header logo image


Page 905«..1020..904905906907..910920..»

Stem Cell Therapy & Treatment – Diseases and Conditions

July 15th, 2018 12:44 am

Mesenchymal stem cells (MSCs) are found in the bone marrow and are responsible for bone and cartilage repair. On top of that, they can also produce fat cells. Early research suggesting that MSCs could differentiate into many other cell types and that they could also be obtained from a wide variety of tissues other than bone marrow have not been confirmed. There is still considerable scientific debate surrounding the exact nature of the cells (which are also termed Mesenchymal stem cells) obtained from these other tissues.

As of now, no treatments using mesenchymal stem cells are proven to be effective. There are, however, some clinical trials investigating the safety and effectiveness of MSC treatments for repairing bone or cartilage. Other trials are investigating whether MSCs might help repair blood vessel damage linked to heart attacks or diseases such as critical limb ischaemia, but it is not yet clear whether these treatments will be effective.

Several other features of MSCs, such as their potential effect on immune responses in the body to reduce inflammation to help treat transplant rejection or autoimmune diseases are still under thorough investigation. It will take numerous studies to evaluate their therapeutic value in the future.

Go here to see the original:
Stem Cell Therapy & Treatment - Diseases and Conditions

Read More...

Stem Cell Cancer Treatment in Panama City, Panama

July 13th, 2018 9:46 am

This information is intended for general information only and should not be considered as medical advice on the part of Health-Tourism.com. Any decision on medical treatments, after-care or recovery should be done solely upon proper consultation and advice of a qualified physician.

Stem cell cancer treatment

Stem cell cancer treatment is a type of treatment that treats cancer by using stem cell transplant, which is also called peripheral blood stem cell transplant. It is used to try and cure some types of cancer such as myeloma, lymphoma and leukemia. Stem cells are very early blood cells in the bone marrow that develop into red blood cells, white blood cells and platelets. They are needed in order to survive. Your doctor can collect them from a donor or from your blood. After a high dose of treatment which leaves stem cells dead, the stem cells are replaced through an intravenous drip.

Stem cell transplant infuses healthy stem cells into the body to stimulate bone marrow growth, suppress the disease and reduce the possibility of going into remission. Stem cell transplant implies that you can have higher doses of treatment through chemotherapy and radiotherapy. Therefore, the chances of getting cured are higher.

There are two main types of stem cell transplants. You and your doctor will discuss the best choice for you.

This is also known as auto stem cell transplant. Cancer treatment using autologous stem cell transplant uses your own stem cells. It is used mainly to treat myeloma and lymphoma. There is less risk of rejection or graft-versus-host disease, whereby the new donor cells think your cells are foreign and attack them. Ina addition, engraftment is quicker ad side effects are fewer.

How It Works: Your team of doctors collect, freeze and store your own stem cells. You then undergo treatment with chemotherapy or radiation therapy after which your stem cells are thawed and transplanted back into you. You may need to go through the above process twice instead of once. This is known as a tandem or double autologous stem cell transplant.

This type of stem cell transplant is also known as allo stem cell transplant. It involves using stem cells that have been donated. It is mainly used to treat leukemia, aggressive lymphomas and autologous transplants that have failed.

How It Works: Stem cells are donated from a matched donor. You then receive treatment using chemotherapy or radiation therapy after which you receive the donor stem cells.

The type and strength of your high-dose treatment is what will influence any side effects you may have and their severity. Possible side effects include:

After having a stem cell transplant to treat your cancer, you will have regular tests to check your general health. In addition, monitoring the levels of your blood cells, you will have blood tests. Most of the side effects are worse when your blood count is at its lowest. However, as this goes up, the side effects will begin to improve. You will be able to go home when your blood count has reached a safe level.

See the rest here:
Stem Cell Cancer Treatment in Panama City, Panama

Read More...

Pluripotent Stem Cells

July 13th, 2018 9:45 am

By: Ian Murnaghan BSc (hons), MSc - Updated: 13 Feb 2018| *Discuss

The concept of stem cells can seem a complicated one and you may have seen foreign words such as 'pluripotent' written in magazines or discussed on television. Stem cells describe all of the cells that can give rise to the different cells found in tissues. There are however, different types of stem cells. One such type is a pluripotent stem cell.

Approximately four days after fertilisation, the totipotent cells start to specialise and form a cluster of cells known as a blastocyst. The blastocyst has yet another smaller group of cells known as the inner cell mass and it is these inner pluripotent stem cells that will go on to create most of the cells and tissues in the human body. These pluripotent stem cells are therefore different than totipotent stem cells because they don't develop into a complete organism. As such, a pluripotent cell won't give rise to the placenta or other tissues that are vital for foetal development. It will still develop into the other specialised cell types in the human body, such as nerve or heart cells.

You may have also heard the term 'stem cell line.' Stem cells from embryos can be used to create these pluripotent stem cell 'lines,' which are grown in the laboratory or cultured from foetal tissue.

Pluripotent stem cells have a vast potential for the treatment of disease, namely because they give rise to the majority of cell types in the human body. These include muscle, blood, heart and nerve cells. Another potential use for pluripotent stem cells involves the generation of cells and tissues for use in transplantation.

Pluripotent stem cells can evolve into specialised cells that ultimately can replace diseased cells and tissues. Drug research is another area that pluripotent stem cells may benefit. Animals are a commonly used model to assess the safety and use of drugs. Instead of initially testing drugs on animals, they can be evaluated through testing on cells grown from pluripotent stem cells. Those drugs that appear tolerated and safe can then progress to testing on animals and finally, humans.

The positive uses of pluripotent stem cells are enormous but new research and ethical challenges must be taken into account before the public can reap the full benefits. For those who suffer from the many diseases that may be treated by pluripotent stem cells, additional knowledge and research will hopefully come sooner rather than later.

You might also like...

Share Your Story, Join the Discussion or Seek Advice..

ME - 13-Feb-18 @ 5:40 PM

Dr anas - 20-Mar-17 @ 5:37 PM

Aftab ahmad siddiqi - 25-Jan-17 @ 5:07 AM

Ricky - 12-Feb-16 @ 12:22 PM

dev - 16-Sep-15 @ 10:41 PM

Elaine - 14-Aug-15 @ 8:16 AM

ExploreStemCells - 5-Aug-15 @ 11:38 AM

rippa77 - 2-Aug-15 @ 5:02 PM

massawe - 22-May-15 @ 8:46 AM

SAN - 4-Feb-15 @ 2:32 PM

Stemcellgirl1234 - 1-Feb-15 @ 3:08 AM

sri85 - 18-Jun-14 @ 9:26 AM

Micki - 11-May-14 @ 8:20 PM

JDC - 24-Apr-14 @ 6:57 PM

sasha - 28-Mar-14 @ 11:37 AM

Elsheihk - 16-Jul-13 @ 1:14 AM

http://beyouthful.ne - 6-May-13 @ 5:14 AM

NOTPABLO - 2-May-13 @ 6:23 PM

raj - 30-Dec-12 @ 4:51 PM

Jan - 25-Nov-12 @ 11:57 PM

benjie - 7-Sep-12 @ 10:01 PM

djvc - 29-Dec-11 @ 3:26 AM

Title:

(never shown)

Continued here:
Pluripotent Stem Cells

Read More...

Dental Implants Using Stem Cells for Natural Growth

July 12th, 2018 9:46 am

Dental Implants have been used to correct missing or damaged teeth for quite some time. However, in the past, most dental implant procedures have relied on man-made materials to create the replacement teeth. New research may just change all that. Imagine if you could essentially grow your own teeth in as little as 9 weeks. Well, new studies are doing just that.

According to the Hearty Soul:

Researchers at the University of Nottingham and Harvard University have developed a new biomaterial that they say allows damaged pulp in the tooth to regenerate itself and form a protective layer of dentin. This is a major step forward for long-term fillings and helping the tooth prevent infections which could lead to a root canal.

