DURHAM, N.C.--(BUSINESS WIRE)--Precision BioSciences, Inc. (Nasdaq: DTIL), a clinical stage gene editing company developing ARCUS-based ex vivo allogeneic CAR T and in vivo gene editing therapies, today announced it has entered into an exclusive worldwide in vivo gene editing research and development collaboration and license agreement with Novartis Pharma AG (the Agreement). As part of the Agreement, Precision will develop a custom ARCUS nuclease that will be designed to insert, in vivo, a therapeutic transgene at a safe harbor location in the genome as a potential one-time transformative treatment option for diseases including certain hemoglobinopathies such as sickle cell disease and beta thalassemia.
Under the terms of the Agreement, Precision will develop an ARCUS nuclease and conduct in vitro characterization, with Novartis then assuming responsibility for all subsequent research, development, manufacturing and commercialization activities. Novartis will receive an exclusive license to the custom ARCUS nuclease developed by Precision for Novartis to further develop as a potential in vivo treatment option for sickle cell disease and beta thalassemia. Precision will receive an upfront payment of $75 million and is eligible to receive up to an aggregate amount of approximately $1.4 billion in additional payments for future milestones. Precision is also eligible to receive certain research funding and, should Novartis successfully commercialize a therapy from the collaboration, tiered royalties ranging from the mid-single digits to low-double digits on product sales.
We are excited to collaborate with Novartis to bring together the precision and versatility of ARCUS genome editing with Novartis gene therapy expertise and commitment to developing one-time, potentially transformative treatment for hard-to-treat inherited blood disorders, said Michael Amoroso, Chief Executive Officer at Precision BioSciences. This collaboration will build on the unique gene insertion capabilities of ARCUS and illustrates its utility as a premium genome editing platform for potential in vivo drug development. With this Agreement, Precision, either alone or with world-class partners, will have active in vivo gene editing programs for targeted gene insertion and gene deletions in hematopoietic stem cells, liver, muscle and the central nervous system showcasing the distinctive versatility of ARCUS.
We identify here a collaborative opportunity to imagine a unique therapeutic option for patients with hemoglobinopathies, such as sickle cell disease and beta thalassemia a potential one-time treatment administered directly to the patient that would overcome many of the hurdles present today with other therapeutic technologies, said Jay Bradner, President of the Novartis Institutes for Biomedical Research (NIBR), the Novartis innovation engine. We look forward to working with Precision and leveraging the ARCUS technology platform, which could bring a differentiated approach to the treatment of patients with hemoglobinopathies."
The in vivo gene editing approach that we are pursuing for sickle cell disease could have a number of significant advantages over other ex vivo gene therapies currently in development, said Derek Jantz, Ph.D., Chief Scientific Officer and Co-Founder of Precision BioSciences. Perhaps most importantly, it could open the door to treating patients in geographies where stem cell transplant is not a realistic option. We believe that the unique characteristics of the ARCUS platform, particularly its ability to target gene insertion with high efficiency, make it the ideal choice for this project, and we look forward to working with our partners at Novartis to bring this novel therapy to patients.
Upon completion of the transaction, Precision expects that existing cash and cash equivalents, expected operational receipts, and available credit will be sufficient to fund its operating expenses and capital expenditure requirements into Q2 2024.
Precision BioSciences Conference Call and Webcast Information
Precision's management team will host a conference call and webcast tomorrow, June 22, 2022, at 8:00 AM ET to discuss the collaboration. The dial-in conference call numbers for domestic and international callers are (866)-996-7202 and (270)-215-9609, respectively. The conference ID number for the call is 6252688. Participants may access the live webcast on Precision's website https://investor.precisionbiosciences.com/events-and-presentations in the Investors page under Events and Presentations. An archived replay of the webcast will be available on Precision's website.
