header logo image

Stem Cells International | Hindawi

June 26th, 2022 2:06 am

Research Article

24 Jun 2022

Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying MicroRNA-181c-5p Promote BMP2-Induced Repair of Cartilage Injury through Inhibition of SMAD7 Expression

Qiang Zhang|Le Cao|...|Yongping Wu

The therapy role of mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) in cartilage regeneration has been well studied. Herein, we tried to analyze the role of human umbilical cord MSC- (hUCMSC-) EVs carrying microRNA- (miR-) 181c-5p in repair of cartilage injury. After successful isolation of hUCMSCs, the multidirectional differentiation abilities were analyzed. Then, the EVs were isolated and identified. After coculture of PKH26-labled EVs with bone marrow MSCs (BMSCs), the biological behaviors of which were detected. The relationship between the predicted early posttraumatic osteoarthritis-associated miRNA, miR-181c-5p, and SMAD7 was verified. Gain- and loss-of functions were performed for investing the role of miR-181c-5p and SMAD7 in BMP-induced chondrogenesis in vitro and in vivo. hUCMSC-EVs could be internalized by BMSCs and promote the proliferative, migratory, and chondrogenic differentiation potentials of BMSCs. Additionally, miR-181c-5p could target and inhibit SMAD7 expression to promote the bone morphogenic protein 2- (BMP2-) induced proliferative, migratory, and chondrogenic differentiation potentials of BMSCs. Also, overexpression of SMAD7 inhibited the repairing effect of BMP2, and overexpression of BMP2 and miR-181c-5p further promoted the repair of cartilage injury in vivo. Our present study highlighted the repairing effect of hUCMSC-EVs carrying miR-181c-5p on cartilage injury.

Research Article

22 Jun 2022

Human Placental Mesenchymal Stem Cells for the Treatment of ARDS in Rat

Zurab Kakabadze|Nicholas Kipshidze|...|David Chakhunashvili

The acute respiratory distress syndrome (ARDS) is one of the main causes of high mortality in patients with coronavirus (COVID-19). In recent years, due to the coronavirus pandemic, the number of patients with ARDS has increased significantly. Unfortunately, until now, there are no effective treatments for ARDS caused by COVID-19. Many drugs are either ineffective or have a low effect. Currently, there have been reports of efficient use of mesenchymal stem cells (MSCs) for the treatment of ARDS caused by COVID-19. We investigated the influence of freeze-dried human placenta-derived mesenchymal stem cells (HPMSCs) in ARDS rat model. All animals have received intratracheal injection of 6mg/kg of lipopolysaccharide (LPS). The rats were randomly divided into five groups: I: LPS, II: LPS+dexamethasone, III: LPS+HPMSCs, IV: HPMSC, and V: saline. ARDS observation time was short-term and amounted to 168 hours. The study has shown that HPMSCs are able to migrate and attach to damaged lung tissue, contributing to the resolution of pathology, restoration of function, and tissue repair in the alveolar space. Studies have also shown that the administration of HPMSCs in animals with ARDS model significantly reduced the levels of key cytokines such as IL-1, IL-6, and TNF-. Freeze-dried placental stem cell is a very promising biomaterial for the treatment of ARDS. The human placenta can be easily obtained because it is considered as a medical waste. At the same time, a huge number of MSCs can be obtained from the placental tissue, and there is no ethical controversy around their use. The freeze-dried MSCs from human placental tissue can be stored sterile at room temperature for a long time before use.

Research Article

20 Jun 2022

GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use

Mandana Haack-Srensen|Ellen Mnsted Johansen|...|Annette Ekblond

The emerging field of advanced therapy medicinal products (ATMP) holds promise of treating a variety of diseases. Adipose-derived stromal cells (ASCs) are currently being marketed or tested as cell-based therapies in numerous clinical trials. To ensure safety and efficacy of treatments, high-quality products must be manufactured. A good manufacturing practice (GMP) compliant and consistent manufacturing process including validated quality control methods is critical. Product design and formulation are equally important to ensure clinical feasibility. Here, we present a GMP-compliant, xeno-free, and semiautomated manufacturing process and quality controls, used for large-scale production of a cryopreserved off-the-shelf ASC product and tested in several phase I and II allogeneic clinical applications.