A root canal is given when an injury or large cavitydamages a tooth down to the core, causing infection or inflammation. The dentist numbs the tooth and drills into the infected area. They clean it from the inside then fill the canals with apermanent material known as gutta-percha before capping the crown of the tooth. Its about as fun as it sounds.

Wow, imagine being able to grow your own teeth. Not only does that seem more realistic, the procedure seems pretty straight forward and the result is your own body tissues creating what you need. So how does this work? According to the Health is Wealth of Heart, it is pretty straight forward:

Dr Jeremy Mao, the Edward V. Zegarellu Professor of Dental Medicine at Columbia University Medical Center, explains that a three-dimensional scaffold with growth factor has the potential to regenerate and regrow anatomically correct teeth within just nine weeks after the implantation.

The procedure was developed in the Tissue Engineering and Regenerative Medicine Laboratory at the university. In the process, the bodys own stem cells go toward the scaffold, which consists of completely natural materials. Once the scaffold is colonized with stem cells, the tooth starts growing in the socket, and later merges with the surrounding tissue.

In this way teeth do not grow in a Petri dish, and anatomically correct teeth regenerate by using the bodys own material. This dental treatment offers a faster recovery time and, unlike implantation, a completely natural regrowth process.

While this seems pretty cool, it is not always well received by the general populous. Some do not believe in stem cell manipulation. However, it is believed that this can be a very effective and efficient way of regenerating teeth in the future. This treatment is not currently available but we do think it is something to watch in the future.

Traditional methods of using dental implants for tooth replacement or repair are still your best option. Learn more about it here.

The rest is here:
Dental Implants Using Stem Cells for Natural Growth

Read More...

Will Stem Cells Replace Dental Implants? – verywellhealth.com

July 12th, 2018 9:46 am

For many, a toothache may bring up their deepest and darkest fears. The reality for many is that the dentist can send you through a wave of emotions, to the point that you may end up trying to avoid your appointment entirely.

Problems with your teeth only get worse if left unattended. Thats why the large proportion of people who suffer dental anxiety end up leaving a problem unchecked until its too late. In such cases, you may eventually face the need to replace a lost tooth.

Common diseases like tooth decay and gum disease can lead to tooth loss. Traditionally, dentists have used dental bridges and dentures to replace diseased teeth. Dental implants were one of the late 20th centurys largest innovations in dental treatment. The replacement of teeth with space-age metal seems like weve reached an incredible level of technology.

Butrecent advances in stem cell research have revealed a future where dental implants could become old technology.

You might say that being a human makes us unlucky regarding how many teeth we get in our life. Over your lifetime, you have just two sets of teeth. Deciduous or baby teeth are lost by the time youre 12 or 13 years old. That means your adult teeth have to last you for the rest of your life.

Some other species, meanwhile, have unlimited teeth during their lifetimes. A shark is so fantastically unique at this they can replace teeth in just a few weeks. The idea of a shark's mouth probably leaves you cringing about the one thing more terrifying than the dentist. But sharks are proof of nature's ability to grow new teeth into adulthood.

Scientists have taken this lead and looked into the way that stem cells can be used to grow new teeth in an adult human. Nature may have significant advantages over dental implants. Dental implants, due to cost and complexity, are not a common dental procedure. A procedure involving stem cells may provide a far more accessible and affordable tooth replacement option.

Dental implants, for instance, cant be placed in people with certain conditions. Additionally, many people are fearful of the dental implant process. It requires oral surgery, which has advanced remarkably recently, but despite the rise in technology, dental implants arent without their pitfalls. Some of the potential drawbacks include the following:

So, with sharks in mind, are stem cells the future of replacing teeth?

The body contains many different types of cells. From birth, as a tiny speck, you arent equipped with all the different types of cells required in the body. Stem cells are what help you to create all the different organs and systems that make youyou. They are an undifferentiated cell capable of changing to every cell in your body.

Stem cellscan be found in most tissues of the body and help to create and replenish your body. They are usually buried deep, in difficult to find places. They are often sparse and hidden amongst cells with a similar appearance.

Scientists have found that even teeth hold a reservoir of stem cells, which are found in baby teeth and also adult teeth. These cells have the full ability to replicate themselves.

Dental stem cells may have applications in many fields of medical science due to the compatibility with the bodys immune system. One problem with inserting stem cells is the body may reject them through an immune response. But apart from having potential roles in other medical procedures, the obvious application is actually to replace teeth. Studies are beginning to show tangible pathways to tooth implantation with dental stem cells.

There has been significant progress in the use of stem cells in animal studies. Teeth have successfully grown at Kings College in London. Their research team combined human gum tissue and stem cells from mice teeth that undergo tooth formation. The cells themselves can seek out a blood supply from surrounding tissue to make a live tooth.

Other studies have had teeth successfully implanted into rats. At Harvard's Whys Institute, a research team has found success in re-growing rat teeth. They used a technique using a low-power laser to activate stem cells to regrow tooth structure.

Over at Columbia University, one study has taken it to the next step. Here, researchers were able to guide stem cells to create a three-dimensional scaffold. The results showed that an anatomically complete tooth could grow in about 9 weeks.

The big question with all of these studies is to reproduce the results in humans. Of course, performing dentistry on rats was not without its challenges. While the dentin was incredibly similar to that which grows naturally, it isn't exactly the same as humans.

The biggest challenges facing dental stem cells are reproducing reliable human clinical outcomes. Instead of replacing entire teeth, stem cells may help to heal teeth as an interim step in the dental chair.

For example, teeth are known to contain cells that can heal the dentin layers themselves. There could be some intermediate steps for stem cells to heal teeth. In tooth decay, stem cells may be able to heal a cavity before a tooth requires root canal therapy. Stem cells may be able to repair dental pulp and direct the immune system to remove tooth decay-causing bacteria.

One thing for certain is that we all contain stem cells in our teeth. Instead of simply throwing a tooth in the bin after an extraction, we may be able to extract cells for a future when they can be used to replenish a tooth.

With many people moving to cryopreserve their own cells, it may become standard to store the stem cells held in our teeth. At the moment, baby teeth and wisdom teeth are the best candidates, and these are often the ones that we are losing the most. Healthy teeth contain these fascinating cells and may perform miracles in the dental chair in the future.

Read the original here:
Will Stem Cells Replace Dental Implants? - verywellhealth.com

Read More...

Overview of the Immune System | NIH: National Institute of …

July 12th, 2018 9:45 am

Function

The overall function of the immune system is to prevent or limit infection. An example of this principle is found in immune-compromised people, including those with genetic immune disorders, immune-debilitating infections like HIV, and even pregnant women, who are susceptible to a range of microbes that typically do not cause infection in healthy individuals.

The immune system can distinguish between normal, healthy cells and unhealthy cells by recognizing a variety of "danger" cues called danger-associated molecular patterns (DAMPs). Cells may be unhealthy because of infection or because of cellular damage caused by non-infectious agents like sunburn or cancer. Infectious microbes such as viruses and bacteria release another set of signals recognized by the immune system called pathogen-associated molecular patterns (PAMPs).

Credit: NIAID

Neutrophil (green) ingesting Staphylococcus aureus bacteria (purple).

When the immune system first recognizes these signals, it responds to address the problem. If an immune response cannot be activated when there is sufficient need, problems arise, like infection. On the other hand, when an immune response is activated without a real threat or is not turned off once the danger passes, different problems arise, such as allergic reactions and autoimmune disease.

The immune system is complex and pervasive. There are numerous cell types that either circulate throughout the body or reside in a particular tissue. Each cell type plays a unique role, with different ways of recognizing problems, communicating with other cells, and performing their functions. By understanding all the details behind this network, researchers may optimize immune responses to confront specific issues, ranging from infections to cancer.

All immune cells come from precursors in the bone marrow and develop into mature cells through a series of changes that can occur in different parts of the body.

Skin: The skin is usually the first line of defense against microbes. Skin cells produce and secrete important antimicrobial proteins, and immune cells can be found in specific layers of skin.