About ARCUS and Safe harbor ARCUS Nucleases
ARCUS is a proprietary genome editing technology discovered and developed by scientists at Precision BioSciences. It uses sequence-specific DNA-cutting enzymes, or nucleases, that are designed to either insert (knock-in), remove (knock-out), or repair DNA of living cells and organisms. ARCUS is based on a naturally occurring genome editing enzyme, I-CreI, that evolved in the algae Chlamydomonas reinhardtii to make highly specific cuts in cellular DNA. Precision's platform and products are protected by a comprehensive portfolio including nearly 100 patents to date.
Precision can use an ARCUS nuclease to add a healthy copy of a gene (or payload) to a persons genome. The healthy copy of the gene can be inserted at its usual site within the genome, replacing the mutated, disease-causing copy. Alternatively, an ARCUS nuclease can be used to insert a healthy copy of the gene at another site within the genome called a safe harbor that enables production of the healthy gene product without otherwise affecting the patients DNA of gene expression patterns.
About Sickle Cell Disease and Beta Thalassemia
Sickle cell disease (SCD) is a complex genetic disorder that affects the structure and function of hemoglobin, reduces the ability of red blood cells to transport oxygen efficiently and, early on, progresses to a chronic vascular disease.1-4 The disease can lead to acute episodes of pain known as sickle cell pain crises, or vaso-occlusive crises, as well as life-threatening complications.5-7 The condition affects 20 million people worldwide.8 Approximately 80% of individuals with SCD globally live in sub-Saharan Africa and it is estimated that approximately 1,000 children in Africa are born with SCD every day and more than half will die before they reach five.9,10 SCD is also a multisystem disorder and the most common genetic disease in the United States, affecting 1 in 500 African Americans. About 1 in 12 African Americans carry the autosomal recessive mutation, and approximately 300,000 infants are born with sickle cell anemia annually.11 Even with todays best available care, SCD continues to drive premature deaths and disability as this lifelong illness often takes an extreme emotional, physical, and financial toll on patients and their families.12,13
Beta thalassemia is also an inherited blood disorder characterized by reduced levels of functional hemoglobin.14 The condition has three main forms minor, intermedia and major, which indicate the severity of the disease.14 While the symptoms and severity of beta thalassemia varies greatly from one person to another, a beta thalassemia major diagnosis is usually made during the first two years of life and individuals require regular blood transfusions and lifelong medical care to survive.14 Though the disorder is relatively rare in the United States, it is one of the most common autosomal recessive disorders in the world.14 The incidence of symptomatic cases is estimated to be approximately 1 in 100,000 individuals in the general population.14, 15 The frequency of beta-thalassemia mutations varies by regions of the world with the highest prevalence in the Mediterranean, the Middle-East, and Southeast and Central Asia. Approximately 68,000 children are born with beta-thalassemia.16
About Precision BioSciences, Inc.
Precision BioSciences, Inc. is a clinical stage biotechnology company dedicated to improving life (DTIL) with its novel and proprietary ARCUS genome editing platform. ARCUS is a highly precise and versatile genome editing platform that was designed with therapeutic safety, delivery, and control in mind. Using ARCUS, the Companys pipeline consists of multiple ex vivo off-the-shelf CAR T immunotherapy clinical candidates and several in vivo gene editing candidates designed to cure genetic and infectious diseases where no adequate treatments exist. For more information about Precision BioSciences, please visit http://www.precisionbiosciences.com.
