Credit: Online Marketing on Unsplash.
When it comes to applying genomic sequencing in diagnostic medicine, increasing evidence is demonstrating that whole exome sequencing (WES) can sometimes fall short. This is a particular issue when analyzing large segments of DNA from patients and can adversely impact a physician's diagnosis.An alternative to WES is the utilization of a smaller, more targeted genetic test that analyzes a specific panel of genes known to be associated with a certain pathology. These tests are less of a financial burden on healthcare systems and patients and can offer highly accurate results. Targeted NGS is enabling this testing approach, and we're seeing increased adoption of NGS in the clinical diagnostics space.
But what barriers still exist to the full implementation of NGS, and how can we remove them? Technology Networks recently spoke with Luca Quagliata, Ph.D., Global Director of Medical Affairs for Thermo Fisher Scientific, to learn more.Molly Campbell (MC): How is genome sequencing currently utilized in the oncology diagnostics space? What are its limitations?Luca Quagliata (LQ): Sequencing of DNA and RNA is currently used in routine molecular testing for two purposes. Firstly, they are used with the aim of supporting a diagnostic decision, i.e. differential diagnosis (such as PIDGFA mutation status in gastrointestinal stromal cancer. More commonly, they are adopted to complement a pathology report by adding information related to a clinically relevant genomic variant (e.g. mutations in the EGFR gene) that are directly associated with any specific approved drug treatment (for example, BRAF inhibitors for V600E BRAF mutated melanoma patients).Some of the major limitations of genomic testing are related to quality of the starting material for testing (generally known as pre-analytic issues, e.g. tissue fixation), the ability of a given sequencing method to generate usable results (not every sequencing approach is born equal), the capability of interpreting the results (e.g. is the observed genomic variant a pathogenic alteration or is simply benign?) and finally the economic aspect. Who should pay for the test?MC: Why does WES commonly fail to adequately analyze large segments of DNA?LQ: As above mentioned, not all sequencing methods are born equal, WES can be performed using a variety of library preparation kits, possibly leading to substantially different results.1 Unfortunately, no universally accepted standard has been established for WES, especially for oncology applications.Generally, one of the most common issue is related to the sequencing depth, also known as coverage. High coverage allows to gain higher confidence in the generated results, as the genomic examined regions are analyzed multiple times, thus increasing the robustness of the data. However, high coverage comes at the cost of increasing sequencing price. Plus, even in the absence of any financial constraints, increasing coverage indefinitely is simply not possible due to technical limitations, i.e. the input material will define the maximal reachable coverage.
Furthermore, it is well established that, in certain situations, even pushing the coverage a 100-fold higher does not generate any tangible benefit in terms of data analysis output. Finally, a variety of alignment and calling algorithms can be deployed to identify large DNA segments rearrangements. Once again, no standard is strictly defined, thus the varying ability of different algorithms will greatly impact the final result. To conclude, while robust approaches are in place for single nucleotide variants (SNV) or multiple nucleotide variants (MNP), as well as insertions and deletions (INDEL), this is not the case when applying WES to study large DNA segments. Nowadays, microarray-based investigations are very popular for assessment of large genomic rearrangements.MC: Why is a targeted test more suitable in the diagnostics space?LQ: Targeted NGS is most commonly used for routine diagnostics because:
MC: NGS is becoming increasingly easier for patients to access and costs are rapidly declining. In your opinion, will we reach a stage where a genetic test is as common as, say, having a blood test when you visit your healthcare provider?LQ: While the price of NGS, meaning reagents related costs to perform the test, is undoubtedly going down, one should not forget that the largest fraction of NGS cost is generated by the human labor necessary to carry out the analysis. Thus, any technological approach that will reduce human intervention in the process will be the most effective in compressing the overall sequencing cost to enable true democratization of NGS.At Thermo Fisher Scientific, we recently made a significant step in this direction with the launch of the Ion Torrent Genexus System, the first research NGS solution that automates the entire specimen to report workflow in a single day with only two touch points.Having said that, there is no doubt that sequencing will eventually become as common as performing a classical blood check. The question is, rather, when will it happen?
In my opinion, that will largely depend not exclusively on the reduction of the overall NGS cost, but rather our ability to expand our understanding of the genomic variants clinical implications. As for now, only a limited fraction of variants can be clearly classified and associated with either a clinical condition or a drug treatment benefit. In my view, it is rather a matter of knowledge than merely a problem of costs. We use blood testing not only because it is easy and cheap, but because we can generate valuable and meaningful information through it.MC: The number of individuals undergoing direct-to-consumer genetic testing at home is on the rise. In your opinion, what impact is this having on the use of genetic testing in the clinical spaceLQ: Direct-to-consumer (DTC) genetic testing is an interesting recent phenomenon that in my view poses several questions, mainly regarding the quality of the results it provides. Several regulatory agencies have expressed concerns and are now acting with the aim of monitoring this market. In this initial and still immature phase of DTC, I strongly advocate for the implementation of a regulatory framework that should be considered not a barrier to wide genomic testing access but rather a safeguard.Should that framework be implemented, then DTC market expansion will have a positive effect on the use of genetic testing in the clinical space, as an audience of genetic-educated patients will also inevitably push physicians toward the adoption of genomics in medicine.
Should the DTC genetic market be given complete freedom, I am concerned that it would negatively impact genetic testing in the clinical space, as people might be easily convinced that managing this kind of data is simplistic, and thus the value of a controlled and professionally regulated testing approach will lose value. I think of this in relation to the "Dr Google self-medication" phenomenon.MC: What challenges still exist in the use of NGS in diagnostics?LQ: Overall NGS data generation and interpretation is still perceived as being extremely complex. Furthermore, while we are witnessing an increase in policy coverage for NGS testing, reimbursement remains a practical issue as well as NGS results being restricted to very specific indications. Finally, limited medical education and awareness regarding the value of genetic testing remains high in the healthcare community, with a substantial knowledge gap between physicians working at large academic centres and those working in the community setting. It will take a shared collective effort to remove the above-mentioned barriers to allow broad adoption of NGS in routine diagnostics. No single company, as large as it could be, can achieve such results.
We at Thermo Fisher Scientific are on the front-line supporting precision medicine through partnering with a variety of major stakeholders in the field, from patient advocacy groups to medical associations and Pharma.
Luca Quagliata, Ph.D., Global Director of Medical Affairs for Thermo Fisher Scientific, was speaking to Molly Campbell, Science Writer, Technology Networks.References:
1. Clinical Exome Studies Have Inconsistent Coverage, Clinical Chemistry, Volume 66, Issue 1, January 2020, Pages 199206.
Read the rest here:
Removing the Barriers to Broad Adoption of NGS in Diagnostics - Technology Networks
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021
- Genomes, Maps, And How They Affect You - IFLScience - February 1st, 2021
- SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected - PRNewswire - February 1st, 2021
- Are Phages Overlooked Mediators of Health and Disease? - The Scientist - February 1st, 2021
- When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers - Kaiser Health News - February 1st, 2021
- Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and... - February 1st, 2021
- The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib - SurvivorNet - February 1st, 2021
- Genetic Testing: MedlinePlus - January 29th, 2021
- 21 Common Genetic Disorders: Types, Symptoms, Causes ... - January 29th, 2021
- Genetic Counseling Online Course - School of Medicine ... - January 29th, 2021