Using technology first designed by Bryan L. Roth, MD, PhD, the Michael Hooker Distinguished Professor of Pharmacology, researchers at the UNC School of Medicine have engineered a molecular technology that can turn off pain receptors.
Pain is meant to be a defense mechanism. It creates a strong sensation to get us to respond to a stimulus and prevent ourselves from further harm. But, sometimes injuries, nerve damage, or infections can cause long-lasting, severe bouts of pain that can make daily life unbearable.
What if there was a way to simply turn off pain receptors? UNC School of Medicine researchers Bryan L. Roth, MD, PhD, the Michael Hooker Distinguished Professor of Pharmacology, and Grgory Scherrer, PharmD, PhD, associate professor of cell biology and physiology and the UNC Neuroscience Center, have just proved that it is possible.
Using a tool designed by Roth in the early 2000s, the labs have created a new system that reduces acute and tissue-injury-induced inflammatory pain in mouse models. Hye Jin Kang, PhD, an alumnus of the Roth Lab and now associate professor at Yonsei University in Korea, was first author on the research paper. Their results were published in Cell.
What we have developed is potentially a gene therapy approach for chronic pain, said Roth, who is also a member of UNC Lineberger Comprehensive Cancer Center. The idea is that we could deliver this chemogenetic tool through a virus to the neurons that sense the pain. Then, you could just take an inert pill and turn those neurons off, and the pain will literally disappear.
Neuroscientists have been on a decades-long endeavor to build a comprehensive map of the human brain. If every type of cell and every neural pathway could be identified, researchers could make large strides in neurological research including the ability to turn regions of the brain on and off to parse out their functions or mimic drug therapy.
In the 90s, Roth, then professor of biochemistry at Case Western Reserve University (with secondary appointments in Psychiatry, Oncology, and Neurosciences), wanted to find a way to make new, powerful therapeutics that could stop diseases without incurring dissuading side effects. It was a tall order, pharmacologically-speaking. So, Roth decided to use an up-and-coming technique called directed molecular evolution, which essentially uses chemically engineered molecules to speed up the evolution process in nature.
What I realized, and what a lot of people realized, is, if you could make an engineered receptor that had some of the same signaling properties as a drug of interest, and if you could put it in a particular brain region or cell type, then you could mimic the effects of the drug, said Roth, who is now the project director of the NIMH Psychoactive Drug Screening Program. We made some several attempts in the 90s, as did other people, without a great deal of success.
Roth perfected the chemogenetic technology in 2005. With yeast as his model organism, he engineered an artificial protein receptor that could only be unlocked by clozapine N-oxide, a synthetic drug-like compound that had been rendered inert by removing all its therapeutic qualities.
The tool, which is also termed designer receptors exclusively activated by designer drugs, or DREADDs, acts as a molecular lock and key that can only be activated when an inert drug-like compound is introduced to the body. Once activated, the technology can turn neurons on or shut them off, effectively giving researchers the ability to make highly selective changes to the nervous system.
The techniques were revealed to the scientific community in March 2007 in the Proceedings of the National Academy of Sciences. Since then, Roths technology has been used by thousands of researchers worldwide to study the functions of neurons and develop new medications to treat complex neuropsychiatric conditions from depression and substance abuse to epilepsy and schizophrenia.
Every neuron in our body that is not part of central nervous system (CNS) belongs to the peripheral nervous system, or PNS. This division of the nervous system is responsible for relaying our five sensations to the CNS, allows our muscles to move, and aids in involuntary process such as digestion, breathing, and heart beats.
Relatively few studies have been done on the use of chemogenetics in the PNS, simply because of technical difficulty. The CNS and PNS are so intertwined on a cellular, chemical, and genetic level, that it is challenging for researchers to apply their technology solely to the PNS.
Many of the genes that are expressed in the peripheral nervous system are also expressed in the central nervous system, particularly in the brain, said Scherrer, who is also an associate professor in the UNC Department of Pharmacology. We had to perform a multitude of analyses and tests to isolate both a receptor and drug-like compound that only operate in the periphery.
However, after seven long years, the Roth and Scherrer labs found success. Researchers based their new system off of hydroxycarboxylic acid receptor 2 (HCA2), a type of receptor implicated in anti-inflammation. HCA2 receptors are expressed in the PNS and are usually activated by vitamin B3. Using mouse models, researchers altered the HCA2 receptors so that they could only bind to FCH-2296413, an inert drug-like compound that only acts within the PNS.
The chemogenetic system, termed mHCAD, is designed to interfere with nociceptors, making it more difficult for the sensory neurons to transmit pain information to the spinal cord and brain. To be more specific, mHCAD reduces their ability to fire off their electrical and chemical messages. A more intense, more painful stimulus will be needed to cause the perception of pain.
Although the technology is still far from human use, Roth and Scherrer have already thought about how the technology would best be delivered in the body: through gene therapy. Researchers successfully injected mHCAD into a mouse model using genetic technology created by colleague and gene therapy pioneer Jude Samulski, PhD, a distinguished professor of pharmacology at the UNC School of Medicine. The gene therapy leverages the infectious abilities of the adeno-associated virus (AAV), allowing researchers to deliver mHCAD into the pain neurons of interest.