Bone marrow: The bone marrow contains stems cells that can develop into a variety of cell types. The common myeloid progenitor stem cell in the bone marrow is the precursor to innate immune cellsneutrophils, eosinophils, basophils, mast cells, monocytes, dendritic cells, and macrophagesthat are important first-line responders to infection.

The common lymphoid progenitor stem cell leads to adaptive immune cellsB cells and T cellsthat are responsible for mounting responses to specific microbes based on previous encounters (immunological memory). Natural killer (NK) cells also are derived from the common lymphoid progenitor and share features of both innate and adaptive immune cells, as they provide immediate defenses like innate cells but also may be retained as memory cells like adaptive cells. B, T, and NK cells also are called lymphocytes.

Bloodstream: Immune cells constantly circulate throughout the bloodstream, patrolling for problems. When blood tests are used to monitor white blood cells, another term for immune cells, a snapshot of the immune system is taken. If a cell type is either scarce or overabundant in the bloodstream, this may reflect a problem.

Thymus: T cells mature in the thymus, a small organ located in the upper chest.

Lymphatic system: The lymphatic system is a network of vessels and tissues composed of lymph, an extracellular fluid, and lymphoid organs, such as lymph nodes. The lymphatic system is a conduit for travel and communication between tissues and the bloodstream. Immune cells are carried through the lymphatic system and converge in lymph nodes, which are found throughout the body.

Lymph nodes are a communication hub where immune cells sample information brought in from the body. For instance, if adaptive immune cells in the lymph node recognize pieces of a microbe brought in from a distant area, they will activate, replicate, and leave the lymph node to circulate and address the pathogen. Thus, doctors may check patients for swollen lymph nodes, which may indicate an active immune response.

Spleen: The spleen is an organ located behind the stomach. While it is not directly connected to the lymphatic system, it is important for processing information from the bloodstream. Immune cells are enriched in specific areas of the spleen, and upon recognizing blood-borne pathogens, they will activate and respond accordingly.

Mucosal tissue: Mucosal surfaces are prime entry points for pathogens, and specialized immune hubs are strategically located in mucosal tissues like the respiratory tract and gut. For instance, Peyer's patches are important areas in the small intestine where immune cells can access samples from the gastrointestinal tract.

Read more:
Overview of the Immune System | NIH: National Institute of ...

Read More...

Biotechnology and the Biotech Industry

July 12th, 2018 9:45 am

Merriam-Webster defines biotechnology as the manipulation (as through genetic engineering) of living organisms or their components to produce useful usually commercial products (as pest resistant crops, new bacterial strains, or novel pharmaceuticals). Although this definition could broadly cover thousands of years of agriculture and animal breeding, the term biotechnology (often abbreviated as biotech) usually means the gene engineering technology that revolutionized the biological sciences starting with Cohen and Boyers demonstration of DNA cloning in their Stanford lab in 1973.

Since the first DNA cloning experiments over 40 years ago, genetic engineering techniques have developed to create engineered biological molecules, genetically designed microorganisms and cells, ways to find new genes and figure out how they work, and even transgenic animals and plants. In the midst of this bioengineering revolution, commercial applications exploded, and an industry developed around techniques like gene cloning, directed mutagenesis, DNA sequencing, RNA interference, biomolecule labeling and detection, and nucleic acid amplification.

The biotech industry broadly segments into the medical and agricultural markets. Although enterprising biotechnology is also being applied to other exciting areas like the industrial production of chemicals and bioremediation, the use in these areas is still specialized and limited. On the other hand, the medical and agricultural industries have each undergone a biotech revolution with newand often controversial research efforts, development programs, and business strategies to discover, alter, or produce novel biomolecules and organisms using bioengineering.

Biotechnology introduced a whole new approach to drug development that did not easily integrate into the chemically-focused approach most of the established pharmaceutical companies were using. This shift precipitated a rash of start-up companies starting with the founding of Cetus (now part of Novartis Diagnostics) and Genentech in the mid-1970s.

Since there was an established venture capital community for the high-tech industry in Silicon Valley, many of the early biotechnology companies also clustered in the San Francisco Bay Area. Over the years, several hundreds of start-up companies have been founded and hot-spots have also developed in the US around Seattle, San Diego, North Carolina's Research Triangle Park, Boston, and Philadelphia, as well as a number of international locations including areas around Berlin, Heidelberg, and Munich in Germany, Oxford and Cambridge in the UK, and the Medicon Valley in eastern Denmark and southern Sweden.

Medical biotech, with revenues exceeding $150 billion annually, receives the bulk of biotech investment and research dollars. Even the term biotech is often used synonymously with this segment. This part of biotech constellates around the drug discovery "pipeline" that starts with basic research to identify genes or proteins associated with particular diseases which could be used as drug targets and diagnostic markers. Once a new gene or protein target is found, thousands of chemicals are screened to find potential drugs that affect the target.

The chemicals that look like they might work as drugs (sometimes known as "hits") then need to be optimized, checked for toxic side effects, and, finally, tested in clinical trials.

Biotech has been instrumental in the initial drug discovery and screening stages. Most major pharmaceutical companies have active target-discovery research programs heavily reliant on biotechnology, and smaller new companies such as Exelixis, BioMarin Pharmaceuticals, and Cephalon do focused drug discovery and development often using unique proprietary techniques. In addition to direct drug development, there are companies like Abbott Diagnostics and Becton-Dickenson that are looking for ways to use new disease-related genes to create new clinical diagnostics.

A lot of these tests identify the most responsive patients for new drugs coming into the market. Also, supporting research for new drugs is a long list of research and lab supply companies that provide basic kits, reagents, and equipment. For example, companies such as Life Technologies, Thermo-Fisher, Promega and a host of others provide lab tools and equipment for bioscience research, and companies such as Molecular Devices and DiscoveRx provide specially engineered cells and detection systems for screening potential new drugs.

The same biotechnology used for drug development can also improve agricultural and food products. However, unlike with pharmaceuticals, genetic engineering did not generate a rash of new ag-biotech start-ups. The difference may be that, despite the technological leap forward, biotech did not fundamentally change the nature of the agricultural industry. Manipulating crops and livestock to optimize genetics to enhance utility and improve yields has been going on for thousands of years. In a way, bioengineering just provides a convenient new method.

Established agricultural companies, such as Dow and Monsanto, simply integrated biotech into their R&D programs.

Most of the focus on ag-biotech is on crop improvement, which, as a business, has been quite successful. Since the first genetically modified corn was introduced in 1994, transgenic crop staples such as wheat, soybean, and tomatoes have become the norm. Now, more than 90% of US-grown corn, soybeans, and cotton are bioengineered. Although lagging behind bioengineered plants, use of biotechnology for farm animal improvement is also pretty prevalent.

Remember Dolly, the first cloned sheep? That was in 1996. Now animal cloning is common, and it's clear transgenic farm animals are on the immediate horizon based on headlines highlighting recent developments on the Federation of Animal Societies' website. Although genetically modified organisms (GMOs) have generated a lot of controversy in recent years, ag-biotech has become pretty well established. According to the 2011 International Service for the Acquisition of Agri-biotech Applications' (ISAAA) 2011 report, 160 million hectares of GMO crops were planted in 2011 with sales of over $160 billion in engineered grain.

Original post:
Biotechnology and the Biotech Industry

Read More...

Assessment | Face Blind UK

July 10th, 2018 1:49 am

As part of current research, work is in progress to establish a formal definition for face blindness and to have the condition formally recognised

For many people with face blindness, once they become aware of the existence of this condition, their lived experience is sufficient proof that they are affected by it. You can check out some of the common indicators of face blindness are listed in our Quiz So you think you may be face blind

However, there are also a number of routes to getting an assessment of your face recognition abilities and difficulties.

There are online tests which can give a provisional indication of whether you may have face blindness.

