The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation (Russia, Norway, Israel) or have provisions for cultivation, but no GM products are yet produced (Japan, South Korea). Most countries that do not allow for GMO cultivation do permit research.[1]One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries.[2] Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the USA labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5]
There is a scientific consensus[6][7][8][9] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[10][11][12][13][14] but that each GM food needs to be tested on a case-by-case basis before introduction.[15][16][17] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[18][19][20][21] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[22][23][24][25]
There is no evidence to support the idea that the consumption of approved GM food has a detrimental effect on human health.[26][27][28] Some scientists and advocacy groups, such as Greenpeace and World Wildlife Fund, have however called for additional and more rigorous testing for GM food.[27]
The development of a regulatory framework concerning genetic engineering began in 1975, at Asilomar, California. The first use of Recombinant DNA (rDNA) technology had just been successfully accomplished by Stanley Cohen and Herbert Boyer two years previously and the scientific community recognized that as well as benefits this technology could also pose some risks.[29] The Asilomar meeting recommended a set of guidelines regarding the cautious use of recombinant technology and any products resulting from that technology.[30] The Asilomar recommendations were voluntary, but in 1976 the US National Institute of Health (NIH) formed a rDNA advisory committee.[31] This was followed by other regulatory offices (the United States Department of Agriculture (USDA), Environmental Protection Agency (EPA) and Food and Drug Administration (FDA)), effectively making all rDNA research tightly regulated in the USA.[32]
In 1982 the Organisation for Economic Co-operation and Development (OECD) released a report into the potential hazards of releasing genetically modified organisms (GMOs) into the environment as the first transgenic plants were being developed.[33] As the technology improved and genetically organisms moved from model organisms to potential commercial products the USA established a committee at the Office of Science and Technology (OSTP) to develop mechanisms to regulate the developing technology.[32] In 1986 the OSTP assigned regulatory approval of genetically modified plants in the US to the USDA, FDA and EPA.[34]
The basic concepts for the safety assessment of foods derived from GMOs have been developed in close collaboration under the auspices of the OECD, the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A first joint FAO/WHO consultation in 1990 resulted in the publication of the report Strategies for Assessing the Safety of Foods Produced by Biotechnology in 1991.[35] Building on that, an international consensus was reached by the OECDs Group of National Experts on Safety in Biotechnology, for assessing biotechnology in general, including field testing GM crops.[36] That Group met again in Bergen, Norway in 1992 and reached consensus on principles for evaluating the safety of GM food; its report, The safety evaluation of foods derived by modern technology concepts and principles was published in 1993.[37] That report recommends conducting the safety assessment of a GM food on a case-by-case basis through comparison to an existing food with a long history of safe use. This basic concept has been refined in subsequent workshops and consultations organized by the OECD, WHO, and FAO, and the OECD in particular has taken the lead in acquiring data and developing standards for conventional foods to be used in assessing substantial equivalence.[38][39]
The Cartagena Protocol on Biosafety was adopted on 29 January 2000 and entered into force on 11 September 2003.[40] It is an international treaty that governs the transfer, handling, and use of genetically modified (GM) organisms. It is focused on movement of GMOs between countries and has been called a de facto trade agreement.[41] One hundred and fifty-seven countries are members of the Protocol and many use it as a reference point for their own regulations.[42] Also in 2003 the Codex Alimentarius Commission of the FAO/WHO adopted a set of "Principles and Guidelines on foods derived from biotechnology" to help countries coordinate and standardize regulation of GM food to help ensure public safety and facilitate international trade.[43] and updated its guidelines for import and export of food in 2004,[44]
The European Union first introduced laws requiring GMO's to be labelled in 1997.[45] In 2013, Connecticut became the first state to enact a labeling law in the USA, although it would not take effect until other states followed suit.[46]
Institutions that conduct certain types of scientific research must obtain permission from government authorities and ethical committees before they conduct any experiments. Universities and research institutes generally have a special committee that is responsible for approving any experiments that involve genetic engineering. Many experiments also need permission from a national regulatory group or legislation. All staff must be trained in the use of GMOs and in some laboratories a biological control safety officer is appointed. All laboratories must gain approval from their regulatory agency to work with GMOs and all experiments must be documented.[47] As of 2008 there have been no major accidents with GMOs in the lab.[48]
