent.
While they havent yet created fully functioning nerves in a dish, the researchers believe their work offers a new way to study nerves and test treatment possibilities. Corey, an assistant professor of neurology and biomedical engineering at the U-M Medical School and researcher in the VA Geriatrics Research, Education and Clinical Center, explains that the thin fibers are crucial for the success of the work.
See the original post here:
Stem Cells + Nanofibers = Promising Nerve Research