Forward-Looking Statements
This press release contains forward-looking statements, as may any related presentations, within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this herein and in any related presentation that do not relate to matters of historical fact should be considered forward-looking statements, including, without limitation, statements regarding the goal of providing a one time, potentially curative treatment for certain hemoglobinopathies, the success of the collaboration with Novartis, including the receipt of any milestone, royalty, or other payments pursuant to and the satisfaction of obligations under the Agreement, clinical and regulatory development and expected efficacy and benefit of our platform and product candidates, expectations about our operational initiatives and business strategy, expectations about achievement of key milestones, and expected cash runway. In some cases, you can identify forward-looking statements by terms such as aim, anticipate, approach, believe, contemplate, could, estimate, expect, goal, intend, look, may, mission, plan, potential, predict, project, should, target, will, would, or the negative thereof and similar words and expressions. Forward-looking statements are based on managements current expectations, beliefs and assumptions and on information currently available to us. Such statements are subject to a number of known and unknown risks, uncertainties and assumptions, and actual results may differ materially from those expressed or implied in the forward-looking statements due to various important factors, including, but not limited to: our ability to become profitable; our ability to procure sufficient funding and requirements under our current debt instruments and effects of restrictions thereunder; risks associated with raising additional capital; our operating expenses and our ability to predict what those expenses will be; our limited operating history; the success of our programs and product candidates in which we expend our resources; our limited ability or inability to assess the safety and efficacy of our product candidates; our dependence on our ARCUS technology; the initiation, cost, timing, progress, achievement of milestones and results of research and development activities, preclinical studies and clinical trials; public perception about genome editing technology and its applications; competition in the genome editing, biopharmaceutical, and biotechnology fields; our or our collaborators ability to identify, develop and commercialize product candidates; pending and potential liability lawsuits and penalties against us or our collaborators related to our technology and our product candidates; the U.S. and foreign regulatory landscape applicable to our and our collaborators development of product candidates; our or our collaborators ability to obtain and maintain regulatory approval of our product candidates, and any related restrictions, limitations and/or warnings in the label of an approved product candidate; our or our collaborators ability to advance product candidates into, and successfully design, implement and complete, clinical or field trials; potential manufacturing problems associated with the development or commercialization of any of our product candidates; our ability to obtain an adequate supply of T cells from qualified donors; our ability to achieve our anticipated operating efficiencies at our manufacturing facility; delays or difficulties in our and our collaborators ability to enroll patients; changes in interim top-line and initial data that we announce or publish; if our product candidates do not work as intended or cause undesirable side effects; risks associated with applicable healthcare, data protection, privacy and security regulations and our compliance therewith; the rate and degree of market acceptance of any of our product candidates; the success of our existing collaboration agreements, and our ability to enter into new collaboration arrangements; our current and future relationships with and reliance on third parties including suppliers and manufacturers; our ability to obtain and maintain intellectual property protection for our technology and any of our product candidates; potential litigation relating to infringement or misappropriation of intellectual property rights; our ability to effectively manage the growth of our operations; our ability to attract, retain, and motivate key executives and personnel; market and economic conditions; effects of system failures and security breaches; effects of natural and manmade disasters, public health emergencies and other natural catastrophic events; effects of COVID-19 pandemic and variants thereof, or any pandemic, epidemic or outbreak of an infectious disease; insurance expenses and exposure to uninsured liabilities; effects of tax rules; risks related to ownership of our common stock and other important factors discussed under the caption Risk Factors in our Quarterly Report on Form 10-Q for the quarterly period ended March 31, 2022, as any such factors may be updated from time to time in our other filings with the SEC, which are accessible on the SECs website at http://www.sec.gov and the Investors page of our website under SEC Filings at investor.precisionbiosciences.com.