The legislation covering GMOS was initially covered by adapting existing regulations in place for chemicals or other purposes, with many countries later developing specific policies aimed at genetic engineering.[49] These are often derived from regulations and guidelines in place for the non-GMO version of the organism, although they are more severe. In many countries now the regulations are diverging, even though many of the risks and procedures are similar. Sometimes even different agencies are responsible, notably in the Netherlands where the Ministry of the Environment covers GMOs and the Ministry of Social Affairs covers the human pathogens they are derived from.[48]
There is a near universal system for assessing the relative risks associated with GMOs and other agents to laboratory staff and the community. They are then assigned to one of four risk categories based on their virulence, the severity of disease, the mode of transmission, and the availability of preventive measures or treatments. There are some differences in how these categories are defined, such as the World Health Organisation (WHO) including dangers to animals and the environment in their assessments. When there are varying levels of virulence the regulators base their classification on the highest. Accordingly there are four biosafety levels that a laboratory can fall into, ranging from level 1 (which is suitable for working with agents not associated with disease) to level 4 (working with life threatening agents). Different countries use different nomenclature to describe the levels and can have different requirements for what can be done at each level.[48]
In Europe the use of living GMOs are regulated by the European Directive on the contained use of genetically modified microorganisms (GMMs).[47] The regulations require risk assessments before use of any contained GMOs is started and assurances that the correct controls are in place. It provides the minimal standards for using GMMs, with individual countries allowed to enforce stronger controls.[50] In the UK the Genetically Modified Organisms (Contained Use) Regulations 2014 provides the framework researchers must follow when using GMOs. Other legislation may be applicable depending on what research is carried out. For workplace safety these include the Health and Safety at Work Act 1974, the Management of Health and Safety at Work Regulations 1999, the Carriage of Dangerous Goods legislation and the Control of Substances Hazardous to Health Regulations 2002. Environmental risks are covered by Section 108(1) of the Environmental Protection Act 1990 and The Genetically Modified Organisms (Risk assessment) (Records and Exemptions) Regulations 1996.[51]
In the USA the National Institute of Health (NIH) classifies GMOs into four risk groups. Risk group one is not associated with any diseases, risk group 2 is associated with diseases that are not serious, risk group 3 is associated with serious diseases where treatments are available and risk group 4 is for serious diseases with no known treatments.[47] In 1992 the Occupational Safety and Health Administration determined that its current legislation already adequately covers the safety of laboratory workers using GMOs.[49]
Australia has an exempt dealing for genetically modified organisms that only pose a low risk. These include systems using standard laboratory strains as the hosts, recombinant DNA that does not code for a vertebrate toxin or is not derived from a micro-organism that can cause disease in humans. Exempt dealings usually do not require approval from the national regulator. GMOs that pose a low risk if certain management practices are complied with are classified as notifiable low risk dealings. The final classification is for any uses of GMOs that do not meet the previous criteria. These are known as licensed dealings and include cloning any genes that code for vertebrate toxins or using hosts that are capable of causing disease in humans. Licensed dealings require the approval of the national regulator.[52]
Work with exempt GMOs do not need to be carried out in certified laboratories. All others must be contained in a Physical Containment level 1 (PC1) or Physical Containment level 2 (PC2) laboratories. Laboratory work with GMOs classified as low risk, which include knockout mice, are carried out in PC1 lab. This is the case for modifications that do not confer an advantage to the animal or doesn't secrete any infectious agents. If a laboratory strain that is used isn't covered by exempt dealings or the inserted DNA could code for a pathogenic gene, it must be carried out in a PC2 laboratory.[52]
The approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of GMOs vary from country to country, with some of the most marked differences occurring between the United States and Europe. The United States takes on a less hands-on approach to the regulation of GMOs than in Europe, with the FDA and USDA only looking over pesticide and plant health facets of GMOs.[53] Despite the overall global increase in the production in GMOs, the European Union has still stalled GMOs fully integrating into its food supply.[54] This has definitely affected various countries, including the United States, when trading with the EU.[54][55]
European Union enacted regulatory laws in 2003 that provided possibly the most stringent GMO regulations in the world.[5] All GMOs, along with irradiated food, are considered "new food" and subject to extensive, case-by-case, science-based food evaluation by the European Food Safety Authority (EFSA). The criteria for authorization fall in four broad categories: "safety," "freedom of choice," "labelling," and "traceability."[56]
The European Parliament's Committee on the Environmental, Public Health, and Consumer Protection pushed forward and adopted a "safety first" principle regarding the case of GMOs, calling for any negative health consequences from GMOs to be held liable.
However, although the European Union has had relatively strict regulations regarding the genetically modified food, Europe is now allowing newer versions of modified maize and other agricultural produce. Also, the level of GMO acceptance in the European Union varies across its countries with Spain and Portugal being more permissive of GMOs than France and the Nordic population.[57] One notable exception however is Sweden. In this country, the government has declared that the GMO definition (according to Directive 2001/18/EC[58]) stipulates that foreign DNA needs to be present in an organism for it to qualify as a genetically modified organisms. Organisms that thus have the foreign DNA removed (for example via selective breeding[59]) do not qualify as GMO's, even if gene editing has thus been used to make the organism.[60]
In Europe the EFSA reports to the European Commission who then draft a proposal for granting or refusing the authorisation. This proposal is submitted to the Section on GM Food and Feed of the Standing Committee on the Food Chain and Animal Health and if accepted it will be adopted by the EC or passed on to the Council of Agricultural Ministers. Once in the Council it has three months to reach a qualified majority for or against the proposal, if no majority is reached the proposal is passed back to the EC who will then adopt the proposal.[5] However, even after authorization, individual EU member states can ban individual varieties under a 'safeguard clause' if there are "justifiable reasons" that the variety may cause harm to humans or the environment. The member state must then supply sufficient evidence that this is the case.[61] The Commission is obliged to investigate these cases and either overturn the original registrations or request the country to withdraw its temporary restriction.
The U.S. regulatory policy is governed by the Coordinated Framework for Regulation of Biotechnology[62] The policy has three tenets: "(1) U.S. policy would focus on the product of genetic modification (GM) techniques, not the process itself, (2) only regulation grounded in verifiable scientific risks would be tolerated, and (3) GM products are on a continuum with existing products and, therefore, existing statutes are sufficient to review the products."[63]
For a genetically modified organism to be approved for release in the U.S., it must be assessed under the Plant Protection Act by the Animal and Plant Health Inspection Service (APHIS) agency within the USDA and may also be assessed by the FDA and the EPA, depending on the intended use of the organism. The USDA evaluate the plants potential to become weeds, the FDA reviews plants that could enter or alter the food supply,[64] and the EPA regulates genetically modified plants with pesticide properties, as well as agrochemical residues.[65]
The level of regulation in other countries lies in between Europe and the United States.
Common Market for Eastern and Southern Africa (COMASA) is responsible for assessing the safety of GMOs in most of Africa, although the final decision lies with each individual country.[66]
India and China are the two largest producers of genetically modified products in Asia.[67] The Office of Agricultural Genetic Engineering Biosafety Administration (OAGEBA) is responsible for regulation in China,[68] while in India it is the Institutional Biosafety Committee (IBSC), Review Committee on Genetic Manipulation (RCGM) and Genetic Engineering Approval Committee (GEAC).[69]
Brazil and Argentina are the 2nd and 3rd largest producers of GM food.[70] In Argentine assessment of GM products for release is provided by the National Agricultural Biotechnology Advisory Committee (environmental impact), the National Service of Health and Agrifood Quality (food safety) and the National Agribusiness Direction (effect on trade), with the final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food.[71] In Brazil the National Biosafety Technical Commission is responsible for assessing environmental and food safety and prepares guidelines for transport, importation and field experiments involving GM products, while the Council of Ministers evaluates the commercial and economical issues with release.[71]
Health Canada and the Canadian Food Inspection Agency[72] are responsible for evaluating the safety and nutritional value of genetically modified foods released in Canada.[73]
License applications for the release of all genetically modified organisms in Australia is overseen by the Office of the Gene Technology Regulator, while regulation is provided by the Therapeutic Goods Administration for GM medicines or Food Standards Australia New Zealand for GM food. The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.[74][75]
One of the key issues concerning regulators is whether GM products should be labeled. Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the United States labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5] In the US state of Oregon., voters rejected Measure 27, which would have required labeling of all genetically modified foods.[80] Japan, Malaysia, New Zealand, and Australia require labeling so consumers can exercise choice between foods that have genetically modified, conventional or organic origins.[81]
The Cartagena Protocol sets the requirements for the international trade of GMO's between countries that are signatories to it. Any shipments contain genetically modified organisms that are intended to be used as feed, food or for processing must be identified and a list of the transgenic events be available.