Famous Faces recognitionhttp://www.faceblind.org/facetests

Test my brain research toolshttp://www.testmybrain.org

These tests can help you learn more about your particular abilities or difficulties, while also participating in scientific research

For a more indepth analysis of your specific difficulties, you can contact one of the research institutes nvestigating prosopagnosia.

However, when volunteering to participate in a research project, you should be aware that research tests and projects are designed primarily for the purpose of furthering specific areas of research, rather than to give you an insight into your particular difficulties, and there is unlikely to be any follow up support.

People with Acquired Prosopagnosia (following a brain injury or trauma), may be referred to a clinical neuropsychologist working within the NHS or private practice, as part of their aftercare.

The British Psychological Society hold a directory of chartered psychologists in private practice.

Read more:
Assessment | Face Blind UK

Read More...

Stem Cell Therapy for Arthritis

July 10th, 2018 1:48 am

Experts are researching ways to use stem cells to treat arthritis in the knee and other joints. Many doctors already use stem cell therapy to treat arthritis, but it is not considered standard practice.

Stem cell therapy is one of several non-surgical treatments for arthritis pain. See Knee Osteoarthritis Treatment

There is a lot of debate around stem cell treatment, and it is helpful for potential patients to understand what stem cells are and the issues surrounding their use in arthritis therapy.

Article continues below

Stem cells are located throughout the body. What makes stem cells special is that they can:

See What Are Stem Cells?

Advocates of stem cell treatments hypothesize that, when placed into a certain environment, stem cells can transform to accommodate a certain need. For example, stem cells that are placed near damaged cartilage are hypothesized to develop into cartilage tissue.

See What Is Cartilage?

Stem cells can be applied during a surgery (such as the surgical repair of a torn knee meniscus) or delivered through injections directly into the arthritis joint.

Watch: Knee Meniscus Tear Video

When administering stem cell injections, many physicians use medical imaging, such as ultrasound, in order to deliver cells precisely to the site of cartilage damage.

The most common type of stem cells used for treating arthritis are mesenchymal stem cells. Mesenchymal stem cells are usually collected from the patients fat tissue, blood, or bone marrow.

The process of collecting cells is often called harvesting.

Bone marrow is usually taken from the pelvic bone using a needle and syringe, a process called bone marrow aspiration. The patient is given a local anesthetic and may also be given a sedative before the procedure.

There are no professional medical guidelines for who can and cannot receive stem cell therapy for arthritis. For now, the decision about who gets stem cell therapy is up to patients and doctors.

See Arthritis Treatment Specialists

There is some evidence that people with severe arthritis can benefit from stem cell therapy.1 Most research indicates that younger patients who have relatively mild osteoarthritis or cartilage damage see the most benefit.2

See What Is Osteoarthritis?

Some doctors have certain criteria for recommending stem cell therapy. For example, they only recommend it to patients who are healthy and have relatively little cartilage damage. Other doctors make recommendations on a case-by-case basis.

Stem cell therapy is a promising but still unproven treatment, and will not be covered by most insurance companies.

Complete Listing of References

See original here:
Stem Cell Therapy for Arthritis

Read More...

Stem Cell Therapy | Advanced Regenerative Orthopedics

July 10th, 2018 1:48 am

Stem Cell Therapy involves the use of stem cells to stimulate the bodys natural repair mechanisms to repair, regenerate or replace damaged cells, tissues and organs. This physician-directed therapy is very safe, ethical and does not entail the use of any fetal or embryonic cells or tissue. It has been described as the future of medicine by many prestigious groups including the National Institutes of Health and the Institute of Medicine.

The field of Stem Cell Therapy continues to evolve, focusing on cures rather than just treatments for essentially all types of chronic diseases and conditions, including diabetes and cardiovascular disease, as well as various forms of arthritis and various orthopedic problems. When cells are transplanted into a patient, they do not stay for more than a few days. However, the cells provide a large and robust stimulus to turn on native repair mechanisms. The number of stem cells present in the body and their functional capacity to repair damaged tissue declines with each advancing decade of life, and chronic diseases further impede their ability to respond to chronic injury or damage in the body. This is why research has led to new solutions, which include the use of umbilical cord blood as the source of cells, which have the most potent ability to generate new tissues without risk of rejection. We at Advanced Regenerative Orthopedics use stem cells that are supplied by an FDA-registered cord blood bank.

Stem Cell Therapy and Tissue Engineering are much simpler and effective options that use very powerful young cells to stimulate the patients own native repair mechanisms to regenerate new cartilage and bone. The physician-directed treatment at ARO is a comprehensive approach to a specific joint with the goal of reducing the disabling pain and increasing function.

At Advanced Regenerative Orthopedics, our goal is to provide minimally invasive treatments along with regenerative techniques to target your bodys natural healing ability. Used as part of our innovative, three-tiered approach, physician-directed arthritis stem cell treatment can help patients of all ages get pain relief, increase their joint mobility and enjoy a higher quality of life.

Stem cell therapy can be an effective treatment for those suffering from a broad range of arthritic conditions. By using stem cells for arthritis, Advanced Regenerative Orthopedics stimulates your bodys natural mechanism to repair, regenerate and replace damaged cells within your joints.

If you live in Tampa, Brandon, St. Petersburg, Clearwater, Lakeland, Sarasota, The Villages, Ocala, or the surrounding areas and are interested in learning more about using stem cells for arthritis or any other joint condition, please contact our courteous and efficient office staff today to schedule an appointment. We look forward to discussing the benefits of physician-directed arthritis stem cell treatment with you and determining the best course of treatment to restore your joint health.

As many of our patients travel to us from outside the state of Florida for our world class procedures, our team is very familiar with managing the care & travel for remote patients.

The rest is here:
Stem Cell Therapy | Advanced Regenerative Orthopedics

Read More...

Russak Personalized Medicine – Primary Care Physician in …

July 10th, 2018 1:44 am

Personalized Adult Primary and Preventive Medicine in Denver, ColoradoFloyd Russak, MD with Katie Bunt, MA(left) and Kimberly Boonstra ( right)Personalized MedicineAbout My Practice

I see patients through my personalized medicine membership practice. This personalized approach to primary care health delivery will change how you perceive your health health and engage with me as your doctor.

Read More

My Clinical Assistant, Katie Bunt (above left) and my Executive Assistant, Renee Collishaw (above right) are at your service. They are committed to exceeding your expectations and helping me help you optimize your health.

As a personalized care program member, you'll enjoy the finest in preventive health coupled with breakthrough diagnostics and treatments.

Read More

You're going to love the convenience of our on-site diagnostic screening and laboratory services! No more wasted time and energy running around town from place to place to meet your healthcare needs.

Read More

Dr. Russak is committed to providing all of his personalized membership patients with the finest in preventive care, breakthrough diagnostics and treatments, rapid access appointments and telemedicine.

He believes that appointments should start on time and last as long as necessary, and that you should have access to a dedicated physician invested in your well-being 24 hours a day, 365 days a year.

At Russak Personalized Medicine, our priority is to deliver quality care to informed patients in a comfortable and convenient setting.

Quality Care

When you have needs for medical care, you need to turn to a doctor who listens and responds an experienced doctor who knows the field and can effectively diagnose and treat your needs a friendly physician who counsels you on the best ways to maintain and improve your health. Our physician(s) meet all these criteria. Plus, you benefit from a dedicated team of trained professionals who give you the individualized attention you deserve.

Informed Patients

Russak Personalized Medicinebelieves that informed patients are better prepared to make decisions regarding their health and well-being.

Comfortable, Convenient Setting

The best care in the world doesnt mean anything if you cant access it. At Russak Personalized Medicine, we strive to make our Greenwood Village office as efficient and convenient as possible. Included in these web pages is information aboutRussak Personalized Medicines office, including our Greenwood Village location, maps, directions, hours, insurance policies, and appointment scheduling. You can even email a request for an appointment right here! We hope you find this website useful and invite you to contact us with your questions at any time.

Read the original here:
Russak Personalized Medicine - Primary Care Physician in ...