In 2013, the National Institutes of Health formed a partnership between Federal and non-Federal partners with a common goal of mapping every human brain cell and every neural circuit through innovative neurotechnologies called the Brain Research Through Advancing Innovative Neurotechnologies Initiative, or BRAIN Initiative.
Roths chemogenetic technology has played a big role in the BRAIN Initiative. To date, tens of thousands of shipments of viruses and plasmids from the Roth lab have been distributed leading to many thousand publications. Now that the technology has expanded to the peripheral nervous system, researchers can better study the neurons that produce the perception of touch, temperature, body position, pain, and more.
There are dozens of classes of PNS neurons that we dont fully understand, said Scherrer. By using this new innovative tool, we can then define cellular targets that we can engage with to treat diseases. Its going to be an important tool to increase our knowledge in the somatosensory field and beyond.
Media contact:Kendall Daniels Rovinsky, Communications Specialist, UNC Health | UNC School of Medicine
See the original post here:
Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ...
- Patient Dies of Acute Liver Failure After Treatment With Sareptas DMD Gene Therapy Elevidys - CGTLive - March 19th, 2025
- Patient dies following muscular dystrophy gene therapy, Sarepta reports - The Associated Press - March 19th, 2025
- Duchenne patient dies after receiving Sarepta gene therapy - March 19th, 2025
- Liver Failure-Associated Death Reported in Patient Treated With Sarepta Gene Therapy Elevidys - MedCity News - March 19th, 2025
- DoD grant funds Hollings researcher's idea to pursue gene therapy for cancer - Medical University of South Carolina - March 19th, 2025
- Recon: Sarepta reports death of teen who received Duchenne gene therapy; Novartis to slash 427 jobs while revamping cardiovascular business -... - March 19th, 2025
- Data Gaps Leave Long-Term Impact of Ex Vivo Gene Therapy in DMD Uncertain - AJMC.com Managed Markets Network - March 19th, 2025
- CHO Plus Obtains U.S. Patent for Improved Production of Viral Vectors for Gene Therapy - Business Wire - March 19th, 2025
- Sarepta Shares Fall on Report of Patient Death After Gene Therapy - Bloomberg - March 19th, 2025
- Hologen AI commits up to $430M to help take MeiraGTx's Parkinson's gene therapy through phase 3 and beyond - Fierce Biotech - March 19th, 2025
- Duchenne patient on Sareptas gene therapy dies - The Business Journals - March 19th, 2025
- Im Unstoppable: New gene therapy cures first New Yorker of sickle cell anemia - PIX11 New York News - March 19th, 2025
- Boost in cancer treatment: PGI working on lab for stem cell, gene therapies - The Times of India - March 19th, 2025
- Man Cured Of Sickle Cell Disease In New York Thanks To New Gene Therapy - Forbes - March 19th, 2025
- Sarepta says teen died after its gene therapy treatment By Reuters - Investing.com - March 19th, 2025
- Innovative Gene Therapy Approach Drives Buy Rating for Insmed in DMD Treatment - TipRanks - March 19th, 2025
- Sarepta says patient dies after treatment with gene therapy - TradingView - March 19th, 2025
- Sarepta tumbles after patient dies following gene therapy treatment - TradingView - March 19th, 2025
- MeiraGTx teams with cryptic AI startup, co-founded by Eric Schmidt, to advance Parkinson's gene therapy - Endpoints News - March 19th, 2025
- Sickle cell anemia patient reunites with Long Island doctors whose gene therapy treatments made him symptom-free - Newsday - March 19th, 2025
- Extracellular vesicles for the delivery of gene therapy - Nature.com - March 9th, 2025
- Around the Helix: Cell and Gene Therapy Company Updates March 5, 2025 - CGTLive - March 9th, 2025
- Inside the secret island where wealthy people go to alter their DNA - Daily Mail - March 9th, 2025
- Regenerons Gene Therapy DB-OTO Trial Shows Promising Hearing Improvement - The Hearing Review - March 9th, 2025
- Global Cell and Gene Therapy Manufacturing Market to Reach ~USD 10 Billion by 2032 | DelveInsight - GlobeNewswire - March 9th, 2025
- College Station gene therapy company partners with nonprofit to develop treatments for rare diseases - KBTX - March 9th, 2025
- World Hearing Day 2025: Looking Back at Progress in Gene Therapy - CGTLive - March 9th, 2025
- Reflecting on a milestone year for cell and gene therapies - Pharmaceutical Technology - March 9th, 2025
- Q&A: Whats Next for Hemophilia Gene Therapy? | Newswise - Newswise - March 9th, 2025
- 'Llife-changing' gene therapy in London partially restores CT child's sight - CT Insider - March 9th, 2025
- The Genesis of Cell Therapy: Bridging Traditional Pharmacology and Gene Therapy - Technology Networks - March 9th, 2025
- Regenxbio at TD Cowen Conference: Gene Therapy Advancements - Investing.com - March 9th, 2025
- Anova Announces First Patient Enrolled to Phase 1/2a Study of DB107 for the Treatment of High-Grade Gliomas - Business Wire - March 9th, 2025
- Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS... - March 9th, 2025
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024
- Muscular Dystrophy Association and Coalition to Cure - GlobeNewswire - December 19th, 2024
Tags: