regenerative medicine,cartilage: bronchus repair using bioartificial tissue transplantationHospital Clinic of Barcelona/APthe application of treatments developed to replace tissues damaged by injury or disease. These treatments may involve the use of biochemical techniques to induce tissue regeneration directly at the site of damage or the use of transplantation techniques employing differentiated cells or stem cells, either alone or as part of a bioartificial tissue. Bioartificial tissues are made by seeding cells onto natural or biomimetic scaffolds (see tissue engineering). Natural scaffolds are the total extracellular matrixes (ECMs) of decellularized tissues or organs. In contrast, biomimetic scaffolds may be composed of natural materials, such as collagen or proteoglycans (proteins with long chains of carbohydrate), or built from artificial materials, such as metals, ceramics, or polyester polymers. Cells used for transplants and bioartificial tissues are almost always autogeneic (self) to avoid rejection by the patients immune system. The use of allogeneic (nonself) cells carries a high risk of immune rejection and therefore requires tissue matching between donor and recipient and involves the administration of immunosuppressive drugs.
A variety of autogeneic and allogeneic cell and bioartificial tissue transplantations have been performed. Examples of autogeneic transplants using differentiated cells include blood transfusion with frozen stores of the patients own blood and repair of the articular cartilage of the knee with the patients own articular chondrocytes (cartilage cells) that have been expanded in vitro (amplified in number using cell culture techniques in a laboratory). An example of a tissue that has been generated for autogeneic transplant is the human mandible (lower jaw). Functional bioartificial mandibles are made by seeding autogeneic bone marrow cells onto a titanium mesh scaffold loaded with bovine bone matrix, a type of extracellular matrix that has proved valuable in regenerative medicine for its ability to promote cell adhesion and proliferation in transplantable bone tissues. Functional bioartificial bladders also have been successfully implanted into patients. Bioartificial bladders are made by seeding a biodegradable polyester scaffold with autogeneic urinary epithelial cells and smooth muscle cells.
Another example of a tissue used successfully in an autogeneic transplant is a bioartificial bronchus, which was generated to replace damaged tissue in a patient affected by tuberculosis. The bioartificial bronchus was constructed from an ECM scaffold of a section of bronchial tissue taken from a donor cadaver. Differentiated epithelial cells isolated from the patient and chondrocytes derived from mesenchymal stem cells collected from the patients bone marrow were seeded onto the scaffold.
There are few clinical examples of allogeneic cell and bioartificial tissue transplants. The two most common allogeneic transplants are blood-group-matched blood transfusion and bone marrow transplant. Allogeneic bone marrow transplants are often performed following high-dose chemotherapy, which is used to destroy all the cells in the hematopoietic system in order to ensure that all cancer-causing cells are killed. (The hematopoietic system is contained within the bone marrow and is responsible for generating all the cells of the blood and immune system.) This type of bone marrow transplant is associated with a high risk of graft-versus-host disease, in which the donor marrow cells attack the recipients tissues. Another type of allogeneic transplant involves the islets of Langerhans, which contain the insulin-producing cells of the body. This type of tissue can be transplanted from cadavers to patients with diabetes mellitus, but recipients require immunosuppression therapy to survive.
Cell transplant experiments with paralyzed mice, pigs, and nonhuman primates demonstrated that Schwann cells (the myelin-producing cells that insulate nerve axons) injected into acutely injured spinal cord tissue could restore about 70 percent of the tissues functional capacity, thereby partially reversing paralysis.
embryonic stem cell: scientists conducting research on embryonic stem cellsMauricio LimaAFP/Getty ImagesStudies on experimental animals are aimed at understanding ways in which autogeneic or allogeneic adult stem cells can be used to regenerate damaged cardiovascular, neural, and musculoskeletal tissues in humans. Among adult stem cells that have shown promise in this area are satellite cells, which occur in skeletal muscle fibres in animals and humans. When injected into mice affected by dystrophy, a condition characterized by the progressive degeneration of muscle tissue, satellite cells stimulate the regeneration of normal muscle fibres. Ulcerative colitis in mice was treated successfully with intestinal organoids (organlike tissues) derived from adult stem cells of the large intestine. When introduced into the colon, the organoids attached to damaged tissue and generated a normal-appearing intestinal lining.
In many cases, however, adult stem cells such as satellite cells have not been easily harvested from their native tissues, and they have been difficult to culture in the laboratory. In contrast, embryonic stem cells (ESCs) can be harvested once and cultured indefinitely. Moreover, ESCs are pluripotent, meaning that they can be directed to differentiate into any cell type, which makes them an ideal cell source for regenerative medicine.
Studies of animal ESC derivatives have demonstrated that these cells are capable of regenerating tissues of the central nervous system, heart, skeletal muscle, and pancreas. Derivatives of human ESCs used in animal models have produced similar results. For example, cardiac stem cells from heart-failure patients were engineered to express a protein (Pim-1) that promotes cell survival and proliferation. When these cells were injected into mice that had experienced myocardial infarction (heart attack), the cells were found to enhance the repair of injured heart muscle tissue. Likewise, heart muscle cells (cardiomyocytes) derived from human ESCs improved the function of injured heart muscle tissue in guinea pigs.
Derivatives of human ESCs are likely to produce similar results in humans, although these cells have not been used clinically and could be subject to immune rejection by recipients. The question of immune rejection was bypassed by the discovery in 2007 that adult somatic cells (e.g., skin and liver cells) can be converted to ESCs. This is accomplished by transfecting (infecting) the adult cells with viral vectors carrying genes that encode transcription factor proteins capable of reprogramming the adult cells into pluripotent stem cells. Examples of these factors include Oct-4 (octamer 4), Sox-2 (sex-determining region Y box 2), Klf-4 (Kruppel-like factor 4), and Nanog. Reprogrammed adult cells, known as induced pluripotent stem (iPS) cells, are potential autogeneic sources for cell transplantation and bioartificial tissue construction. Such cells have since been created from the skin cells of patients suffering from amyotrophic lateral sclerosis (ALS) and Alzheimer disease and have been used as human models for the exploration of disease mechanisms and the screening of potential new drugs. In one such model, neurons derived from human iPS cells were shown to promote recovery of stroke-damaged brain tissue in mice and rats, and, in another, cardiomyocytes derived from human iPS cells successfully integrated into damaged heart tissue following their injection into rat hearts. These successes indicated that iPS cells could serve as a cell source for tissue regeneration or bioartificial tissue construction.
Scaffolds and soluble factors, such as proteins and small molecules, have been used to induce tissue repair by undamaged cells at the site of injury. These agents protect resident fibroblasts and adult stem cells and stimulate the migration of these cells into damaged areas, where they proliferate to form new tissue. The ECMs of pig small intestine submucosa, pig and human dermis, and different types of biomimetic scaffolds are used clinically for the repair of hernias, fistulas (abnormal ducts or passageways between organs), and burns.
The rest is here:
regenerative medicine | Britannica.com
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024
- Obsidian Therapeutics Receives FDA Regenerative Medicine Advanced Therapy (RMAT) Designation for OBX-115 for the Treatment of Advanced Melanoma -... - September 4th, 2024
- Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox - Cureus - September 4th, 2024
- Somite.ai takes pre-seed to $10M as it eyes to become the OpenAI of stem cell biology - CTech - September 4th, 2024
- Longeveron Announces Positive Type C Meeting with U.S. FDA Regarding Pathway to BLA for Lomecel-B in Hypoplastic Left Heart Syndrome (HLHS) - Yahoo... - September 4th, 2024
- Study Explores Potential Of 3D Printed Regenerative Breast Implants - Forbes - September 4th, 2024
- Nikon Announces New Image Analysis Functions to Empower Drug Discovery Research for Cancer, Neurological Disease, and Regenerative Medicine - PR... - September 4th, 2024
- Trinity researcher scores 800,000 to boost regenerative medicine - SiliconRepublic.com - September 4th, 2024
- Seeing the future: Zebrafish regenerates fully functional photoreceptor cells and restores its vision - EurekAlert - September 4th, 2024
- Regenerative Medicine Industry Projected to Surge to USD 73,084.2 Million by 2033, Growing at an 18.5% CAGR - Future Market Insights - September 4th, 2024
- What is regenerative medicine? | Northwell Health - July 2nd, 2024
- Science Saturday: A regenerative reset for aging - July 2nd, 2024
- Science Saturday: A year of new directions and advancements for ... - March 29th, 2024
- Diverse ways regenerative medicine is advancing health care - March 29th, 2024
- Stem cell-based regenerative medicine - PMC - National Center for ... - February 27th, 2024
- Regenerative medicine | NIST - February 10th, 2024
- San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News - May 17th, 2023
- Regenerative medicine: Current therapies and future directions - April 23rd, 2023