References
1 Saraf SL, et al. Paediatr Respir Rev. 2014;15(1):4-12.2 Stuart MJ, et al. Lancet. 2004;364(9442):1343-1360.3 National Institutes of Health (NIH). Sickle cell disease. Bethesda, MD. U.S. National Library of Medicine. 2018:1-7.4 Conran N, Franco-Penteado CF, Costa FF. Hemoglobin. 2009;33(1):1-16.5 Ballas SK, et al. Blood. 2012;120(18):3647-3656.6 Elmariah H, et al. Am J Hematol. 2014(5):530-535.7 Steinberg M. Management of sickle cell disease. N Engl J Med. 1999;340(13):1021-1030.8 National Heart Lung and Blood Institute: What Is Sickle Cell Disease? 9 Odame I. Perspective: We need a global solution. Nature. 2014 Nov;515(7526):S1010 Scott D. Grosse, Isaac Odame, Hani K. Atrash, et al. Sickle Cell Disease in Africa: A Neglected Cause of Early Childhood Mortality. American Journal of Preventive Medicine 41, no. S4 (December 2011): S398-40511 Sedrak A, Kondamudi NP. Sickle Cell Disease. [Updated 2021 Nov 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.12 Sanger M, Jordan L, Pruthi S, et al. Cognitive deficits are associated with unemployment in adults with sickle cell anemia. Journal of Clinical and Experimental Neuropsychology. 2016;38(6):661-671.13 Anim M, Osafo J, Yirdong F. Prevalence of psychological symptoms among adults with sickle cell disease in Korie-Bu Teaching Hospital, Ghana. BMC Psychology. 2016;4(53):1-9.14 NORD Rare Disease Database: Beta Thalassemia 15 Galanello R, Origa R. Orphanet J Rare Dis. 2010;5:1116 Needs T, Gonzalez-Mosquera LF, Lynch DT. Beta Thalassemia. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-.
See the original post here:
Precision BioSciences Announces In Vivo Gene Editing Collaboration with Novartis to Develop Potentially Curative Treatment for Disorders Including...
- BIORESTORATIVE THERAPIES, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS. (form 10-K) - Marketscreener.com - March 29th, 2023
- Induced Pluripotent Stem Cell for the Study and Treatment of ... - Hindawi - December 3rd, 2022
- What Happens When Everyone Realises We Can Live Much Longer? We May Find Out As Soon As 2025 - Forbes - December 3rd, 2022
- INTERNATIONAL STEM CELL CORP Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) - Marketscreener.com - November 17th, 2022
- 3D Cell Culture Market stands at revenue of US$ 1.15 Bn in 2022, and is predicted to surge at a CAGR of 9.8% to hit worth of US$ 2.67 Bn during... - November 17th, 2022
- YUBO INTERNATIONAL BIOTECH LTD Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-Q) - Marketscreener.com - November 17th, 2022
- ACTINIUM PHARMACEUTICALS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATION (form 10-Q) - Marketscreener.com - November 17th, 2022
- Top 10 Best Stem Cell Supplement Brands - Healthtrends - June 26th, 2022
- How Does Stem Cell Therapy Work and What Are the Risks? | ISCRM - June 26th, 2022
- Stem Cell Wellness Kit - June 26th, 2022
- Kangstem Biotech withdraws trial application for stem cell-based osteoarthritis treatment - KBR - June 26th, 2022
- Global Human Embryonic Stem Cell Market to be Driven by the Rapid Technological Advancements in the Forecast Period of 2022-2027 Designer Women -... - June 26th, 2022
- Sana Biotechnology Announces Multiple Preclinical Data Presentations to Showcase Its Hypoimmune Platform, Including in Type 1 Diabetes, at the... - June 26th, 2022
- Efficient terminal erythroid differentiation requires the APC/C cofactor Cdh1 to limit replicative stress in erythroblasts | Scientific Reports -... - June 26th, 2022
- Propanc Biopharma's CSO Hails Dostarlimab's Impressive Results Whilst Acknowledging More Work to Be Done in the Fight Against Cancer - Business Wire - June 26th, 2022
- 10 Years of Immunotherapy: Advances, Innovations, and Better Patient Outcomes - Targeted Oncology - June 26th, 2022
