Humans have been able to genetically alter the world around them for thousands of years. With the domestication of dogs at least 14,000 years ago, genetically modified organisms (GMOs) have been a constant feature of human society; only recently have we gained the ability to perform these modifications at the molecular level.
Even more recently, gene drive technology has fundamentally added the ability of humans to modify wild organisms, not only domesticated organisms. With the ability to make rapid, permanent changes to wild species on the near horizon, we must act now to implement policies that will carefully regulate their use while allowing for vital scientific research to continue.
While GMOs have become fundamental to the farming industry, they always have the same limitation: they must be protected and maintained on farms, in pens, or other human-maintained environments. If released into the wild, GMOs find themselves out-competed by their naturally occurring cousins, since genetic modifications made to suit human tastes (think seedless watermelons) typically have a hard time surviving in the wild. An exception to this rule is the survival of invasive species when introduced into a different environment and have no natural competition in their new habitat.
Gene drive technology now makes it possible for humans to engineer species that are currently and will remain, wild such as the mosquito. Gene drive engineering can create an artificial selective pressure to transmit the gene drive from parent to offspring at a higher rate than would naturally occur.
Eventually, offspring with the gene drive replace the unaltered form of the organism, an overwhelming natural section that would normally favor the unaltered form. This profoundly new capability makes gene drives different from GMOs which are not designed to replace wild organisms and do not have the capability to overtake wild populations if accidentally released.
Because gene drives, as tools for the management and engineering of species in the wild, are intrinsically different from GMOs, it is not adequate to regulate them like other GMOs or rely only upon the framework of existing GMO regulations. We need a series of policy goals to prevent missteps in the deployment of this powerful tool.
It is unlikely that gene drives will see direct use in agricultural crops and animals, despite the agricultural application being the main concern of gene drive opposers. Such cultivated species are already under de facto genetic control by farmers who decide which animals to breed and which seeds are sown. As such, a gene drive in farmed species would be a very expensive and complex way to achieve something already possible through conventional agricultural methods.
It is, however, quite likely that gene drives will soon be used to control malaria, either to suppress malaria-carrying mosquito populations or genetically alter them such that they are unable to transmit malaria to humans. Should this public health application prove to be safe and beneficial, further applications of gene drives may soon follow. Another near-term application could be to control agricultural pest species such as leafhoppers or aphids in order to improve crop yield.
The management of human-influenced species with gene drives presents a potential flashpoint where conflicting economic and environmental interests intersect. We define human-influenced species as those that live and breed wild but are harvested heavily by humans. In other words, humans do not actively alter the environment of these species for agricultural purposes, but human harvesting activities have direct and indirect impacts on their population dynamics. Oceanic fish are an example of human-influenced species. These fish may live and travel across international and national territorial waters, and thus the release of a gene drive in these species would result in significant and competing economic interests. The ability of genes to drive fish to move from jurisdiction to jurisdiction presents a unique problem to international biodiversity protocols.
With the first release of gene drives for malaria control is likely to occur within the next 5-10 years, there is a need for immediate national regulation of gene drives and a need for broad international harmonization of gene drive regulation. While great care has been taken by researchers to safely and ethically advance malaria control gene drive research, explicit regulation is required to mitigate risks from future efforts and to hold all deployable gene drives to appropriate standards.
As we have experienced during COVID-19 with poorly functioning antibody tests, a loose regulatory environment can lead to products entering the market that have not been properly validated. In the case of gene drives, a loose regulatory environment could lead to irreversible damage to wild ecosystems.
The U.S. government should create nationally-mandated tiered registries of gene drive research. Coordinated, nationally-mandated registries would allow for the fast adoption of clear gene drive documentation. In time, the multiple national registries can hopefully be harmonized into a single international registry. These registries should be tiered in such a way that gene drives that are closer to possible deployment must report more detailed information than research projects that are in the exploratory phase.
As projects approach deployment, public transparency and independent review become more important considering the potential for gene drives to radically alter a wild environment. To realize the potential benefits of this technology, we now must act practically, proactively, and carefully to regulate their progress from small-scale research all the way through large-scale deployment.
Michael Montague, Ph.D. is a senior scholar and Amanda Kobokovich, MPH is a senior analyst at the Johns Hopkins Center for Health Security at the Bloomberg School of Public Health. The authors recently published a report Gene Drives: Pursuing Opportunities, Minimizing Risk.
Go here to read the rest:
Soon we'll be able to engineer the wild, can the policies keep up with the science? | TheHill - The Hill
- Genetic Engineering and Its Applications StudyBullet.com - March 9th, 2025
- The Future of Gene-Editing Treatments for Rare Diseases - March 9th, 2025
- Biotechnology & Genetic Engineering: An Overview - Sciencing - March 9th, 2025
- Hoping to revive mammoths, scientists create 'woolly mice' - NPR - March 9th, 2025
- CRISPR Breakthrough Unlocks the Genetic Blueprint for ... - SciTechDaily - March 9th, 2025
- Mice have been genetically engineered to look like mammoths - The Economist - March 9th, 2025
- Gene modification can create bigger, better tomatoes, but should we do it? - Earth.com - March 9th, 2025
- "Colossal woolly mouse" created by scientists in effort to reconstruct the woolly mammoth - CBS News - March 9th, 2025
- Biotech company hoping to revive woolly mammoth, creates woolly mouse: Study - Straight Arrow News - March 9th, 2025
- Colossal Creates the Colossal Woolly Mouse, Showcasing Breakthroughs in Multiplex Genome Editing and Trait Engineering on the Path to a Mammoth -... - March 9th, 2025
- Colossal Biosciences is one step further in quest to bring back the woolly mammoth - Austin American-Statesman - March 9th, 2025
- Biotech Company Creates 'Woolly Mouse' as a Step in Its Quest to Resurrect Woolly Mammoths Through Gene Editing - Smithsonian Magazine - March 9th, 2025
- 'We didn't know they were going to be this cute': Scientists unveil genetically engineered 'woolly mice' - Livescience.com - March 9th, 2025
- These Genetically Engineered Mice Have Thick Woolly Mammoth Hair - ExtremeTech - March 9th, 2025
- Genetically altered mouse to pave way for resurrection of wolly mammoth? - Hindustan Times - March 9th, 2025
- Turning back the aging clock: Billions of dollars are probably being wasted on genetic manipulation techniques that likely wont work - Genetic... - March 9th, 2025
- OF WOOLLY MICE AND MAMMOTHS - Particle - March 9th, 2025
- Woolly mouse unveiled by firm hoping to bring more extinct animals back to life - The National - March 9th, 2025
- How scientists created woolly mice as part of their quest to bring back the woolly mammoth - The Indian Express - March 9th, 2025
- A Woolly What? - Brownstone Research - March 9th, 2025
- $1 Million Awarded to Continue to Develop Genetically Engineered Stem Cell Products to Fight Gastroesophageal Cancer - PR Newswire - February 15th, 2025
- Engineered animals show new way to fight mercury pollution - EurekAlert - February 15th, 2025
- Genetically modified foods: benefits and applications - Meer - February 15th, 2025
- Genetically modified zebrafish and fruit flies munch on mercury to make it less toxic - Yahoo - February 15th, 2025
- Principles of Genetic Engineering - PubMed Central (PMC) - February 7th, 2025
- The next 'big thing' in genetically modified crops: Drought-tolerant and herbicide resistant wheat. Here's what you need to know - Genetic Literacy... - February 7th, 2025
- Genetic engineering and biotechnology: The future of food is here - Yourweather.co.uk - February 7th, 2025
- Scientists Just Achieved a Major Milestone in Creating Synthetic Life - Yahoo! Voices - February 7th, 2025
- Two males give birth to child in incredible science experiment; the baby is now an adult | Mint - Mint - February 7th, 2025
- Genetic Engineering - The Definitive Guide | Biology Dictionary - January 27th, 2025
- Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei - Nature.com - January 27th, 2025
- What is Genetic Engineering? - Baker Institute - January 27th, 2025
- ARCUS breakthrough: An advanced gene editing tool appears to have cured an infant of an early onset metabolic disorder - Genetic Literacy Project - January 27th, 2025
- Your cells are dying. All the time. - Genetic Literacy Project - January 27th, 2025
- How Genetic Modification is Changing the Future of Conservation - MSN - January 27th, 2025
- Researchers genetically engineer yeast to produce healthy fatty acid - University of Alberta - January 27th, 2025
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021