- What Is Regenerative Medicine? | Goals and Applications | ISCRM - April 23rd, 2023
- Important Patient and Consumer Information About Regenerative Medicine ... - April 23rd, 2023
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 23rd, 2023
- About Regenerative Medicine - Center for Regenerative ... - Mayo Clinic - April 7th, 2023
- Regenerative Medicine | National Institutes of Health (NIH) - April 7th, 2023
- Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast - EIN News - April 7th, 2023
- Advancing Safe and Effective Regenerative Medicine Products - March 21st, 2023
- Active Wound Care Market Rising demand for Skin Substitutes to boost the industry (2023-2033) | CAGR of 5.5% - EIN News - March 21st, 2023
- Veterinary Orthopedic Implants Market is estimated to be 421.3 Million by 2029 with a CAGR of 5.3% - By PMI - EIN News - March 21st, 2023
- ASKA Pharmaceutical : February 7 2023 EME and ASKA Announce Collaboration Agreement on Creating Novel PharmaLogical VHH to address an unmet medical... - February 8th, 2023
- A Look At Some Of The Companies Innovating In the Cutting-Edge Regenerative Medicine Field - Yahoo Finance - October 15th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 15th, 2022
- The Alliance for Regenerative Medicine Announces Election of 2023 Officers, Executive Committee, and Board of Directors - GlobeNewswire - October 15th, 2022
- Mathematical model could bring us closer to effective stem cell therapies - Michigan Medicine - October 15th, 2022
- 'We have to find a way': FDA seeks solutions to aid bespoke gene therapy - BioPharma Dive - October 15th, 2022
- American Academy of Stem Cell Physicians to Offer Licensed Physicians Board Examination in Regenerative Medicine - GlobeNewswire - October 15th, 2022
- Discover Medical Advances in Cellular Therapy Research Using Cord Blood for Cancer, HIV, Cerebral Palsy and Autism During World Cord Blood Day 2022 -... - October 15th, 2022
- The Risk-Reward Proposition for CGT Clinical Trials - Applied Clinical Trials Online - October 15th, 2022
- Cell therapy weekly: Ray Therapeutics and Forge Biologics expand partnership - RegMedNet - October 15th, 2022
- FDA Expands Oversight of Cell and Gene Therapies - Pharmaceutical Technology Magazine - October 15th, 2022
- Frequency Therapeutics Completes Enrollment of Phase 2b Study of FX-322 for the Treatment of Sensorineural Hearing Loss - Business Wire - October 15th, 2022
- The Health Benefits Of Sea Moss, According To Experts - Forbes - October 15th, 2022
- ProKidney Announces Multiple Abstracts Selected for Presentation at the American Society of ... - The Bakersfield Californian - October 15th, 2022
- Pain Management & Regenerative Medicine Specialists DFW - September 4th, 2022
- Tissue Engineering and Regenerative Medicine - National Institute of ... - September 4th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry AMD - National Institutes of Health (.gov) - September 4th, 2022
- International Stem Cell and Regenerative Medicine Research and Therapeutic Center in Egypt - Construction Review - September 4th, 2022
- Regenerative Medicine Market to Garner Bursting Revenues [+USD 27.29 Billion] with Top Growing Companies During 2022-2029 - eTurboNews | eTN - September 4th, 2022
- Immusoft Takes First-Ever Engineered B Cell Therapy into Clinic - BioSpace - September 4th, 2022
- Addressing Diversity Barriers to Regenerative Medicine Free Press of Jacksonville - Jacksonville Free Press - September 4th, 2022
- TikoMed's ILB mobilizes and modulates key growth factors that trigger a cascade of neuroprotective mechanisms able to target all... - September 4th, 2022
- Frequency Therapeutics to Participate in September Investor and Medical Conferences - Business Wire - September 4th, 2022
- Can the immortal jellyfish teach us how to reverse aging? - Earth.com - September 4th, 2022
- Applied StemCell Announces the Expansion of its cGMP Manufacturing Facility to Support Cell and Gene Therapy - Business Wire - September 4th, 2022
- Omega Therapeutics Announces Appointment of Rainer Boehm to its Board of Directors - PR Newswire - September 4th, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 4th, 2022
- Regenerative Medicine Partnering 2015 to 2022: Terms and Agreements Entered Into by the Leading Companies Worldwide - ResearchAndMarkets.com -... - August 19th, 2022
- Pain Relief Treatments: The Benefits of Regenerative Medicine From Head to Toe - 30Seconds.com - August 19th, 2022
- FDA Issues Draft Guidance to Facilitate Development of Human Gene Therapy, CAR T Cell, and Regenerative Medicine Products - Wilson Sonsini Goodrich... - August 19th, 2022
- Marco Quarta to present at the 9th Aging Research & Drug Discovery Meeting 2022 - EurekAlert - August 19th, 2022