"Substantial equivalence" is a starting point for the safety assessment for GM foods that is widely used by national and international agenciesincluding the Canadian Food Inspection Agency, Japan's Ministry of Health and Welfare and the U.S. Food and Drug Administration, the United Nations Food and Agriculture Organization, the World Health Organization and the OECD.[82]
A quote from FAO, one of the agencies that developed the concept, is useful for defining it: "Substantial equivalence embodies the concept that if a new food or food component is found to be substantially equivalent to an existing food or food component, it can be treated in the same manner with respect to safety (i.e., the food or food component can be concluded to be as safe as the conventional food or food component)".[83] The concept of substantial equivalence also recognises the fact that existing foods often contain toxic components (usually called antinutrients) and are still able to be consumed safelyin practice there is some tolerable chemical risk taken with all foods, so a comparative method for assessing safety needs to be adopted. For instance, potatoes and tomatoes can contain toxic levels of respectively, solanine and alpha-tomatine alkaloids.[84][85]
To decide if a modified product is substantially equivalent, the product is tested by the manufacturer for unexpected changes in a limited set of components such as toxins, nutrients, or allergens that are present in the unmodified food. The manufacturer's data is then assessed by a regulatory agency, such as the U.S. Food and Drug Administration. That data, along with data on the genetic modification itself and resulting proteins (or lack of protein), is submitted to regulators. If regulators determine that the submitted data show no significant difference between the modified and unmodified products, then the regulators will generally not require further food safety testing. However, if the product has no natural equivalent, or shows significant differences from the unmodified food, or for other reasons that regulators may have (for instance, if a gene produces a protein that had not been a food component before), the regulators may require that further safety testing be carried out.[37]
A 2003 review in Trends in Biotechnology identified seven main parts of a standard safety test:[86]
There has been discussion about applying new biochemical concepts and methods in evaluating substantial equivalence, such as metabolic profiling and protein profiling. These concepts refer, respectively, to the complete measured biochemical spectrum (total fingerprint) of compounds (metabolites) or of proteins present in a food or crop. The goal would be to compare overall the biochemical profile of a new food to an existing food to see if the new food's profile falls within the range of natural variation already exhibited by the profile of existing foods or crops. However, these techniques are not considered sufficiently evaluated, and standards have not yet been developed, to apply them.[87]
Transgenic animals have genetically modified DNA. Animals are different from plants in a variety of waysbiology, life cycles, or potential environmental impacts.[88] GM plants and animals were being developed around the same time, but due to the complexity of their biology and inefficiency with laboratory equipment use, their appearance in the market was delayed.[89]
There are six categories that genetically engineered (GE) animals are approved for:[90]
The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.
Domingo, Jos L.; Bordonaba, Jordi Gin (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734742. doi:10.1016/j.envint.2011.01.003. PMID21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.
Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values. 40 (6): 132. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.
And contrast:
Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 15. doi:10.3109/07388551.2015.1130684. ISSN0738-8551. PMID26767435. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.
The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.
and
Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (6): 185155. doi:10.1002/jsfa.7523. PMID26536836. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011).
Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.
Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.
Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.
"REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Archived from the original (PDF) on 7 September 2012. Retrieved March 21, 2017. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.
GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.
"Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.
When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.
Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.
The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.
