We all grow old. We all die.
For Aubrey de Grey, a biogerontologist and chief science officer of the SENS Research Foundation, accepting these truths is, well, not good enough. He decided in his late twenties (hes currently 54) that he wanted to make a difference to humanity and that battling age was the best way to do it. His lifes work is now a struggle against physics and biology, the twin collaborators in bodily decay.
He calls it a war on age.
Grey considers aging an engineering problem. The human body is a machine, he told me in the following interview, and like any machine, it can be maintained for as long as we want.
This is not an isolated view. There is a broader anti-aging movement afoot, which seems to be growing every day. As Tad Friend describes colorfully in a recent New Yorker essay, millions of venture capital dollars are being dumped into longevity research, some of it promising and some of it not. Peter Thiel, the billionaire co-founder of PayPal, is among the lead financiers (hes a patron of Greys organization as well).
Greys work is particularly interesting. For too long, he argues, scientists have been looking for solutions in all the wrong places. There is no monocausal explanation for aging. We age because the many physical systems that make up our body begin to fail at the same time and in mutually detrimental ways.
So hes developed what he calls a divide-and-conquer strategy, isolating the seven known causes of aging and tackling them individually. Whether its cell loss or corrosive mitochondrial mutations, Grey believes each problem is essentially mechanical, and can therefore be solved.
But even if this Promethean quest to extend human life succeeds, several questions persist.
If we develop these anti-aging technologies, who will have access to them? Will inequality deepen even further in a post-aging world? And what about the additional resources required to support humans living 200 or 300 or 500 years? The planet is stretched as it is with 7 billion people living roughly 70 years on average (women tend to live three to five years longer than men) and is already facing serious stresses around food, water, and global warming going forward.
Grey, to his credit, has thought through these problems. Im not sure hes alive to the political implications of this technology, specifically the levels of state coercion it might demand.
But when pressed, he defends his project forcefully.
Is there a simple way to describe theoretically what the anti-aging therapies youre working on will look like what theyll do to or for the body?
Oh, much more than theoretically. The only reason why this whole approach has legs is because 15 or 17 or so years ago, I was actually able to go out and enumerate and classify the types of damage. We've been studying it for a long time, so when I started out in this field in the mid-90s so I could learn about things, I was gratified to see that actually aging was pretty well understood.
Scientists love to say that aging is not well understood because the purpose of scientists is to find things, out so they have to constantly tell people that nothing is understood, but it's actually bullshit. The fact is, aging is pretty well understood, and the best of it is that not only can we enumerate the various types of damage the body does to itself throughout our lives, we can also categorize them, classify them into a variable number of categories
So I just talked about seven categories of damage, and my claim that underpins everything that we do is that this classification is exhaustive. We know how people age; we understand the mechanics of it. There is no eighth category that were overlooking. More importantly, for each category there is a generic approach to fixing it, to actually performing the maintenance approach that I'm describing, repairing the damage.
Can you give me an example of one of these categories and what the approach to fixing it looks like?
One example is cell loss. Cell loss simply means cells dying and not being automatically replaced by the division of other cells, so that happens progressively in a few tissues in the body and it definitely drives certain aspects of aging. Let's take Parkinson's disease. That's driven by the progressive loss of a particular type of neuron, the dopaminergic neuron, in a particular part of the brain.
And what's the generic fix for cell loss? Obviously it's stem cell therapy. That's what we do. We preprogram cells in the laboratory into a state where you can inject them into the body and they will divide and differentiate to replace themselves that the body is not replacing on its own. And stem cell therapy for Parkinson's disease is looking very promising right now.
Is it best to think of aging as a kind of engineering problem that can be reversed or stalled?
Absolutely. It's a part of technology. The whole of medicine is a branch of technology. It's a way of manipulating what would otherwise happen, so this is just one part of medicine.
But you're not trying to solve the problem of death or even aging, really. Its more about undoing the damage associated with aging.
Certainly the goal is to undo the damage that accumulates during life, and whether you call that solving aging is up to you.
What would you say is your most promising line of research right now?
The great news is that we have this divide-and-conquer strategy that allows us to split the problem into seven subproblems and address each of them individually. That means we're constantly making progress on all of them. We pursue them all in parallel. We actually don't pursue stem cell therapy very much, simply because so many other people are doing it and basically everything really important is being done by somebody else, so it's not a good use of our money.