Research Article

18 Jun 2022

Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1 Stimulation

Shuling Zhou|Yu Lei|...|Jiang Gu

Thin endometrium (< 7mm) could cause low clinical pregnancy, reduced live birth, increased spontaneous abortion, and decreased birth weight. However, the treatments for thin endometrium have not been well developed. In this study, we aim to determine the role of Pluronic F-127 (PF-127) encapsulation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in the regeneration of thin endometrium and its underlying mechanism. Thin endometrium rat model was created by infusion of 95% ethanol. Thin endometrium modeled rat uterus were treated with saline, hUC-MSCs, PF-127, or hUC-MSCs plus PF-127 separately. Regenerated rat uterus was measured for gene expression levels of angiogenesis factors and histological morphology. Angiogenesis capacity of interleukin-1 beta (IL-1)-primed hUC-MSCs was monitored via quantitative polymerase chain reaction (q-PCR), Luminex assay, and tube formation assay. Decreased endometrium thickness and gland number and increased inflammatory factor IL-1 were achieved in the thin endometrium rat model. Embedding of hUC-MSCs with PF-127 could prolong the hUC-MSCs retaining, which could further enhance endometrium thickness and gland number in the thin endometrium rat model via increasing angiogenesis capacity. Conditional medium derived from IL-1-primed hUC-MSCs increased the concentration of angiogenesis factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factors (VEGF), and hepatocyte growth factor (HGF)). Improvement in the thickness, number of glands, and newly generated blood vessels could be achieved by uterus endometrium treatment with PF-127 and hUC-MSCs transplantation. Local IL-1 stimulation-primed hUC-MSCs promoted the release of angiogenesis factors and may play a vital role on thin endometrium regeneration.

Review Article

18 Jun 2022

Role of Primary Cilia in Skeletal Disorders

Xinhua Li|Song Guo|...|Ziqing Li

Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments, providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods, including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for clinical intervention for skeletal diseases.

Research Article

18 Jun 2022

Global Research Trends in Tendon Stem Cells from 1991 to 2020: A Bibliometric and Visualized Study

Huibin Long|Ziyang Yuan|...|Ai Guo

Background. Tendinopathy is a disabling musculoskeletal disorder affecting the athletics and general populations. There have been increased studies using stem cells in treating tendon diseases. The aim of this bibliometric and visualized study is to comprehensively investigate the current status and global trends of research in tendon stem cells. Methods. Publications related to tendon stem cells from 1991 to 2020 were retrieved from Web of Science and then indexed using a bibliometric methodology. VOSviewer software was used to conduct the visualized study, including coauthorship, cocitation, and cooccurrence analysis and to analyze the publication trends of research in tendon stem cells. Results. In total, 2492 articles were included and the number of publications increased annually worldwide. The United States made the largest contribution to this field, with the most publications (938 papers, 37.64%), citation frequency (68,195 times), and the highest -index (103). The most contributive institutions were University of Pittsburgh (96 papers), Zhejiang University (70 papers), Shanghai Jiao Tong University, and Chinese University of Hong Kong (both 64 papers). The Journal of Orthopaedic Research published the most relative articles. Studies could be classified into five clusters: Animal study, Tissue engineering, Clinical study, Mechanism research, and Stem cells research, which show a balanced development trend. Conclusion. Publications on tendon stem cells may reached a platform based on current global trends. According to the inherent changes of hotspots in each cluster and the possibilities of cross-research, the research in tendon stem cells may exist a balanced development trend.

Read the original:
Stem Cells International | Hindawi

Related Post

Comments are closed.


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick