Familialhypercholesterolemia (FH) is one of the most clinically relevant monogenicdisorders contributing to the development of atherosclerotic cardiovasculardisease (ASCVD). The prevalence of FH was estimated to be 1 in 200 to 1 in 250 individualsin studies in which genetic testing was conducted on large community populationsamples.1 However, the disease often remains undetected and thusuntreated, with only 10% of individuals with FH receiving adequate diagnosisand treatment.2
Notingthe recent accumulation of studies on FH, the authors of a Nature ReviewsCardiology article sought tosummarize the key elements of a model of care for the condition that canbe adapted as new evidence emerges.1 Selected points are highlightedbelow.
Screening and detection. A combination of selective, opportunistic (eg, genetic screening of blood donors), systematic, and universal screening approaches is recommended to improve the detection of FH. Universal screening of children and childparent (reverse) cascade testing is potentially a highly effective method for detecting patients with FH at a young age, before they develop ASCVD32 [and] might be particularly relevant to communities with gene founder effects, noted the review authors. All children with FH should ideally be detected from the age of 5 years or earlier if homozygous FH (hoFH) is suspected.
Diagnosis. In the United States, elevated levels of low-density lipoprotein cholesterol (LDL-C) and a family history of FH are the main phenotypic criteria for FH diagnosis in children. Patients with hoFH, heterozygous FH (heFH), and polygenic hypercholesterolemia may also present with overlapping LDL-C levels, posing a challenge for the development of a standardized diagnostic tool for FH.
Genetic testing. Aninternational expert panel recently endorsed genetic testing in the care ofpatients with FH as it would [allow] a definitive diagnosis, improve[e] riskstratification, address the increasing need for more potent therapies, improve[e]adherence to treatments, and increase[e] the precision and cost- effectivenessof cascade testing.1,3 However, genetic testing remains underuseddue to issues such as cost, low access to genetic counseling, and lack ofclinician knowledge in this area.
Clinical risk assessment.Cumulative lifetime exposure to elevated LDL-C is the key factor driving ASCVDrisk in asymptomatic patients with FH, further underscoring the need for timelydiagnosis and risk stratification. In addition to phenotypic and geneticfactors, imaging of subclinical atherosclerosis, might be the most usefulclinical tool for assessing risk in FH.1 For example, imaging ofcoronary artery calcium can be used to predict coronary events in asymptomaticmiddle-aged patients with FH taking statins, and computed tomography coronaryangiography can be used to assess plaque burden and to intensify therapy.
Care of adults.Emerging evidence continues to support aggressive cholesterol-lowering therapyand lifestyle management in patients with FH from as young as 8 years tomaximally mitigate the cumulative cholesterol burden of risk. The review authorsemphasize the importance of patient-centered care and shared decision making,although health literacy is a challenge that may need to be addressed with somepatients.
Whilethere is insufficient evidence to develop strictly defined LDL-C treatmenttargets, current evidence-based recommendations stipulate that in adultpatients with FH, statin therapy and diet should initially be targeted toachieve a 50% reduction in LDL-cholesterol level and an LDL-cholesterol level<1.8 mmol/l (70 mg/dl) or <2.6 mmol/l (100 mg/dl) for primaryprevention, and <1.4 mmol/l (55 mg/dl) or <1.8 mmol/l (70 mg/dl) forsecondary prevention or for patients at very high risk.1
The addition of ezetimibe is indicated in patients who do not achieve the recommended LDL-C levels with statins alone. The use of a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor as a third-line therapy is recommended in those patients or in patients who are intolerant to statins. The addition of a PCSK9 inhibitor in patients with heFH can further reduce LDL-C levels by approximately 60% and lead to recommended treatment targets in more than 80% of patients. However, these agents should not be used during pregnancy, as they cross the placenta and their impact on fetal development has not yet been determined.
Care of children. Extensive evidence supports the treatment of FH starting in childhood, as [m]odest and sustained reductions in LDL- cholesterol levels from early life can have a major effect on reducing mortality associated with ASCVD. Initial therapy is based on lifestyle management in early childhood, with the addition of statins by age 10 years in children with HeFH and upon diagnosis in children with hoFH. Ongoing research is investigating the efficacy and safety of PCSK9 inhibitors in children with heFH or hoFH.4,5
Radical therapies and novel approaches. Lipoprotein apheresis may be required insevere cases of FH, including in pregnant women, and liver transplantationremains the only curative therapy for patients with severe hoFH.
In ongoing studies, an array of novel treatment approaches are being examined, including functional LDL receptor gene transfer therapy in patients with hoFH and targeted RNA-based therapies to lower elevated lipoporotein(a) levels.6-8
Reviewauthors also emphasized the importance of clinical registries, patient supportgroups and networks, and the need for structured research programs that areunderpinned by actionable dissemination and implementation strategies,research skills and training among service providers, and sustainable fundingmodels. They stated that a major challenge is translating new evidence intohealth policy and routine care. Systems approaches for supporting healthorganizations and providers in addressing these gaps in care and serviceprovision are essential.
We spoke with Seth Shay Martin, MD, MHS, associate professor ofmedicine at the Johns Hopkins University School of Medicine in Baltimore,Maryland, and director of the Advanced Lipid Disorders Program of the Ciccarone Center atJohns Hopkins.
Cardiology Advisor: What are examplesof the latest advances in knowledge or practice pertaining to FH?
Dr Martin: A big advance inpractice has been the introduction of PCSK9 inhibitors. When added to statinsand ezetimibe, this class of medications can lower LDL-C by 60% sometimes the reduction can be lower, but inmy experience the effect is commonly approximately 60%. This leads to patientscoming back to clinic really satisfied.
Cardiology Advisor: What is the optimalapproach for the treatment of these patients, and what are some of the toptreatment challenges?
Dr Martin: The optimal approach is to follow the 2018 American Heart Association/American College of Cardiology multi-society guidelines, which recommend a combination approach of lifestyle modification with first-line maximal statin therapy, followed by the addition of ezetimibe and PCSK9 inhibitors. The LDL-C threshold at which additional therapy should be considered is70 mg/dL in high-riskpatients with ASCVD and FH. In patients with isolated FH (termed severe hypercholesterolemia by the guidelines,based on LDL-C levels 190 mg/dL), the LDL-C threshold is 100 mg/dL.
Cardiology Advisor: What are otherrelevant treatment implications for clinicians who treat these patients?
Dr Martin: One of the joys intaking care of a patient with FH is taking care of a family. It is a geneticdisorder with a 50% chance of being passed from parent to child. It is key toperform cascade testing to identify other members of the family; family visitsto the clinic can be beneficial for all.
Cardiology Advisor: What are remaining needs in thisarea?
Dr Martin: There is a great need for increasing awareness and diagnosis rates for FH. This is what our center is working to do as partners of the FH Foundation and as a CASCADE FH Registry site.
References
See the original post here:
Reviewing Evidence on the Screening, Diagnosis, and Care of Familial Hypercholesterolemia - The Cardiology Advisor
- Department of Genetic Medicine - January 6th, 2025
- Research Services | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Patient Care | Johns Hopkins Department of Genetic Medicine - January 6th, 2025
- Specialty Clinics | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Pediatric Genetic Medicine at Johns Hopkins Children's Center - January 6th, 2025
- Research Centers | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- About Us - Johns Hopkins Medicine - January 6th, 2025
- Graduate Programs & Training | Johns Hopkins Medicine - January 6th, 2025
- Request an Appointment | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021