In the world of rare diseases, patient testimonies about the extreme difficulties of receiving an accurate diagnosis for an illness are numerous. For instance, one woman, sick for most of her young life, was not properly diagnosed with idiopathic gastroparesis an ultra-rare disease that affects stomach motility and digestion until late in college after seeing numerous different specialists in multiple fields and undergoing a battery of testing.1 Another patient, now active in the rare disease advocacy community, went undiagnosed with familial partial lipodystrophy a disease that, among other things, causes selective fatty tissue loss for 37 years.2
Unfortunately, these stories are not unique. One survey indicated that it took on average 7.6 years to properly diagnose a rare disease patient in the United States.3 Another study indicated that a rare disease patient on average consulted eight different physicians before landing on an accurate diagnosis, with only 12.9 percent of respondents indicating that they had seen only one physician prior to diagnosis (23.5 percent of respondents had seen between six and 10 physicians).4 Frequently, rare disease patients exhibit similar symptoms as other, more common diseases, making diagnosis complicated and leaving patients confused and frustrated about a path forward. Further complicating the situation is that traditional treatments for more common illnesses that mimic rare disease symptoms, such as irritable bowel syndrome in the case of the aforementioned gastroparesis patient, may actually worsen a patient's condition.
As such, the misdiagnosis of rare diseases, in addition to being traumatic for patients and their families, can be extremely expensive. One study indicated that over a 10-year period, an undiagnosed rare disease patient cost over 100 percent more than the average patient. This was due in part to a significant increase in outpatient visits compared with the average patient. (The cost differential was heightened in pediatric patients.)5 Such data indicates that shortening the path to diagnosis for rare disease patients may lead not only to increase patient health but also to a significant reduction in overall long-term healthcare costs.
According to the National Institutes of Health (NIH), there may be upward of 7,000 rare diseases in the United States affecting as many as 30 million people, or nearly one-tenth of the U.S. population.6 Alarmingly, only 5 percent of identified rare diseases have an approved treatment. Despite this daunting figure, approximately 80 percent of rare diseases have genetic origins, a common factor that points to genetic (the testing of individual variants or individual/multiple genes and their effects on an individual) and genomic (the study through various methods of an individual's entire genome and its interaction with the environment) testing as logical tools for identifying and ultimately combating these illnesses.
Genetic Testing Becoming More Common
From concept to execution, the Human Genome Project at the NIH took approximately 15 years and involved the creation of the National Center for Human Genome Research (now the National Human Genome Research Institute, an official Institute at NIH), the collaboration of hundreds of national and international scientists, and an approximate, inflation-adjusted total investment of $5 billion.7,8Since that time, the cost of performing genetic and genomic testing has declined significantly, with a per-genome cost of slightly less than $1,000 in 2019 compared with per-genome costs of approximately $95 million and $30,000 in 2001 and 2010, respectively.9 This significant cost reduction, which has been associated with the development of next-generation sequencing platforms and leaps in computer hardware development, among other things, has opened the door for patients to more readily access these important resources.
Most tests fall into overall categories of DNA diagnostic testing that include single-gene tests, which can detect an abnormality in a gene associated with a particular genetic illness; whole exome sequencing, which sequences the protein-encoding regions of genes; or whole genome sequencing, which is the most rigorous in that it involves sequencing the individual's entire genome. Given the sheer number of rare diseases and the size of the human genome, it is not surprising that there are numerous genetic tests on the market today. One study indicated that there are approximately 75,000 genetic tests on the market, or 10 issued every day.10
However, insurance coverage for these technologies is minimal and inconsistent despite recent positive reception for the increased use of enhanced technologies for patient treatment through the Precision Medicine Initiative, the NIH's Cancer Moonshot and similar programs. One study indicated that coverage for multigene testing varied drastically by disease type and that tests for broad indications or a large range of genes (i.e., those tests that may be helpful in narrowing down disease possibilities in a diagnostic profile) are frequently not covered by insurers.11 It should be noted that some progress has been made on national coverage determinations for some more widely recognized testing technologies. For instance, next-generation sequencing, a revolutionary sequencing technology that sequences genetic material multiple times simultaneously against a reference genome, received a reissued national coverage determination under the Medicare program from the Centers for Medicare & Medicaid Services (CMS) in October 2019.12 However, while this decision was significant as a model for future coverage for genetic testing services, it was only a minor first step in that it was limited only to previously untested patients with ovarian or breast cancer who are Medicare eligible.13
The large and complicated landscape of genetic testing is partially responsible for the lack of insurance coverage for these technologies. For instance, there are only about 200 standardized Current Procedural Terminology (CPT) codes to identify various types of genetic tests to insurers, other physicians, hospitals and health systems, limiting the ability for payers to systematically cover these technologies. This is especially true when applying "medical necessity criteria," which requires a provider to submit accurate information showing that a treatment or test is medically necessary to treat or diagnose a specific illness in order for it to be reimbursed by a payer. Data have shown that a majority of spending in the past several years on genetic tests has gone to noninvasive prenatal tests, cancer screening tests and multiple-gene analyses.14 This is unsurprising given that some of these technologies target pre-identified, validated markers and that newer screening methods present fewer risks for patients than other, more traditional or invasive testing methods.15 For many conditions, however, showing the medical necessity of genetic testing is still a complicated and unpredictable process when a patient is in the middle or beginning of his or her diagnostic odyssey.
