Mayo Clin Proc. 2009 Oct; 84(10): 859861.
Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway
Stem cell therapy has recently progressed from the preclinical to the early clinical trial arena for a variety of disease states. Two review articles published in the current issue of Mayo Clinic Proceedings address the use of stem cells for cardiac repair and bone disorders.1,2 These articles provide state-of-the-art information regarding 2 important aspects of an exciting topic with wide-ranging therapeutic potential in a manner relevant to the Proceedings' core audience of practicing clinicians. Stem cell therapy is potentially applicable to all subspecialties of medicine, but both articles stress that caution is required in interpreting the current role of these technologies in medical practice.
The clinical need for new therapies for cardiac repair is obvious and particularly relevant to conditions such as heart failure, ischemic cardiomyopathy, and myocardial infarction (MI). Studies using cell therapies in humans with these conditions are performed rapidly after demonstration of efficacy in animal models. This progression has occurred without a clear understanding of the basic science underpinning this technology.
Most patients enrolled in clinical studies of cardiac repair using stem cell therapy have had an MI. The clinical rationale for stem cell therapy for MI is to restore cardiac function and thus prevent left ventricular remodeling that can lead to heart failure. Gersh et al1 report that these studies have demonstrated safety, with only modest improvement in cardiac function. Recent meta-analyses have confirmed modest improvements in left ventricular ejection fraction (LVEF) associated with cell therapy after MI.3,4 The findings of some studies have suggested that patients with the most severe MIs benefit the most, but a recent publication of the REGENT trial has shown no benefit from cell therapy, even in patients with LVEF of less than 40%.5 The REGENT trial may have been limited by inadequate power to detect a difference between the study and control groups, but contradictory results have also been observed in previous studies of intracoronary delivery of bone marrow-derived progenitor cells (ASTAMI and REPAIR-AMI).6,7 Substantial progress has been made in understanding the potential of cell therapy in cardiovascular disease, but there is still a dearth of crucial information, such as the optimal cell type; mode of processing of cells; and dose, mode, and timing of cell delivery. Most studies have used unfractionated or mononuclear bone marrow cells that were injected via catheters into the infarct-related artery within a few days of the MI. These limitations may be responsible for the inconsistent outcomes reported in human studies. It would appear that, in patients with preserved LVEF after MI, stem cell therapy provides no benefit, but those with large MIs and reduced LVEF may benefit. However, the modest efficacy outcomes are probably related to poor engraftment and retention of the injected cells in myocardium, issues that require additional preclinical experiments. Future studies should focus on patients with the largest infarcts and on methods to enhance engraftment of stem cells at the site of injury.
See also pages 876 and 893
In another study in the Proceedings, Undale et al2 review the therapeutic potential of stem cell therapy for bone repair and metabolic bone disease. This field is at an earlier stage than cell therapy for cardiac repair in that the numbers of patients studied are lower. These authors review human studies in nonunion of fractures, osteogenesis imperfecta, and hypophosphatasia. In contrast with most studies of cardiac repair in which mixed cell populations have been used, a single cell type, mesenchymal stem cells (MSCs), has been used in studies of bone repair. Although the nature of MSCs is beyond the scope of this editorial, this cell type has considerable potential for treatment of musculoskeletal disorders due to its ability to differentiate to bone and cartilage. In addition, MSCs can be expanded easily in culture and have immunosuppressive properties, which raises the possibility of allogeneic off-the-shelf treatments. Potential problems include culture expansion-induced karyotypic abnormalities, but this has not been observed in all studies.8,9
The current status of adult stem cell therapy could be summarized as having shown enormous potential in preclinical animal studies without the same degree of positive results in early human studies. This may be due to the fact that stem cells, despite their demonstrated resistance to hypoxia,10 have low survival rates at the disease site. Indeed, the relationship between therapeutic effect and numbers of cells administered is highlighted in the review by Undale at al. Genetic modification of stem cells and the use of biomaterial scaffolds to promote engraftment and enhance persistence at the disease site in animal models have augmented the therapeutic effect.11,12
Before stem cell therapy for tissue repair applications can progress, several important topics must be addressed thoroughly. First, the therapeutic mechanism of action needs to be defined. The early assumption was that differentiation of the transplanted cells gave rise to cells with a local phenotype that reconstituted or rebuilt damaged tissue, but little evidence supports this theory. It seems more likely that the concept of engineered tissue is not central to the mode of action and that the repair response depends rather on a dynamic and complex signaling network between the transplanted cells and host cells. This involves secretion of paracrine factors by the transplanted cells, and expression of these factors may be stimulated by the injured host environment.