We're a very small organization. We only have $4 million a year to spend, so we're spread very thin. We're certainly making progress. Over the past year we've published really quite high-profile papers relating to a number of main research programs, so there's no really one thing that stands out.
What do you say to those who see this as a quixotic quest for immortality, just the latest example of humanity trying to transcend its condition?
Sympathy, mainly. I understand it takes a certain amount of guts to aim high, to actually try to do things that nobody can do, that nobody's done before. Especially things that people have been trying to do for a long time. I understand most people don't have that kind of courage, and I don't hate them for that. I pity them.
Of course, the problem is that they do get in my way, because I need to bring money in the door and actually get all this done. Luckily, there are some people out there who do have courage and money, and so we're making progress.
Ultimately, the fact is aging has been the number one problem of humanity since the dawn of time, and it is something that, until I came along, we have not had any coherent idea how to address, which means the only option available to us has been to find some way to put it out of our minds and find a way to get on with our miserably short lives and make the best of it, rather than being perpetually preoccupied with this ghastly thing that's going to happen to us in the relatively distant future. That makes perfect sense. I don't object to that.
The problem is that suddenly we are in a different world where we are in striking distance of actually implementing a coherent plan that will really work, and now that defeatism, that fatalism, that resignation, has become a huge part of the problem, because once you've made your peace with some terrible thing you know, it's very hard to reengage.
Are there any ethical questions or reservations that give you pause at all?
Not at all. Once one comes to the realization that this is just medicine, then one can address the entire universe of potential so-called ethical objections in one gut. Are you in favor of medicine or not? In order to have any so-called ethical objection to the work we do, the position that one has to take is the position that medicine for the elderly is only a good thing so long as it doesn't work very well, and thats a position no one wants to take.
Ive no doubt youve been asked this question before, but I think its too important to gloss over. You talk enthusiastically about transitioning to a post-aging world, but there are many people who worry about what it means to increase the humans time on earth. We dont necessarily have an overpopulation problem, but we certainly have an inequality problem, and we seem to need more resources than we have. If 90 percent of people die from aging now, and suddenly people are living for 200 or 300 years, how will we be able to sustain this kind of growth?
First of all, thank you for prefacing the question with the thought that I've probably heard this question a lot, because of course I have. But you'd be astonished at how many people have presented this question to me starting with, "Have you ever thought of the possibility that..." as if they genuinely had a new idea.
But yes, overpopulation is the single biggest concern that people raise, and I have basically three levels of answers to these questions. First, the answer is specific to the individual question. So in the case of overpopulation, essentially I point to the fact that fertility rates are already plummeting in many areas. And people often forget: Overpopulation is not a matter of how many people there are on the planet but rather the difference between the number of people on the planet and the number of people that can be on the planet with an acceptable level of environmental impact, and that second number is of course not a constant; it's something that is determined by other technologies.
So as we move forward with renewable energy and other things like desalinization to reduce the amount of pollution the average person commits, we are increasing the carrying capacity of the planet, and the amount of increase that we can expect over the next, say, 20 years in that regard far exceeds what we could expect in terms of the trajectory of rise in population resulting from the elimination of death from aging. So that's my main answer.
The second level of answer is at the level of sense of proportion. Technology happens or doesn't happen, whatever the case may be, and maybe the worst-case scenario is that we will end up with a worse overpopulation problem than what we have today.
What does that actually mean? It means we're faced with a choice in a post-aging world, in a world where the technology exists a choice between either, on the one hand, using these technologies and having more people and having fewer kids than we would like or, on the other hand, letting stuff go on the way it is today, which involves not using technology that will keep people healthy in old age and therefore alive.
Ask yourself, which of those two things would you choose? Would you choose to have your mother get Alzheimer's disease or to have fewer kids? It's a pretty easy choice, and people just don't do this.
The third level is perhaps the strongest of all, which is that it's about who has the right to choose. Essentially if we say, Oh, dear, overpopulation, let's not go there. Let's not develop these technologies, then what we are doing as of today is we are delaying the arrival of our technology. Of course it will happen eventually. The question is how soon? That depends on how hard we try.
If we know that, then what we're doing is we're delaying the arrival of the technology and thus condemning a whole cohort of people of humanity of the future to the same kind of death and disease and misery that we have today in old age, when in fact we might have relieved that suffering had we developed the therapies in time.
I dont want to be responsible for condemning a vast number of people to death. I dont want to be in that position. I think theres a strong argument that we should get on developing these technologies has quickly as we can.
I take your points there, but those questions are far easier to answer in theory than they are to solve in practice. For instance, we cant simply decide that people will have fewer children without potentially dangerous levels of state coercion. The politics of this is complicated at best, dystopian at worst.
In any event, let me at least raise one more concern. What is your sense of the cost and the accessibility of these therapies should they become available? People concerned with bioengineering, for example, worry that technologies like this, if they arent equally distributed, will produce inequalities of the sort weve never seen before and cant sustain.
Its a valid concern. It needs to be addressed, but luckily, like the overpopulation one, it's a really easy one to address. Today what we see with high-tech medicine is that it is even in countries with a single-payer system it's pretty much limited by the pay because there's only so much resources available.
But part of the problem now is that our current therapies for elderly people dont work well. It postpones the ill health of old age by a very small amount if we're lucky, and then people get sick anyway, and we spend all the money that we would have spent in absence of the medicine just keeping the person alive for a little longer in a miserable state.
Now compare that with the situation where the medicine actually does work, where the person actually stays healthy. Yes, they live a lot longer, and sure enough, it may be that we have to supply these therapies multiple times because they are inherently periodic therapies, so we could be talking about a substantial amount of money. But the thing is these people would be healthy, so we would not be spending the money on the medicine for the sick people that we have today.
Plus, on top of that, there would be massive indirect savings. The kids of the elderly would be more productive because they wouldn't have to spend time looking after their sick parents. The elderly themselves would still be in an able-bodied state and able to actually contribute wealth to society rather than just consuming wealth.
Of course, there are lots and lots of big uncertainties in these kinds of calculations, but there is absolutely no way to do such a calculation that does not come to the absolutely clear conclusion that the medicines would pay for themselves many times over, really quickly.
So what that means, from the point of view of government setting aside the fact that it would be politically impossible not to support this is that it would be suicidal from a purely mercenary economic point of view not to do this. The country will go bankrupt because other countries will be making sure their workforce is able-bodied. The world will be frontloading their investments to ensure that everybody who is old enough to need them will get these therapies.
When will the therapies youre developing be ready for human experimentation?
That will happen incrementally over the next 20 years. Each component of the SENS panel will have standalone value in addressing one or another disease of old age, and some of them are already in clinical trials. Some of them are a lot harder, and the full benefit will only be seen when we can combine them all, which is a long way out.
How confident are you that someone alive today will not die of aging?
It's looking very good. Of course this is primary technology, so we can only speculate. It's very speculative what the time frame is going to be, but I think we have a 50-50 chance of getting to work on longevity escape velocity, the point where we are postponing the problem of aging faster than time is passing and people are staying one step ahead of the problem. I think we have a 50-50 chance of reaching that point within 20 years of now, subject only to improved funding on the early-stage research that's happening at the moment.
Escape velocity is an interesting analogy. The idea is to keep filling up the biological gas tank before it runs out, staying a step ahead of the aging process?
Right. The point is that these are rejuvenation therapies, which means they are therapies that genuinely turn back the clock. They put the body into a state that is analogous or similar to how it was at an earlier [stage] rather than just stopping or slowing down the clock. Every time you do this, you buy time, but the problem gets harder because the types of damage that the therapy reverses will catch up, and those imperfections just need to be progressively partially eliminated. The idea, then, is that you asymptotically approach the 100 percent repair situation but you never need to get there. You just need to keep the overall level of damage below a certain tolerable threshold.
For more about de Grey's work, visit the SENS website.