Read More...

Types of Adult Stem Cells – Stem Cell Institute

July 9th, 2018 12:43 am

Stem cells reside in adult bone marrow and fat, as well as other tissues and organs of the body including the umbilical cord. These cells have a natural ability to repair damaged tissue, however in people with degenerative diseases they are not released quickly enough to fully repair damaged tissue. In the case of fat stem cells they may not be released at all. The process of actively extracting, concentrating and administering these stem cells has been shown in clinical trials to have beneficial effects in degenerative conditions. Few patients have access to clinical trials. We offer patients and their doctors access to these therapies now. Stem cell treatments are not covered by insurance.

Adult stem cells can be extracted from most tissues in the body, including the bone marrow, fat, and peripheral blood. They can also be isolated from human umbilical cords and placental tissue. Once the cells have been harvested, they are sent to the lab where they are purified and assessed for quality before being reintroduced back in the patient. Common types of adult stem cells are mesenchymal and hematopoietic stem cells.

Umbilical cord mesenchymal stem cells reside in the *umbilical cords of newborn babies. HUCT-MSC stem cells, like all post-natal cells, are adult stem cells.

The Stem Cell Institute utilizes cord-derived mesenchymal stem cells that are separated from the umbilical cord tissue. For certain indications, these cells are expanded into greater numbers at Medistem laboratory in Panama under very strict, internationally recognized guidelines.

Among many other things, mesenchymal stem cells from the umbilical cord tissue are known to help reduce inflammation, modulate the immune system and secrete factors that may help various tissues throughout the body to regenerate.

The bodys immune system is unable to recognize HUCT mesenchymal stem cells as foreign and therefore they are not rejected. Weve treated hundreds of patients with umbilical cord stem cells and there has never been a single instance rejection (graft vs. host disease). HUCT MSCs also proliferate/differentiate more efficiently than older cells, such as those found in the bone marrow and therefore, they are considered to be more potent.

Through retrospective analysis of our cases, weve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them golden cells.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.

Human umbilical cord tissue-derived mesenchymal stem cells (MSCs) that were isolated and grown in our laboratory in Panama to create master cell banks are currently being used in the United States.

These cells serve as the starting material for cellular products used in MSC clinical trials for two Duchennes muscular dystrophy patients under US FDAs designation of Investigational New Drug (IND) for single patient compassionate use. (IND 16026 DMD Single Patient)

The bone marrow stem cell is the most studied of the stem cells, since it was first discovered to in the 1960s. Originally used in bone marrow transplant for leukemias and hematopoietic diseases, numerous studies have now expanded experimental use of these cells for conditions such as peripheral vascular disease, diabetes, heart failure, and other degenerative disorders.

At Stem Cell Institute, we use purified autologous (patients own) mesenchymal stem cells from bone marrow in our spinal cord injury protocol along with umbilical cord tissue mesenchymal stem cells.

Fat stem cells are essentially sequestered and are not available to the rest of the body for repair or immune modulation. Fat derived stem cells have been used for successful treatment of companion animals and horses with bone and joint injuries for the last 10 years with positive results.

Experimental studies suggest fat derived stem cells not only can develop into new tissues but also suppress pathological immune responses as seen in autoimmune diseases. In addition to orthopedic conditions, Stem Cell Institute pioneered treating patients with osteoarthritis, rheumatoid arthritis, multiple sclerosis, and other autoimmune diseases using fat derived stem cells. However, we no longer use a patients own stem cells from fat because weve found that mesenchymal stem cells from umbilical cord tissue are superior.

Dr. Riordan published the first scientific article on treating humans (3 multiple sclerosis patients) with adipose-derived stem cells. We have treated many patients with adipose-derived mesenchymal stem cells in Panama but we no longer do so because we have found that umbilical cord-derived MSCs modulate the immune system and control inflammation better. HUCT MSCs also proliferate much more efficiently.

Articles Authored by our Doctors and Scientists about Fat Derived Stem Cells:

*All donated cords are the by-products of normal, healthy births. Each cord is carefully screened for sterility and infectious diseases under International Blood Bank standards.

Visit link:
Types of Adult Stem Cells - Stem Cell Institute

Read More...

Apoptosis – Wikipedia

July 7th, 2018 4:43 pm

Apoptosis (from Ancient Greek "falling off") is a process of programmed cell death that occurs in multicellular organisms.[2] Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global[vague] mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis.[a] For an average human child between the ages of 8 and 14, approximately 20 to 30 billion cells die a day.[4]

In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process that confers advantages during an organism's lifecycle. For example, the separation of fingers and toes in a developing human embryo occurs because cells between the digits undergo apoptosis. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf and remove before the contents of the cell can spill out onto surrounding cells and cause damage to them.[5]

Because apoptosis cannot stop once it has begun, it is a highly regulated process. Apoptosis can be initiated through one of two pathways. In the intrinsic pathway the cell kills itself because it senses cell stress, while in the extrinsic pathway the cell kills itself because of signals from other cells. Both pathways induce cell death by activating caspases, which are proteases, or enzymes that degrade proteins. The two pathways both activate initiator caspases, which then activate executioner caspases, which then kill the cell by degrading proteins indiscriminately.

Research on apoptosis has increased substantially since the early 1990s. In addition to its importance as a biological phenomenon, defective apoptotic processes have been implicated in a wide variety of diseases. Excessive apoptosis causes atrophy, whereas an insufficient amount results in uncontrolled cell proliferation, such as cancer.Some factors like Fas receptors and caspases promote apoptosis, while some members of the Bcl-2 family of proteins inhibit apoptosis.

German scientist Karl Vogt was first to describe the principle of apoptosis in 1842. In 1885, anatomist Walther Flemming delivered a more precise description of the process of programmed cell death. However, it was not until 1965 that the topic was resurrected. While studying tissues using electron microscopy, John Foxton Ross Kerr at the University of Queensland was able to distinguish apoptosis from traumatic cell death.[6] Following the publication of a paper describing the phenomenon, Kerr was invited to join Alastair R. Currie, as well as Andrew Wyllie, who was Currie's graduate student,[7] at University of Aberdeen. In 1972, the trio published a seminal article in the British Journal of Cancer.[8] Kerr had initially used the term programmed cell necrosis, but in the article, the process of natural cell death was called apoptosis. Kerr, Wyllie and Currie credited James Cormack, a professor of Greek language at University of Aberdeen, with suggesting the term apoptosis. Kerr received the Paul Ehrlich and Ludwig Darmstaedter Prize on March 14, 2000, for his description of apoptosis. He shared the prize with Boston biologist H. Robert Horvitz.[9]

For many years, neither "apoptosis" nor "programmed cell death" was a highly cited term. Two discoveries brought cell death from obscurity to a major field of research: identification of components of the cell death control and effector mechanisms, and linkage of abnormalities in cell death to human disease, in particular cancer.

The 2002 Nobel Prize in Medicine was awarded to Sydney Brenner, Horvitz and John E. Sulston for their work identifying genes that control apoptosis. The genes were identified by studies in the nematode C. elegans and homologues of these genes function in humans to regulate apoptosis.

In Greek, apoptosis translates to the "falling off" of leaves from a tree. Cormack, professor of Greek language, reintroduced the term for medical use as it had a medical meaning for the Greeks over two thousand years before. Hippocrates used the term to mean "the falling off of the bones". Galen extended its meaning to "the dropping of the scabs". Cormack was no doubt aware of this usage when he suggested the name. Debate continues over the correct pronunciation, with opinion divided between a pronunciation with the second p silent ( ap--TOH-sis[11][12]) and the second p pronounced (),[11][13] as in the original Greek.[citation needed] In English, the p of the Greek -pt- consonant cluster is typically silent at the beginning of a word (e.g. pterodactyl, Ptolemy), but articulated when used in combining forms preceded by a vowel, as in helicopter or the orders of insects: diptera, lepidoptera, etc.

In the original Kerr, Wyllie & Currie paper,[8] there is a footnote regarding the pronunciation:

"We are most grateful to Professor James Cormack of the Department of Greek, University of Aberdeen, for suggesting this term. The word "apoptosis" () is used in Greek to describe the "dropping off" or "falling off" of petals from flowers, or leaves from trees. To show the derivation clearly, we propose that the stress should be on the penultimate syllable, the second half of the word being pronounced like "ptosis" (with the "p" silent), which comes from the same root "to fall", and is already used to describe the drooping of the upper eyelid."

The initiation of apoptosis is tightly regulated by activation mechanisms, because once apoptosis has begun, it inevitably leads to the death of the cell. [15] The two best-understood activation mechanisms are the intrinsic pathway (also called the mitochondrial pathway) and the extrinsic pathway. The intrinsic pathway is activated by intracellular signals generated when cells are stressed and depends on the release of proteins from the intermembrane space of mitochondria. The extrinsic pathway is activated by extracellular ligands binding to cell-surface death receptors, which leads to the formation of the death-inducing signaling complex (DISC).

A cell initiates intracellular apoptotic signaling in response to a stress, which may bring about cell suicide. The binding of nuclear receptors by glucocorticoids,[19] heat,[19] radiation,[19] nutrient deprivation,[19] viral infection,[19] hypoxia[19] and increased intracellular calcium concentration,[20][21]for example, by damage to the membrane, can all trigger the release of intracellular apoptotic signals by a damaged cell. A number of cellular components, such as poly ADP ribose polymerase, may also help regulate apoptosis.[22]

Before the actual process of cell death is precipitated by enzymes, apoptotic signals must cause regulatory proteins to initiate the apoptosis pathway. This step allows those signals to cause cell death, or the process to be stopped, should the cell no longer need to die. Several proteins are involved, but two main methods of regulation have been identified: the targeting of mitochondria functionality,[23] or directly transducing the signal via adaptor proteins to the apoptotic mechanisms. An extrinsic pathway for initiation identified in several toxin studies is an increase in calcium concentration within a cell caused by drug activity, which also can cause apoptosis via a calcium binding protease calpain.

The mitochondria are essential to multicellular life. Without them, a cell ceases to respire aerobically and quickly dies. This fact forms the basis for some apoptotic pathways. Apoptotic proteins that target mitochondria affect them in different ways. They may cause mitochondrial swelling through the formation of membrane pores, or they may increase the permeability of the mitochondrial membrane and cause apoptotic effectors to leak out.[19][24] They are very closely related to intrinsic pathway, and tumors arise more frequently through intrinsic pathway than the extrinsic pathway because of sensitivity.[25] There is also a growing body of evidence indicating that nitric oxide is able to induce apoptosis by helping to dissipate the membrane potential of mitochondria and therefore make it more permeable.[26] Nitric oxide has been implicated in initiating and inhibiting apoptosis through its possible action as a signal molecule of subsequent pathways that activate apoptosis.[27][citation needed]

Mitochondrial proteins known as SMACs (second mitochondria-derived activator of caspases) are released into the cell's cytosol following the increase in permeability of the mitochondria membranes. SMAC binds to proteins that inhibit apoptosis (IAPs) thereby deactivating them, and preventing the IAPs from arresting the process and therefore allowing apoptosis to proceed. IAP also normally suppresses the activity of a group of cysteine proteases called caspases,[28] which carry out the degradation of the cell. Therefore, the actual degradation enzymes can be seen to be indirectly regulated by mitochondrial permeability.

Cytochrome c is also released from mitochondria due to formation of a channel, the mitochondrial apoptosis-induced channel (MAC), in the outer mitochondrial membrane,[29] and serves a regulatory function as it precedes morphological change associated with apoptosis.[19] Once cytochrome c is released it binds with Apoptotic protease activating factor 1 (Apaf-1) and ATP, which then bind to pro-caspase-9 to create a protein complex known as an apoptosome. The apoptosome cleaves the pro-caspase to its active form of caspase-9, which in turn activates the effector caspase-3.

MAC (not to be confused with the membrane attack complex formed by complement activation, also commonly denoted as MAC), also called "Mitochondrial Outer Membrane Permeabilization Pore" is regulated by various proteins, such as those encoded by the mammalian Bcl-2 family of anti-apoptopic genes, the homologs of the ced-9 gene found in C. elegans.[30][31] Bcl-2 proteins are able to promote or inhibit apoptosis by direct action on MAC/MOMPP. Bax and/or Bak form the pore, while Bcl-2, Bcl-xL or Mcl-1 inhibit its formation.

Overview of TNF (left) and Fas (right) signalling in apoptosis, an example of direct signal transduction.

Two theories of the direct initiation of apoptotic mechanisms in mammals have been suggested: the TNF-induced (tumor necrosis factor) model and the Fas-Fas ligand-mediated model, both involving receptors of the TNF receptor (TNFR) family[32] coupled to extrinsic signals.

TNF path

TNF-alpha is a cytokine produced mainly by activated macrophages, and is the major extrinsic mediator of apoptosis. Most cells in the human body have two receptors for TNF-alpha: TNFR1 and TNFR2. The binding of TNF-alpha to TNFR1 has been shown to initiate the pathway that leads to caspase activation via the intermediate membrane proteins TNF receptor-associated death domain (TRADD) and Fas-associated death domain protein (FADD). cIAP1/2 can inhibit TNF- signaling by binding to TRAF2. FLIP inhibits the activation of caspase-8.[33] Binding of this receptor can also indirectly lead to the activation of transcription factors involved in cell survival and inflammatory responses.[34] However, signalling through TNFR1 might also induce apoptosis in a caspase-independent manner.[35] The link between TNF-alpha and apoptosis shows why an abnormal production of TNF-alpha plays a fundamental role in several human diseases, especially in autoimmune diseases.

Fas path

The fas receptor (First apoptosis signal) (also known as Apo-1 or CD95) is a transmembrane protein of the TNF family which binds the Fas ligand (FasL).[32] The interaction between Fas and FasL results in the formation of the death-inducing signaling complex (DISC), which contains the FADD, caspase-8 and caspase-10. In some types of cells (type I), processed caspase-8 directly activates other members of the caspase family, and triggers the execution of apoptosis of the cell. In other types of cells (type II), the Fas-DISC starts a feedback loop that spirals into increasing release of proapoptotic factors from mitochondria and the amplified activation of caspase-8.[36]

Common components

Following TNF-R1 and Fas activation in mammalian cells a balance between proapoptotic (BAX,[37] BID, BAK, or BAD) and anti-apoptotic (Bcl-Xl and Bcl-2) members of the Bcl-2 family are established. This balance is the proportion of proapoptotic homodimers that form in the outer-membrane of the mitochondrion. The proapoptotic homodimers are required to make the mitochondrial membrane permeable for the release of caspase activators such as cytochrome c and SMAC. Control of proapoptotic proteins under normal cell conditions of nonapoptotic cells is incompletely understood, but in general, Bax or Bak are activated by the activation of BH3-only proteins, part of the Bcl-2 family.

CaspasesCaspases play the central role in the transduction of ER apoptotic signals. Caspases are proteins that are highly conserved, cysteine-dependent aspartate-specific proteases. There are two types of caspases: initiator caspases, caspase 2,8,9,10,11,12, and effector caspases, caspase 3,6,7. The activation of initiator caspases requires binding to specific oligomeric activator protein. Effector caspases are then activated by these active initiator caspases through proteolytic cleavage. The active effector caspases then proteolytically degrade a host of intracellular proteins to carry out the cell death program.

Caspase-independent apoptotic pathwayThere also exists a caspase-independent apoptotic pathway that is mediated by AIF (apoptosis-inducing factor).[38]

Amphibian frog Xenopus laevis serves as an ideal model system for the study of the mechanisms of apoptosis. In fact, iodine and thyroxine also stimulate the spectacular apoptosis of the cells of the larval gills, tail and fins in amphibians metamorphosis, and stimulate the evolution of their nervous system transforming the aquatic, vegetarian tadpole into the terrestrial, carnivorous frog.[39][40][41][42]

Negative regulation of apoptosis inhibits cell death signaling pathways, helping tumors to evade cell death and developing drug resistance. Many families of proteins act as negative regulators categorized into either antiapoptotic factors, such as IAPs and Bcl-2 proteins or prosurvival factors like cFLIP, BNIP3, FADD, Akt, and NF-B [43].

Many pathways and signals lead to apoptosis, but these converge on a single mechanism that actually causes the death of the cell. After a cell receives stimulus, it undergoes organized degradation of cellular organelles by activated proteolytic caspases. In addition to the destruction of cellular organelles, mRNA is rapidly and globally degraded by a mechanism that is not yet fully characterized.[44] mRNA decay is triggered very early in apoptosis.

A cell undergoing apoptosis shows a series of characteristic morphological changes. Early alterations include:

Apoptosis progresses quickly and its products are quickly removed, making it difficult to detect or visualize on classical histology sections. During karyorrhexis, endonuclease activation leaves short DNA fragments, regularly spaced in size. These give a characteristic "laddered" appearance on agar gel after electrophoresis.[49] Tests for DNA laddering differentiate apoptosis from ischemic or toxic cell death.[50]

Before the apoptotic cell is disposed of, there is a process of disassembly. There are three recognized steps in apoptotic cell disassembly:[52]

The removal of dead cells by neighboring phagocytic cells has been termed efferocytosis.[58]Dying cells that undergo the final stages of apoptosis display phagocytotic molecules, such as phosphatidylserine, on their cell surface.[59] Phosphatidylserine is normally found on the inner leaflet surface of the plasma membrane, but is redistributed during apoptosis to the extracellular surface by a protein known as scramblase.[60] These molecules mark the cell for phagocytosis by cells possessing the appropriate receptors, such as macrophages.[61] The removal of dying cells by phagocytes occurs in an orderly manner without eliciting an inflammatory response.[62] During apoptosis cellular RNA and DNA are separated from each other and sorted to different apoptotic bodies; separation of RNA is initiated as nucleolar segregation.[63]

Many knock-outs have been made in the apoptosis pathways to test the function of each of the proteins. Several caspases, in addition to APAF1 and FADD, have been mutated to determine the new phenotype. In order to create a tumor necrosis factor (TNF) knockout, an exon containing the nucleotides 37045364 was removed from the gene. This exon encodes a portion of the mature TNF domain, as well as the leader sequence, which is a highly conserved region necessary for proper intracellular processing. TNF-/- mice develop normally and have no gross structural or morphological abnormalities. However, upon immunization with SRBC (sheep red blood cells), these mice demonstrated a deficiency in the maturation of an antibody response; they were able to generate normal levels of IgM, but could not develop specific IgG levels. Apaf-1 is the protein that turns on caspase 9 by cleavage to begin the caspase cascade that leads to apoptosis. Since a -/- mutation in the APAF-1 gene is embryonic lethal, a gene trap strategy was used in order to generate an APAF-1 -/- mouse. This assay is used to disrupt gene function by creating an intragenic gene fusion. When an APAF-1 gene trap is introduced into cells, many morphological changes occur, such as spina bifida, the persistence of interdigital webs, and open brain. In addition, after embryonic day 12.5, the brain of the embryos showed several structural changes. APAF-1 cells are protected from apoptosis stimuli such as irradiation. A BAX-1 knock-out mouse exhibits normal forebrain formation and a decreased programmed cell death in some neuronal populations and in the spinal cord, leading to an increase in motor neurons.

The caspase proteins are integral parts of the apoptosis pathway, so it follows that knock-outs made have varying damaging results. A caspase 9 knock-out leads to a severe brain malformation. A caspase 8 knock-out leads to cardiac failure and thus embryonic lethality. However, with the use of cre-lox technology, a caspase 8 knock-out has been created that exhibits an increase in peripheral T cells, an impaired T cell response, and a defect in neural tube closure. These mice were found to be resistant to apoptosis mediated by CD95, TNFR, etc. but not resistant to apoptosis caused by UV irradiation, chemotherapeutic drugs, and other stimuli. Finally, a caspase 3 knock-out was characterized by ectopic cell masses in the brain and abnormal apoptotic features such as membrane blebbing or nuclear fragmentation. A remarkable feature of these KO mice is that they have a very restricted phenotype: Casp3, 9, APAF-1 KO mice have deformations of neural tissue and FADD and Casp 8 KO showed defective heart development, however in both types of KO other organs developed normally and some cell types were still sensitive to apoptotic stimuli suggesting that unknown proapoptotic pathways exist.

In order to perform analysis of apoptotic versus necrotic (necroptotic) cells, one can do analysis of morphology by time-lapse microscopy, flow fluorocytometry, and transmission electron microscopy. There are also various biochemical techniques for analysis of cell surface markers (phosphatidylserine exposure versus cell permeability by flow cytometry), cellular markers such as DNA fragmentation[64] (flow cytometry),[65] caspase activation, Bid cleavage, and cytochrome c release (Western blotting). It is important to know how primary and secondary necrotic cells can be distinguished by analysis of supernatant for caspases, HMGB1, and release of cytokeratin 18. However, no distinct surface or biochemical markers of necrotic cell death have been identified yet, and only negative markers are available. These include absence of apoptotic markers (caspase activation, cytochrome c release, and oligonucleosomal DNA fragmentation) and differential kinetics of cell death markers (phosphatidylserine exposure and cell membrane permeabilization). A selection of techniques that can be used to distinguish apoptosis from necroptotic cells could be found in these references.[66][67][68][69]

The many different types of apoptotic pathways contain a multitude of different biochemical components, many of them not yet understood.[70] As a pathway is more or less sequential in nature, removing or modifying one component leads to an effect in another. In a living organism, this can have disastrous effects, often in the form of disease or disorder. A discussion of every disease caused by modification of the various apoptotic pathways would be impractical, but the concept overlying each one is the same: The normal functioning of the pathway has been disrupted in such a way as to impair the ability of the cell to undergo normal apoptosis. This results in a cell that lives past its "use-by-date" and is able to replicate and pass on any faulty machinery to its progeny, increasing the likelihood of the cell's becoming cancerous or diseased.

A recently described example of this concept in action can be seen in the development of a lung cancer called NCI-H460.[71] The X-linked inhibitor of apoptosis protein (XIAP) is overexpressed in cells of the H460 cell line. XIAPs bind to the processed form of caspase-9, and suppress the activity of apoptotic activator cytochrome c, therefore overexpression leads to a decrease in the amount of proapoptotic agonists. As a consequence, the balance of anti-apoptotic and proapoptotic effectors is upset in favour of the former, and the damaged cells continue to replicate despite being directed to die. Defects in regulation of apoptosis in cancer cells occur often at the level of control of transcription factors. As a particular example, defects in molecules that control transcription factor NF-B in cancer change the mode of transcriptional regulation and the response to apoptotic signals, to curtail dependence on the tissue that the cell belongs. This degree of independence from external survival signals, can enable cancer metastasis.[72]

The tumor-suppressor protein p53 accumulates when DNA is damaged due to a chain of biochemical factors. Part of this pathway includes alpha-interferon and beta-interferon, which induce transcription of the p53 gene, resulting in the increase of p53 protein level and enhancement of cancer cell-apoptosis.[73] p53 prevents the cell from replicating by stopping the cell cycle at G1, or interphase, to give the cell time to repair, however it will induce apoptosis if damage is extensive and repair efforts fail.[74] Any disruption to the regulation of the p53 or interferon genes will result in impaired apoptosis and the possible formation of tumors.