Second, wide-ranging toxicology studies are needed to enhance our confidence in the use of cellular therapies. Although these therapies are generally considered safe, data on the long-term effects of cell transplant are still lacking. The possibility of tumorigenicity has been raised in a number of studies. For allogeneic transplant, these issues become even more important.
Third, proper standardization and characterization of transplanted cell preparations have not yet been achieved. This is a serious impediment to meaningful interpretation of the results of preclinical and early clinical studies. The issues of heterogeneity and phenotypic changes associated with expansion of MSCs must be addressed more satisfactorily before we can understand the full therapeutic potential of these cells.
Stem cell therapies have not yet become a routine component of clinical practice, but practicing physicians may be asked for advice by patients seeking cures for conditions for which conventional medicine offers no solution. Substantial numbers of patients are pursuing experimental stem cell treatments and in many cases are incurring considerable expense. Both review articles in this issue of Mayo Clinic Proceedings emphasize that stem cell research is at an early stage and that patients should be discouraged from undergoing a form of treatment whose safety and efficacy have not yet been proven.
As previously mentioned, it is vitally important to understand the mechanism underlying the potential benefits of stem cell administration so that new therapeutic paradigms may evolve. A large body of evidence suggests that the cell per se may not be required and that the mechanism of effect is paracrine in nature.13 For instance, MSCs secrete proangiogenic and cytoprotective factors that may be responsible for their therapeutic benefit.14 These paracrine factors may also activate host endogenous stem cells. Understanding the host-stem cell interaction may allow identification of novel therapeutic factors or pathways that can be modulated without the need for cell delivery.
Compared with the concept of paracrine effects, there is less evidence of therapeutic benefit related to differentiation of transplanted adult stem cells to host tissue, but this approach may be important in certain disease states. Future areas of research may focus on the need for differentiation vs paracrine effects to afford a specific therapeutic outcome. If therapeutic benefit depends on differentiation rather than paracrine effects, embryonic stem cells or the recently developed induced pluripotent stem cells may be the optimal choice.15 Although induced pluripotent stem cells lack the ethical problems associated with embryonic stem cells, they have substantial regulatory hurdles to surmount before introduction to the clinical realm because of the factors required for their generation and the risks of teratogenicity.
Stem cells may be considered one of the available tools in the evolving area of regenerative medicine. The goal of regenerative medicine is to promote organ repair and regeneration, thus obviating the need for replacement. Stem cell therapy may participate in this process via paracrine mechanisms or differentiation into native tissues. The target disease will probably influence which of these mechanisms is more important. Successful translation to the clinical realm will require an understanding of disease pathogenesis and stem cell biology and partnership with other disciplines such as medical device technology, biomaterials science, gene therapy, and transplantation immunology. Advanced hybrid technologies arising from such partnerships will represent the next generation of regenerative therapeutics and will assist in overcoming current barriers to clinical translation, such as poor rates of stem cell engraftment and persistence.
Stem cell therapies have demonstrated therapeutic efficacy and benefit in preclinical models, but results in clinical studies have not been impressive. For this reason, stem cell therapies remain in the realm of experimental medicine. The debate continues as to whether clinical trials are justified in the absence of a more complete understanding of the biology underpinning stem cell therapies. Basic science studies to understand the mechanism of effect and the biology of stem cell differentiation must continue.
However, carefully planned and ethically approved clinical trials resulting from a robust preclinical pathway are necessary to advance the field. This will require a programmatic approach that involves partnerships of clinicians, academics, industry, and regulatory authorities with a focus on understanding basic biology that informs a tight linkage between preclinical and clinical studies. Rather than suggesting that clinical trials are premature, such trials should be encouraged as part of multidisciplinary programs in regenerative medicine.