Originally posted here:
Regulation of genetic engineering - Wikipedia
- 001 Stem Cell Therapy: Age of Human Cell Engineering is Born [Last Updated On: June 25th, 2010] [Originally Added On: June 25th, 2010]
- 002 James A. Shapiro: Purposeful, Targeted Genetic Engineering in Immune System Evolution [Last Updated On: February 7th, 2012] [Originally Added On: February 7th, 2012]
- 003 Promising early results with therapeutic cancer vaccines [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- 004 ‘Scope for innovation in genetic medicine’ [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- 005 Genetic Risk and Stressful Early Infancy Join to Increase Risk for Schizophrenia [Last Updated On: March 26th, 2012] [Originally Added On: March 26th, 2012]
- 006 Innovative cell printing technologies hold promise for tissue engineering R&D [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- 007 SAGE® Labs Creates The First Tissue-Specific Gene Deletion In Rats [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 008 Improved Adult-Derived Human Stem Cells Have Fewer Genetic Changes Than Expected [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- 009 Devangshu Datta: Towards an HIV cure [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- 010 Premier issue of BioResearch Open Access launched by Mary Ann Liebert Inc. publishers [Last Updated On: May 17th, 2012] [Originally Added On: May 17th, 2012]
- 011 Cellular Dynamics Launches MyCell™ Services [Last Updated On: June 7th, 2012] [Originally Added On: June 7th, 2012]
- 012 GEN reports on growth of tissue engineering revenues [Last Updated On: July 11th, 2012] [Originally Added On: July 11th, 2012]
- 013 New therapeutic target for prostate cancer identified [Last Updated On: July 18th, 2012] [Originally Added On: July 18th, 2012]
- 014 Novel pig model may be useful for human cancer studies [Last Updated On: July 24th, 2012] [Originally Added On: July 24th, 2012]
- 015 Should high-dose interleukin-2 continue to be the treatment of choice for metastatic melanoma? [Last Updated On: July 26th, 2012] [Originally Added On: July 26th, 2012]
- 016 Human embryos frozen for 18 years yield viable stem cells suitable for biomedical research [Last Updated On: August 14th, 2012] [Originally Added On: August 14th, 2012]
- 017 New marker for identifying precursors to insulin-producing cells in pancreas [Last Updated On: August 21st, 2012] [Originally Added On: August 21st, 2012]
- 018 3D Biomatrix’s Perfecta3D® Hanging Drop Plates Featured in Prominent Life Science Journals [Last Updated On: October 1st, 2012] [Originally Added On: October 1st, 2012]
- 019 SAGE® Labs, Ekam Imaging, Inc. Partner to Develop Preclinical Imaging Assays to Screen Therapies of Neurodegenerative ... [Last Updated On: October 16th, 2012] [Originally Added On: October 16th, 2012]
- 020 Progress in Cell-SELEX compound screening technology reviewed in BioResearch Open Access [Last Updated On: October 18th, 2012] [Originally Added On: October 18th, 2012]
- 021 26-Medical BiotechnologySG Part Ic. Animal and Human Cloning and Genetic Engineering.mov - Video [Last Updated On: November 1st, 2012] [Originally Added On: November 1st, 2012]
- 022 Bruce Lipton - New Health Paradigm - Video [Last Updated On: November 1st, 2012] [Originally Added On: November 1st, 2012]
- 023 Genetic Engineering Of Mesenchymal Stem Cells - Video [Last Updated On: November 17th, 2012] [Originally Added On: November 17th, 2012]
- 024 Ramble: Simelweis Taboo - Video [Last Updated On: December 11th, 2012] [Originally Added On: December 11th, 2012]
- 025 Genetic Engineering, Stem Cell Research, and Human Cloning - Video [Last Updated On: December 24th, 2012] [Originally Added On: December 24th, 2012]
- 026 genetic engineering | Encyclopedia Britannica [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 027 Sustainable Table | Genetic Engineering [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 028 Genetic engineering - Wikipedia, the free encyclopedia [Last Updated On: May 19th, 2015] [Originally Added On: May 19th, 2015]
- 029 Genetic Engineering : What is Genetic Engineering [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 030 Gene therapy - Wikipedia, the free encyclopedia [Last Updated On: May 21st, 2015] [Originally Added On: May 21st, 2015]
- 031 Genetic Engineering Advantages & Disadvantages - Biology ... [Last Updated On: May 28th, 2015] [Originally Added On: May 28th, 2015]
- 032 Genetic Engineering | Greenpeace International [Last Updated On: May 30th, 2015] [Originally Added On: May 30th, 2015]
- 033 What Is Genetic Engineering? | Union of Concerned Scientists [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- 034 UNL's AgBiosafety for Educators [Last Updated On: June 4th, 2015] [Originally Added On: June 4th, 2015]
- 035 Pros and Cons of Genetic Engineering - Buzzle [Last Updated On: June 19th, 2015] [Originally Added On: June 19th, 2015]
- 036 Genetic Engineering - humans, body, used, process, plants ... [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- 037 What is genetic engineering? - Definition from WhatIs.com [Last Updated On: July 3rd, 2015] [Originally Added On: July 3rd, 2015]
- 038 Genetic engineering: a guide for kids by Tiki the Penguin [Last Updated On: July 6th, 2015] [Originally Added On: July 6th, 2015]