Thus, coverage of new genetic testing technologies continues to remain a major challenge for the medical community and a mystery for the tens of millions of U.S. patients with rare diseases. Although small-scale studies and other evidence show that the use of genetic testing as a means to more quickly and accurately diagnose patients can reduce overall health expenditures, policymakers still lack systematic data showing the effectiveness of genetic testing as a means of cutting overall health spending at a macro level.
Help on the Horizon?
Bills have been introduced as recently as the 116th Congress that would create demonstration projects to test coverage of genetic testing technologies for certain patients to help inform future expansions of genetic testing coverage. In addition, Reps. Diana DeGette (D-Colo.) and Fred Upton (R-Mich.), the original champions of the 21st Century Cures Act,16 recently issued a request for information to help inform a follow-on version of the landmark legislation dubbed "Cures 2.0."17 One of the main focuses of their inquiry is into "how Medicare coding, coverage, and payment could better support patients' access to innovative therapies." Expanded coverage to increase access to genetic testing technologies could certainly fit within this scope and would help supplement expanded access and coverage of other new and innovative healthcare technologies for rare disease patients.
Stakeholders across the rare disease landscape have also shared consistent concerns with the length of time between when a new or breakthrough medical technology is approved and when it receives coverage by insurers. Underutilized programs may help speed new technologies to the patients that need them by shortening the gap between approval and coverage. One such example is the U.S. Food and Drug Administration (FDA)-CMS parallel review program for medical devices, which was recently touted by U.S. Department of Health and Human Services (HHS) Deputy Secretary Eric Hargan at the recent FDA/CMS Summit18 and through which a next-generation sequencing test received a parallel approval and coverage determination in 2017.19 These efforts may help the scientific community and others assemble data about how greater access to these technologies positively affect patient care, provide information necessary for lawmakers to empower CMS, the FDA and others to work together on increasing coverage and access, as well as to create mechanisms to speed new technologies to patients in need.
In addition to testing expansion of coverage and access for genetic and genomic testing, further investments should be made into public-private partnerships and other information gathering networks that may centralize information from a diverse group of medical professionals to provide patients additional resources for rare disease diagnosis. For instance, the Undiagnosed Diseases Network, housed at the NIH, utilizes a dozen sites nationwide where teams of physicians assess rare disease patients and share data, including genetic testing data through a "sequencing core," to maximize the amount of national expertise available to pin down rare disease diagnoses that would be extremely difficult and expensive to receive if patients sought expertise individually.20 In addition to further investment in these resources, continued policy development and investment in the development of artificial intelligence technologies and diagnostic support software tools, which have shown promise in assisting physicians in the early detection of rare disease through symptom analysis,21 will provide additional means for patients to receive care more quickly through largely noninvasive means.
Finally, payers both public and private may lack expertise in understanding and evaluating genetic tests, especially for rare diseases. Insurers should prioritize hiring individuals to supplement their teams who have some form of advanced knowledge not only of rare diseases but also the nature of genetic testing technologies and how they are used to expedite disease diagnoses. This is especially true given the rapid development of new testing systems and the growing use of other diagnostic technologies promoted in part by provisions in the 21st Century Cures Act and other legislation.
While it typically refers to something that is uncommon, the term "rare" can also imply heightened value. Greater investment in improving the diagnostic odyssey for rare disease patients, including through greater coverage of new technologies, can only enhance the value and efficiency of the U.S. healthcare system for all patients not just the few.
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021
- Genomes, Maps, And How They Affect You - IFLScience - February 1st, 2021
- SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected - PRNewswire - February 1st, 2021
- Are Phages Overlooked Mediators of Health and Disease? - The Scientist - February 1st, 2021
- When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers - Kaiser Health News - February 1st, 2021
- Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and... - February 1st, 2021
- The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib - SurvivorNet - February 1st, 2021
- Genetic Testing: MedlinePlus - January 29th, 2021
- 21 Common Genetic Disorders: Types, Symptoms, Causes ... - January 29th, 2021
- Genetic Counseling Online Course - School of Medicine ... - January 29th, 2021