- Embryonic Stem Cell Research: An Ethical Dilemma - January 30th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - January 30th, 2022
- mRNA COVID-19 Vaccine Effectiveness in the Immunocompromised - Medscape - January 30th, 2022
- MaaT Pharma Announces Positive Interim Engraftment Data for Oral Formulation MaaT033 Allowing Early Termination of Phase 1b CIMON Study - Business... - January 30th, 2022
- European Commission Approves Merck's KEYTRUDA (pembrolizumab) as Adjuvant Therapy for Certain Patients With Renal Cell Carcinoma (RCC) Following... - January 30th, 2022
- Targeted Therapy Innovator Foresees New Paradigms in Breast Cancer - OncLive - January 30th, 2022
- Global Circulating Tumor Cells (CTC) Market Growing Demand, Future Trends, Competitive Regions and Forecast 2021 to 2027 The Oxford Spokesman - The... - January 30th, 2022
- Adipose derived mesenchymal stem cell secretome formulation as a biotherapeutic to inhibit growth of drug resistant triple negative breast cancer |... - December 8th, 2021
- All at-risk TN-bound travellers test Covid negative - The New Indian Express - December 8th, 2021
- Good Stocks To Invest In Right Now? 4 Health Care Stocks To Check Out - FW Business - December 8th, 2021
- Pandemic lockdown declined emotional well-being for adults with hearing, vision loss: Study - ETHealthworld.com - December 8th, 2021
- Impact of microbial contamination of haematopoietic stem cells on post-transplant outcomes: A retrospective study from tertiary care centre in India -... - August 17th, 2021
- Longeveron: Time to Buy the Di - GuruFocus.com - August 17th, 2021
- The latest on the Covid-19 pandemic in the US: Live updates - CNN - August 17th, 2021
- How this Holocaust refugee beat Covid-19 against all odds J. - The Jewish News of Northern California - August 17th, 2021
- Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling -... - August 17th, 2021
- Oklahoma 10-year-old in remission after being diagnosed with rare form of leukemia 2 years ago - KFOR Oklahoma City - July 21st, 2021
- Covid: There's a serious problem with how we are testing people for the virus Neale Hanvey MP - The Scotsman - July 21st, 2021
- Profilin 1 Protein and Its Implications for Cancers - Cancer Network - July 21st, 2021
- Homing Technology Delivers Therapy to Cancerous Bone - The Scientist - July 21st, 2021
- Developmental Interest in Allogeneic PlacentaDerived Cell Therapies Expands - OncLive - July 21st, 2021
- Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches - DocWire News - July 21st, 2021
- The World's First Lab-Grown Foie Gras Could Solve This Major Concern - Mashed - July 21st, 2021
- KEYTRUDA (pembrolizumab) Plus Chemotherapy Before Surgery and Continued as a Single Agent After Surgery Showed Statistically Significant Event-Free... - July 21st, 2021
- Human Mesenchymal Stem Cells (hMSC) Market Size 2021 | Global Trends, Business Overview, Challenges, Opportunities and Forecast to 2027 The Bisouv... - March 3rd, 2021
- [Full text] An Update on the Molecular Pathology of Metaplastic Breast Cancer | BCTT - Dove Medical Press - March 3rd, 2021
- 4D Pharma Appointments Paul Maier to the Board as Non-Executive Director - Business Wire - March 3rd, 2021
- Investigative Interventions Gain Ground in GVHD - OncLive - March 3rd, 2021
- Combination Regimens for Multiple Myeloma Show Efficacy in the Transplant-Ineligible Population, According to Dingli - Targeted Oncology - March 3rd, 2021
- Martin Makes Sense of the Rapidly Evolving MCL Treatment Paradigm - OncLive - March 3rd, 2021
- Hoth Therapeutics Expands License Agreement to Include Innovative Cancer and Anaphylactic Treatment - BioSpace - March 3rd, 2021
- Health Matters; Inflammation with Dr. Baumgartner [PODCAST] - WJON News - February 14th, 2021