Articles from Mayo Clinic Proceedings are provided here courtesy of The Mayo Foundation for Medical Education and Research
See original here:
Stem Cell Therapy and Regenerative Medicine
- Study finds stem cell therapy is safe and may benefit people with ... - October 22nd, 2024
- Stem Cell Therapy Market Size to Hit USD 48.89 Billion by 2033 - GlobeNewswire - October 22nd, 2024
- Eves dream to walk: Family raising vital funds for two-year-olds stem cell therapy - Her.ie - October 22nd, 2024
- Stem cell therapies for chronic obstructive pulmonary disease ... - September 21st, 2024
- Magellan Stem Cells welcomes $7 million federal government grant - September 21st, 2024
- Stem Cell Therapy Research: Creative Biolabs Advances iPSC-Derived Macrophage Solutions - openPR - September 21st, 2024
- Stem Cell Therapy Market Dynamics: Size, Share, and Growth - openPR - September 21st, 2024
- Stem cells: Therapy, controversy, and research - Medical News Today - September 4th, 2024
- Stem cell-based therapy for human diseases - PMC - September 4th, 2024
- Bone marrow mesenchymal stem cells in treatment of peripheral nerve ... - September 4th, 2024
- Stem Cell Therapy Mexico: R3 Stem Cell Unveils Innovative and Affordable Non-Invasive Solutions - openPR - September 4th, 2024
- 'Didn't know this would be possible': Autistic teen's mom on stem cell therapy benefits - WZTV - May 5th, 2024
- Putting Stem Cell-Based Therapies in Context | National Institutes of ... - April 8th, 2024
- Eggs from men, sperm from women: Stem cell therapy may just turn reproduction upside down! - The Economic Times - January 17th, 2024
- Stem Cell Therapy: From Idea to Clinical Practice - PMC - December 13th, 2023
- Current state of stem cell-based therapies: an overview - PMC - November 18th, 2023
- Stem Cell Therapy Is It Right for You? Cleveland Clinic - January 31st, 2023
- Stem Cell Therapy | Mellon Center Approach | Cleveland Clinic - January 31st, 2023
- Stem Cell Therapy for Parkinson's: Current Developments - Healthline - December 3rd, 2022
- Canine Stem Cell Therapy Market Size 2022 with a CAGR of % Market Share, prime companies report covers, world business Trends, Statistics, Definition,... - June 16th, 2022
- Global Rheumatoid Arthritis Stem Cell Therapy Market 2022 Swot Analysis by Top Key Vendors, Demand And Forecast Research to 2028 Designer Women -... - June 16th, 2022
- Sutton boy pledges to raise money to help his brother with autism go to America for stem cell therapy - Mansfield and Ashfield Chad - June 16th, 2022
- Japan's five hottest biotech companies in healthcare - Labiotech.eu - June 16th, 2022
- Hemostemix Announces the Incorporation of PreCerv Inc. And a Global Field of Use License to NCP-01 - Yahoo Finance - June 16th, 2022
- Stem cell therapy shows promise in aiding equine wound healing - Horsetalk.co.nz - Horsetalk - April 2nd, 2022
- Rheumatoid Arthritis Stem Cell Therapy Market Assessment, With Major Top Companies Analysis, Geographic Analysis, Growing Opportunities Data By... - April 2nd, 2022
- Jasper Therapeutics to Present Updated Data on JSP191 Conditioning in SCID Patients at the 2022 Clinical Immunology Society Annual Meeting - Yahoo... - April 2nd, 2022
- Talaris therapy ends need for immune drugs in transplant patients - - pharmaphorum - November 7th, 2021
- Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study - SciTechDaily - August 4th, 2021
- Multiple myeloma stem cell transplant: What happens and more? - Medical News Today - August 4th, 2021
- Animal Stem Cell Therapy Market Research 2021-2027 With Medivet Biologics LLC, VETSTEM BIOPHARMA, J-ARM, US Stem Cell The Manomet Current - The... - August 4th, 2021