Continue reading here:
Scientists are waging a war against human aging. But what happens next? - Vox
- Breast Cancer Is Most Common Cancer In India, 1.38 Million Cases Diagnosed Annually. Know Estimated Incidence By 2030 - ABP Live - November 26th, 2023
- What Is Amyloidosis? All About The Rare Disease That Pervez Musharraf Suffered From - ABP Live - February 8th, 2023
- Autophagic death of neural stem cells mediates chronic stress-induced ... - November 7th, 2022
- Programmed cell death - Wikipedia - November 7th, 2022
- Hematopoietic Stem Cells | Hematopoiesis | Properties & Functions - September 4th, 2022
- Canadian Blood Services Stem Cells for Life - September 4th, 2022
- Devastation over death of schoolgirl, 11, who hoped she was beating cancer - Leicestershire Live - September 4th, 2022
- From optimized stem cell transplants to CAR T cell therapy: Advancing options for cancer, HIV and more - City of Hope - September 4th, 2022
- Scientists unlock the key to immortality in jellyfish - Syfy - September 4th, 2022
- Forge Biologics Reports Positive Clinical Data on Brain Development and Motor Function from the RESKUE Novel Phase 1/2 Gene Therapy Trial in Patients... - September 4th, 2022
- Menin Inhibitors Have Potential to Become the Next Class of Targeted Therapy in AML - Targeted Oncology - September 4th, 2022
- Wanted murder suspect John Belfield believed to still be in the UK as two more arrested over death of Thomas Campbell - The Manc - September 4th, 2022
- Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study | Blood Cancer Journal... - July 8th, 2022
- Can minds persist when they are cut off from the world? - Livescience.com - July 8th, 2022
- Black Adolescent Young Adults With AML Have Worse Outcomes Vs White Population - Cancer Network - July 8th, 2022
- Akari Therapeutics Announces First Patient to Complete Course of Treatment in the Phase III Part A Clinical Trial of Investigational Nomacopan in... - July 8th, 2022
- How abortion ruling could affect IVF and embryonic research - The Almanac Online - July 8th, 2022
- This Morning viewers 'in tears' after boy meets donor who saved his life - Devon Live - July 8th, 2022
- Alpena detective: 'Good people out there' | News, Sports, Jobs - Alpena News - July 8th, 2022
- 'I miss my best friend': Five-year-old runs 10k to honour girl who died from rare brain tumour - Teesside Live - July 8th, 2022
- Humanigen Announces Peer-Reviewed Publication in Thorax Supporting Early Treatment of Hospitalized COVID-19 Patients with Lenzilumab Guided by... - July 8th, 2022
- Novartis AG, AstraZeneca Plc, and Pfizer Inc Among Leading Companies in the Thyroid Cancer Pipeline Products Market | Globaldata Plc - Yahoo Finance - July 8th, 2022
- A New Strategy Could Turn the Tide in Stem Cell GVHD - Medical Device and Diagnostics Industry - January 17th, 2022
- Vertex type 1 diabetes vs stem cell therapy - The Boar - January 17th, 2022
- Two-Year OS Doubles for Patients With Philadelphia-Positive Relapsed ALL After HSCT - AJMC.com Managed Markets Network - January 17th, 2022
- Nowakowski Considers CD19 Therapy in Transplant-Ineligible DLBCL - Targeted Oncology - January 17th, 2022
- Psaki demolishes Doocy with stats as he tries to claim covid now an illness of the vaccinated - newsconcerns - January 17th, 2022
- Doctors and Researchers Probe How COVID-19 Attacks the Heart - The Scientist - January 17th, 2022
- Who does donated blood that's direly needed help? - WTOP - January 17th, 2022
- Places Where Omicron is Most Contagious Eat This Not That - Eat This, Not That - January 17th, 2022
- UHN and U of T receive $24-million federal grant for transplant research - News@UofT - January 17th, 2022
- Glycyrrhizic acid ameliorates submandibular gland oxidative stress, autophagy and vascular dysfunction in rat model of type 1 diabetes | Scientific... - January 17th, 2022
- Stem cells in cancer therapy: opportunities and challenges - January 1st, 2022
- Life After Brain Death: Is the Body Still 'Alive'? | Live ... - January 1st, 2022
- Autologous Adult Stem Cells in the Treatment of Stroke | SCCAA - Dove Medical Press - January 1st, 2022
- Stem Cell Mimicking Nanoencapsulation for Targeting Arthrit | IJN - Dove Medical Press - January 1st, 2022
- Cellular Therapies Fill Unmet Needs in R/R Multiple Myeloma - Targeted Oncology - January 1st, 2022
- Upregulated expression of actin-like 6A is a risk factor | CMAR - Dove Medical Press - January 1st, 2022
- COVID-19 Takes a Toll on People with Blood Cancers and Disorders - Cancer Health Treatment News - January 1st, 2022
- Mental health disorders and heart diseases - Rising Kashmir - January 1st, 2022
- Research breakthrough could mean better treatment for patients with most deadly form of brain tumor - EurekAlert - October 26th, 2021