- G1 Therapeutics gains first FDA nod with myelopreservation therapy Cosela | 2021-02-12 - BioWorld Online - February 14th, 2021
- Kris Gopalakrishnan on innovation - Fortune India - February 14th, 2021
- Change is coming, and at an ever-accelerating pace - Al Jazeera English - January 12th, 2021
- MCL Landscape Adapts to Changes After CAR T-Cell Therapy Approval - OncLive - January 9th, 2021
- 5 questions facing gene therapy in 2021 - BioPharma Dive - January 9th, 2021
- RNA molecules are masters of their own destiny - MIT News - January 9th, 2021
- Global Platelet Rich Plasma and Stem Cell Alopecia Treatment Market: Industry Analysis and Forecast (2019-2026): By indication type, treatment type,... - January 9th, 2021
- Harpoon Therapeutics : Clin Cancer Res 2021; OnlineFirst version Jan 6, 2021 - Marketscreener.com - January 9th, 2021
- Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity - Science Advances - January 5th, 2021
- Versiti Blood Centers and Noodles & Company Serve Up Thanks to Blood Donors - PRNewswire - January 5th, 2021
- January 2021: 2020 Papers of the Year - Environmental Factor Newsletter - January 5th, 2021
- Ozone in the air is bad for birds - Massive Science - January 5th, 2021
- How good are the COVID-19 vaccines? - Massive Science - January 5th, 2021
- Stem cells from cord blood can now be used across many conditions: Mayur Abhaya, MD & CEO, LifeCell Internat.. - ETHealthworld.com - December 28th, 2020
- Allogeneic SCT Benefits Children and Adolescents With Relapsed Anaplastic Large Cell Lymphoma - OncLive - December 28th, 2020
- CalvinAyre.com's most read life stories of 2020 - CalvinAyre.com - December 28th, 2020
- Coronavirus | Over 6,000 travellers from U.K. traced across States - The Hindu - December 28th, 2020
- Exosomes act as messengers and decoys to save healthy cells from viral infection - Massive Science - December 28th, 2020
- Celtics adjust to two-game series designed to reduce team travel - The Boston Globe - December 28th, 2020
- Experts Reflect on Most Impactful FDA Moves of 2020 in Solid Tumors, Hematologic Malignancies - Targeted Oncology - December 28th, 2020
- FDA Resumes eIND Approval for Severe-to-Critical COVID-19 Patients Use of Vyrologix (leronlimab) Following Full Enrollment in CytoDyn's Phase 3 Trial... - December 28th, 2020
- Magenta Therapeutics Announces Commencement of First Phase 2 Clinical Trial of MGTA-145 for Stem Cell Mobilization, Oral Presentation of MGTA-145... - December 12th, 2020
- Daratumumab Regimen Shows Promise in Transplant-Eligible Patients With Newly Diagnosed Myeloma - Targeted Oncology - December 12th, 2020
- HSCT Found Potentially Curative for Some T-Cell Lymphoma Patients - Cancer Therapy Advisor - December 12th, 2020
- Researchers Trace the Origin of Blood Cancer to Early Childhood, Decades before Diagnosis - Yahoo Finance - December 12th, 2020
- ALLO-715, Off-the-Shelf CAR T-Cell Therapy, Produces Early Promise in Multiple Myeloma - Cancer Network - December 12th, 2020
- BeiGene Announces the Approval in China of BLINCYTO (Blinatumomab) for Injection for Adult Patients with Relapsed or Refractory B-Cell Precursor Acute... - December 12th, 2020
- Flintshire youngster goes the extra mile to raise funds for Lymphoma Action | The Leader - LeaderLive - December 12th, 2020
- Meat-Tech Agrees to Acquire Cultured Fat Pioneer 'Peace of Meat' - PRNewswire - December 12th, 2020
- Stem Cell Manufacturing Market Size, Overview with Detailed Analysis, Competitive landscape, Forecast to 2027 - Cheshire Media - December 12th, 2020
- Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American... - December 12th, 2020
- Data Evaluating Tafasitamab with and without Lenalidomide in Combination with R-CHOP in Patients with DLBCL Presented at ASH 2020 - Business Wire - December 12th, 2020