- Global Stem Cell Therapy Market to witness exponential proliferation during 2020-2026 The Manomet Current - The Manomet Current - August 4th, 2021
- FDA gives speedy review to Bayer's Parkinson's stem cell therapy - - pharmaphorum - July 21st, 2021
- Stem Cell Therapy Market Analysis of Key Players, End User, Demand and Consumption By 2026 26 Sports - 2x6 Sports - July 21st, 2021
- NanoString Launches nCounter Stem Cell Characterization Panel to Advance the Development of Stem Cell Therapy - Business Wire - June 24th, 2021
- Adipose Tissue Derived Stem Cell Therapy Market New Innovation and Perception 2028 AlloCure, Antria, Celgene, Cellleris SA, Corestem, Intrexon,... - June 24th, 2021
- Jasper Therapeutics and Aruvant Announce Research Collaboration to Study JSP191, an Antibody-Based Conditioning Agent, with ARU-1801, a Novel Gene... - June 24th, 2021
- Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 - GlobeNewswire - June 24th, 2021
- Controversial Stem Cell Therapy Has Helped Repair Injured Spinal Cords in 13 Patients - ScienceAlert - March 3rd, 2021
- Cynata tests wound dressing tech for stem cell therapy delivery - The West Australian - March 3rd, 2021
- Stem Cell Injections Could Treat Spinal Cord Injuries | IE - Interesting Engineering - March 3rd, 2021
- NSAIDs to Treat Arthritic Canines Through 2028; Stem Cell Therapies to Invigorate Canine Arthritis T - PharmiWeb.com - March 3rd, 2021
- Overview of stem cells therapy in amyotrophic lateral sclerosis - DocWire News - March 3rd, 2021
- We have a hint it may be possible: Controversial stem cell therapy repaired injured spinal cords in 13 patients - RT - March 3rd, 2021
- Global Stem Cell Therapy Market 2021- Regional Analysis(Consumption, Revenue, Market Share and Growth Rate) and Forecast Till 2027 NeighborWebSJ -... - March 3rd, 2021
- Global Animal Stem Cell Therapy Market 2020 2025 Research Report Segment Outlook, Growth Potentials and Analysis of COVID-19 Worldwide Outbreak KSU... - March 3rd, 2021
- Animal Stem Cell Therapy Market Size 2021 | Global Trends, Business Overview, Challenges, Opportunities and Forecast to 2027 The Bisouv Network - The... - March 3rd, 2021
- Projected Stem Cell Therapy Market Growth After Coronavirus COVID-19 Outbrek Analysis and Forecast (2020-2027) The Bisouv Network - The Bisouv... - March 3rd, 2021
- Stem Cell and PRP Injection for Knee Osteoporosis Pain and Injury Using US Image Guidance - Magazine of Santa Clarita - March 3rd, 2021
- Animal Stem Cell Therapy Market Potential Growth, Share and Demand Analysis of Key Players MediVet Biologic, VETSTEM BIOPHARMA, J-ARM, Celavet NY... - March 3rd, 2021
- Musculoskeletal Disorder Stem Cell Therapy Market Size 2021 | Global Trends, Business Overview, Challenges, Opportunities and Forecast to 2027 The... - March 3rd, 2021
- Exclusive Insights on Stem Cell Therapy for Multiple Sclerosis Market 2021-2026: Latest Trends, Drivers, Strategies and Competitive Landscape The... - March 3rd, 2021
- Stem Cell Therapy Market By Treatment,Application,End Users And Geography Forecast To 2027 The Bisouv Network - The Bisouv Network - March 3rd, 2021
- 10 Best Clinics for Stem Cell Therapy in Thailand [2021 ... - February 14th, 2021
- Therapeutic Solutions International Acquires Stem Cell Therapy That Successfully Completed FDA Double Blind Placebo Controlled Efficacy Study for Lung... - February 14th, 2021
- Outlook on the Cell Therapy Global Market to 2027 - Opportunity Analysis and Industry Forecasts - Yahoo Finance - February 14th, 2021