- European Commission Approves Merck's KEYTRUDA (pembrolizumab) Plus Chemotherapy as Treatment for Certain Patients With Locally Recurrent Unresectable... - October 26th, 2021
- European Commission Selects Humanigen's Lenzilumab as One of the 10 Most Promising Treatments for COVID-19 - Galveston County Daily News - October 26th, 2021
- Everything You Need To Know About COVID Booster Shots - Colorado Times Recorder - October 26th, 2021
- Stem cells and their role in lung transplant rejection - Michigan Medicine - October 5th, 2021
- Losing Your Hair? You Might Blame the Great Stem Cell Escape. - The New York Times - October 5th, 2021
- Will humans ever be immortal? - Livescience.com - October 5th, 2021
- Healthcare Researchers Are Putting HUMAN Immune Systems In Pigs To Study Illnesses-Here's The Tech Behind It - Tech Times - October 5th, 2021
- Why Bezos, Musk, Page and other billionaires want to live forever - New York Post - October 5th, 2021
- Faster healing of wounds can decrease pain and suffering and save lives - ABC 12 News - October 5th, 2021
- U.S. FDA Approves Kite's Tecartus as the First and Only Car T for Adults With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia - Business... - October 5th, 2021
- Skeletons' broken clavicles tell a centuries-old tale of humans and horses - Massive Science - October 5th, 2021
- Environmental Factor - August 2021: Extramural Papers of the Month - Environmental Factor Newsletter - August 4th, 2021
- Role of traumatic brain injury in the development of glioma | JIR - Dove Medical Press - August 4th, 2021
- Targeted Therapeutics Market: Increase in Incidence of Cancer to Drive Global Market - BioSpace - August 4th, 2021
- Accumulation of Regulatory T Cells in Triple Negative Breast Cancer Ca | CMAR - Dove Medical Press - August 4th, 2021
- Novel CAR-T Cell Therapy Produces Early and Deep Responses in Certain Patients with Multiple Myeloma - Curetoday.com - June 7th, 2021
- Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver - Science Advances - June 7th, 2021
- Cancer research: New advances and innovations - Medical News Today - June 7th, 2021
- Fulvestrant Alone Found to be Superior to Venetoclax/Fulvestrant Combo in ER+/HER2- Breast Cancer - Targeted Oncology - June 7th, 2021
- Merck's KEYTRUDA Given After Surgery Reduced the Risk of Disease Recurrence or Death by 32% Versus Placebo as Adjuvant Therapy in Patients With Renal... - June 7th, 2021
- Stem cell study illuminates the cause of an inherited heart disorder | Penn Today - Penn Today - February 14th, 2021
- The race to treat a rare, fatal syndrome may help others with common disorders like diabetes - Science Magazine - February 14th, 2021
- Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with... - February 14th, 2021
- The Very First Signs of an Immune Response Have Been Filmed in a Developing Embryo - ScienceAlert - February 14th, 2021
- Arlo's Army needs stem cell donor as mum begs for help to save three-year-old's life - Glasgow Live - February 14th, 2021
- Astellas and Seagen Announce Phase 3 Trial Results Demonstrating Survival Advantage of PADCEV (enfortumab vedotin-ejfv) in Patients with Previously... - February 14th, 2021
- [Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT - Dove Medical Press - February 14th, 2021
- The drug treatments offering the best hope of a way out of the Covid crisis - Telegraph.co.uk - February 14th, 2021
- In the war against Covid, an arsenal of drugs is on the way - Telegraph.co.uk - February 14th, 2021
- Kat Wests husband, Jeff West, sentenced to 16 years in wifes death - AL.com - February 9th, 2021
- Harnessing the Potential of Cell and Gene Therapy - OncLive - February 9th, 2021
- I Survived Cancer, and Then I Needed to Remember How to Live - The Atlantic - February 9th, 2021
- [Full text] Higher Red Blood Cell Distribution Width is a Poor Prognostic Factor f | CMAR - Dove Medical Press - February 9th, 2021
- West Belfast woman to be remembered in special TV documentary - Belfast Live - January 29th, 2021
- UTV documentary tells of young Belfast woman's lasting legacy to promote stem cell donation - The Irish News - January 29th, 2021
- L-MIND Trial Results Show CD19 Antibody Is Reasonable in R/R DLBCL - Targeted Oncology - January 29th, 2021
- Vertex Announces FDA Clearance of Investigational New Drug (IND) Application for VX-880, a Novel Cell Therapy for the Treatment of Type 1 Diabetes... - January 29th, 2021
- If I Have Cancer, Dementia or MS, Should I Get the Covid Vaccine? - Kaiser Health News - January 29th, 2021
- Experimental taphonomy of organelles and the fossil record of early eukaryote evolution - Science Advances - January 29th, 2021