- 039 genetic engineering | Britannica.com [Last Updated On: July 18th, 2015] [Originally Added On: July 18th, 2015]
- 040 Interactives . DNA . Genetic Engineering [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- 041 Genetic Engineering - HowStuffWorks [Last Updated On: September 7th, 2015] [Originally Added On: September 7th, 2015]
- 042 Genetic Engineering - BiologyMad [Last Updated On: September 30th, 2015] [Originally Added On: September 30th, 2015]
- 043 Redesigning the World: Ethical Questions About Genetic ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 044 Genetic Engineering - The New York Times [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 045 History of genetic engineering - Wikipedia, the free ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 046 Articles about Genetic Engineering - latimes [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 047 What Is Genetic Engineering? [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 048 Genetic Engineering - regentsprep.org [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 049 Genetic Engineering - Clackamas Community College [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 050 Genetic Engineering Careers in India : How to become a ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 051 Genetic engineering - Friends of the Earth [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 052 Genetic engineering - Simple English Wikipedia, the free ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 053 Genetic engineering - Memory Alpha - Wikia [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 054 Genetic Engineering - Genetic Diseases [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 055 Genetic Engineering in Agriculture | Union of Concerned ... [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 056 Genetic Engineering (song) - Wikipedia, the free encyclopedia [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 057 Human Genetic Engineering - Popular Issues [Last Updated On: August 4th, 2016] [Originally Added On: August 4th, 2016]
- 058 What is Genetic Engineering? - An elementary introduction ... [Last Updated On: August 27th, 2016] [Originally Added On: August 27th, 2016]
- 059 Recent Articles | Genetic Engineering | The Scientist ... [Last Updated On: August 30th, 2016] [Originally Added On: August 30th, 2016]
- 060 Explore More: Genetic Engineering - iptv.org [Last Updated On: October 6th, 2016] [Originally Added On: October 6th, 2016]
- 061 Greenpeace USA [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- 062 Free genetic engineering Essays and Papers - 123helpme [Last Updated On: November 21st, 2016] [Originally Added On: November 21st, 2016]
- 063 Genetically modified food - Wikipedia [Last Updated On: December 24th, 2016] [Originally Added On: December 24th, 2016]
- 064 Genetic Engineering - News - Science - The New York Times [Last Updated On: January 28th, 2017] [Originally Added On: January 28th, 2017]
- 065 If biofortified crops are goal, both genetic engineering and conventional breeding necessary - Genetic Literacy Project [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- 066 PBS Digital Studios Explores Genetic Engineering In Its First-Ever ... - Tubefilter [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- 067 After Mosquitos, Moths Are the Next Target For Genetic Engineering - Discover Magazine (blog) [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- 068 India: Genetic Engineering, the Commercialization of GM Mustard and the Future of Agriculture - Center for Research on Globalization [Last Updated On: May 16th, 2017] [Originally Added On: May 16th, 2017]
- 069 Genetic engineering through click chemistry - The Biological SCENE [Last Updated On: June 4th, 2017] [Originally Added On: June 4th, 2017]
- 070 21st century veggie burger: 'Bloody-pink and fleshy' thanks to genetic engineering - Genetic Literacy Project [Last Updated On: June 4th, 2017] [Originally Added On: June 4th, 2017]
- 071 Scientists are finding more genes linked to IQ. This doesn't mean we can predict intelligence. - Vox [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- 072 Can Genetic Engineering Put an End to Diamondback Moth Plague ... - Growing Produce [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 073 Purple rice developed by Chinese scientists - Agri-Pulse [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 074 Genetically engineered salmon is coming to America - The Week Magazine [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 075 Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- 076 A Blueprint for Genetically Engineering a Super Coral - Smithsonian [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- 077 Genetic engineering creates an unnaturally blue flower - Engadget [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- 078 Experts Call on US to Start Funding Scientists to Genetically Engineer Human Embryos - Gizmodo [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- 079 Genetic Engineering with 'Strict Guidelines?' Ha! - National Review [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]
- 080 Don't fear the rise of superbabies. Worry about who will own genetic engineering technology. - Chicago Tribune [Last Updated On: August 4th, 2017] [Originally Added On: August 4th, 2017]