- Global Stem Cell Therapy Market Set to Reach USD 214.5 Million by 2024 - The Courier - February 14th, 2021
- Magenta Therapeutics to Present Additional Data from Phase 1 MGTA-145 Stem Cell Mobilization Program and Preclinical Updates on Targeting Conditioning... - February 14th, 2021
- Stem Cell Therapy Market Revenue, Key Players, Supply-Demand, Investment Feasibility and Forecast By 2029: Osiris Therapeutics, NuVasive, Chiesi... - February 14th, 2021
- Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Tendencies, Revenue Forecast and Interesting Opportunities from 2020 to 2025 FLA... - February 14th, 2021
- Dancing on Ice's Colin Jackson to get stem cell op as he's got 'knees of 85-year-old' - Mirror Online - February 1st, 2021
- Stem Cell Therapy Market Size to Reach USD 5,040 Million by 2028 | Rising Public-Private Investments and Developing Regulatory Framework for Stem Cell... - January 31st, 2021
- ProgenCell - Stem Cell Therapies offers an updated Stem Cell Therapy for Anti Aging Protocol - PR Web - January 31st, 2021
- Stem Cell Therapy Market 2021: Global Key Players, Trends, Share, Industry Size, Segmentation, Forecast To 2027 KSU | The Sentinel Newspaper - KSU |... - January 31st, 2021
- ClearPoint Neuro, Inc. Announces Expansion of Pre-Clinical and Translational Development Team to Support Gene and Stem Cell Therapy Partners -... - January 31st, 2021
- Stem Cell Therapy for Diabetes and Related Conditions Market Size |Incredible Possibilities and Growth Analysis and Forecast To 2025 - AlgosOnline - January 31st, 2021
- Stem Cell Therapy Market 2021 Industry Size, Trends, Global Growth, Insights And Forecast Research Report 2026 NeighborWebSJ - NeighborWebSJ - January 31st, 2021
- Animal Stem Cell Therapy Market to witness high growth in near future - Fractovia News - January 31st, 2021
- Regenerative medicine is advancing health care in diverse ways - Hometown Focus - January 23rd, 2021
- Hemostemix Announces the Bread Contract with the Department of Foreign Affairs, Trade & Development Canada - BioSpace - January 23rd, 2021
- Stem Cell Therapy Market Size, Growth Opportunities, Trends, Key Players and Forecast to 2027 - The Courier - January 23rd, 2021
- Animal Stem Cell Therapy Market Size, Business Growth Tactics, Future Strategies, Competitive Outlook and Forecast to 2027 Jumbo News - Jumbo News - January 23rd, 2021
- How Will Global Stem Cell Therapy Market React from 2021 Onwards? - The Courier - January 23rd, 2021
- Impact of COVID-19 on Canine Stem Cell Therapy Market by 2027 |Aratana Therapeutics, Okyanos, Magellan Stem Cells, Stem Cell Vet, VetStem Biopharma -... - January 23rd, 2021
- Impact of COVID-19 on Canine Stem Cell Therapy Market 2021 | Size, Growth, Demand, Opportunities & Forecast To 2027 | VETSTEM BIOPHARMA, Cell... - January 23rd, 2021
- Global Animal Stem Cell Therapy Market Size| Share| Trends and Analysis | Industry Growth Insight By 2025 Globalmarketers.biz Jumbo News - Jumbo... - January 23rd, 2021
- Impacts of COVID 19 on Stem Cell Therapy Market 2021 Size, Demand, Opportunities & Forecast To 2026 - NeighborWebSJ - January 23rd, 2021
- Stem Cell Therapy Market: Clear Understanding of The Competitive Landscape and Key Product Segments 2026 NeighborWebSJ - NeighborWebSJ - January 23rd, 2021
- Animal Stem Cell Therapy Market Research Report And Predictive Business Strategy By 2027 | Industry Growth Insights - Murphy's Hockey Law - January 23rd, 2021
- Report On Canine Stem Cell Therapy Market to 2026: (Industry Insights, Company Overview and Investment Analysis) - Farming Sector - December 24th, 2020