Inhibition of apoptosis can result in a number of cancers, autoimmune diseases, inflammatory diseases, and viral infections. It was originally believed that the associated accumulation of cells was due to an increase in cellular proliferation, but it is now known that it is also due to a decrease in cell death. The most common of these diseases is cancer, the disease of excessive cellular proliferation, which is often characterized by an overexpression of IAP family members. As a result, the malignant cells experience an abnormal response to apoptosis induction: Cycle-regulating genes (such as p53, ras or c-myc) are mutated or inactivated in diseased cells, and further genes (such as bcl-2) also modify their expression in tumors. Some apoptotic factors are vital during mitochondrial respiration e.g. cytochrome C.[75] Pathological inactivation of apoptosis in cancer cells is correlated with frequent respiratory metabolic shifts toward glycolysis (an observation known as the Warburg hypothesis [76]).

Apoptosis in HeLa[b] cells is inhibited by proteins produced by the cell; these inhibitory proteins target retinoblastoma tumor-suppressing proteins.[77] These tumor-suppressing proteins regulate the cell cycle, but are rendered inactive when bound to an inhibitory protein.[77] HPV E6 and E7 are inhibitory proteins expressed by the human papillomavirus, HPV being responsible for the formation of the cervical tumor from which HeLa cells are derived.[78] HPV E6 causes p53, which regulates the cell cycle, to become inactive.[79] HPV E7 binds to retinoblastoma tumor suppressing proteins and limits its ability to control cell division.[79] These two inhibitory proteins are partially responsible for HeLa cells' immortality by inhibiting apoptosis to occur.[80] CDV (Canine Distemper Virus) is able to induce apoptosis despite the presence of these inhibitory proteins. This is an important oncolytic property of CDV: this virus is capable of killing canine lymphoma cells. Oncoproteins E6 and E7 still leave p53 inactive, but they are not able to avoid the activation of caspases induced from the stress of viral infection. These oncolytic properties provided a promising link between CDV and lymphoma apoptosis, which can lead to development of alternative treatment methods for both canine lymphoma and human non-Hodgkin lymphoma. Defects in the cell cycle are thought to be responsible for the resistance to chemotherapy or radiation by certain tumor cells, so a virus that can induce apoptosis despite defects in the cell cycle is useful for cancer treatment.[80]

The main method of treatment for death from signaling-related diseases involves either increasing or decreasing the susceptibility of apoptosis in diseased cells, depending on whether the disease is caused by either the inhibition of or excess apoptosis. For instance, treatments aim to restore apoptosis to treat diseases with deficient cell death, and to increase the apoptotic threshold to treat diseases involved with excessive cell death. To stimulate apoptosis, one can increase the number of death receptor ligands (such as TNF or TRAIL), antagonize the anti-apoptotic Bcl-2 pathway, or introduce Smac mimetics to inhibit the inhibitor (IAPs). The addition of agents such as Herceptin, Iressa, or Gleevec works to stop cells from cycling and causes apoptosis activation by blocking growth and survival signaling further upstream. Finally, adding p53-MDM2 complexes displaces p53 and activates the p53 pathway, leading to cell cycle arrest and apoptosis. Many different methods can be used either to stimulate or to inhibit apoptosis in various places along the death signaling pathway.[81]

Apoptosis is a multi-step, multi-pathway cell-death programme that is inherent in every cell of the body. In cancer, the apoptosis cell-division ratio is altered. Cancer treatment by chemotherapy and irradiation kills target cells primarily by inducing apoptosis.

On the other hand, loss of control of cell death (resulting in excess apoptosis) can lead to neurodegenerative diseases, hematologic diseases, and tissue damage. It is to note that neurons that rely on mitochondrial respiration undergo apoptosis in neurodegenerative diseases such as Alzheimers [82] and Parkinsons [83] (an observation known as the Inverse Warburg hypothesis [84][75] ).Moreover, there is an inverse epidemiological comorbidity between neurodegenerative diseases and cancer.[85] The progression of HIV is directly linked to excess, unregulated apoptosis. In a healthy individual, the number of CD4+ lymphocytes is in balance with the cells generated by the bone marrow; however, in HIV-positive patients, this balance is lost due to an inability of the bone marrow to regenerate CD4+ cells. In the case of HIV, CD4+ lymphocytes die at an accelerated rate through uncontrolled apoptosis, when stimulated.At the molecular level, hyperactive apoptosis can be caused by defects in signaling pathways that regulate the Bcl-2 family proteins. Increased expression of apoptotic proteins such as BIM, or their decreased proteolysis, leads to cell death, and can cause a number of pathologies, depending on the cells where excessive activity of BIM occurs. Cancer cells can escape apoptosis through mechanisms that suppress BIM expression or by increased proteolysis of BIM.[86]

Treatments aiming to inhibit works to block specific caspases. Finally, the Akt protein kinase promotes cell survival through two pathways. Akt phosphorylates and inhibits Bad (a Bcl-2 family member), causing Bad to interact with the 14-3-3 scaffold, resulting in Bcl dissociation and thus cell survival. Akt also activates IKK, which leads to NF-B activation and cell survival. Active NF-B induces the expression of anti-apoptotic genes such as Bcl-2, resulting in inhibition of apoptosis. NF-B has been found to play both an antiapoptotic role and a proapoptotic role depending on the stimuli utilized and the cell type.[87]

The progression of the human immunodeficiency virus infection into AIDS is due primarily to the depletion of CD4+ T-helper lymphocytes in a manner that is too rapid for the body's bone marrow to replenish the cells, leading to a compromised immune system. One of the mechanisms by which T-helper cells are depleted is apoptosis, which results from a series of biochemical pathways:[88]

Cells may also die as direct consequences of viral infections. HIV-1 expression induces tubular cell G2/M arrest and apoptosis.[89] The progression from HIV to AIDS is not immediate or even necessarily rapid; HIV's cytotoxic activity toward CD4+ lymphocytes is classified as AIDS once a given patient's CD4+ cell count falls below 200.[90]

Researchers from Kumamoto University in Japan have developed a new method to eradicate HIV in viral reservoir cells, named "Lock-in and apoptosis." Using the synthesized compound Heptanoylphosphatidyl L-Inositol Pentakisphophate (or L-Hippo) to bind strongly to the HIV protein PR55Gag, they were able to suppress viral budding. By suppressing viral budding, the researchers were able to trap the HIV virus in the cell and allow for the cell to undergo apoptosis (natural cell death). Associate Professor Mikako Fujita has stated that the approach is not yet available to HIV patients because the research team has to conduct further research on combining the drug therapy that currently exists with this "Lock-in and apoptosis" approach to lead to complete recovery from HIV.[91]

Viral induction of apoptosis occurs when one or several cells of a living organism are infected with a virus, leading to cell death. Cell death in organisms is necessary for the normal development of cells and the cell cycle maturation.[92] It is also important in maintaining the regular functions and activities of cells.

Viruses can trigger apoptosis of infected cells via a range of mechanisms including:

Canine distemper virus (CDV) is known to cause apoptosis in central nervous system and lymphoid tissue of infected dogs in vivo and in vitro.[94]Apoptosis caused by CDV is typically induced via the extrinsic pathway, which activates caspases that disrupt cellular function and eventually leads to the cells death.[77] In normal cells, CDV activates caspase-8 first, which works as the initiator protein followed by the executioner protein caspase-3.[77] However, apoptosis induced by CDV in HeLa cells does not involve the initiator protein caspase-8. HeLa cell apoptosis caused by CDV follows a different mechanism than that in vero cell lines.[77] This change in the caspase cascade suggests CDV induces apoptosis via the intrinsic pathway, excluding the need for the initiator caspase-8. The executioner protein is instead activated by the internal stimuli caused by viral infection not a caspase cascade.[77]

The Oropouche virus (OROV) is found in the family Bunyaviridae. The study of apoptosis brought on by Bunyaviridae was initiated in 1996, when it was observed that apoptosis was induced by the La Crosse virus into the kidney cells of baby hamsters and into the brains of baby mice.[95]

OROV is a disease that is transmitted between humans by the biting midge (Culicoides paraensis).[96] It is referred to as a zoonotic arbovirus and causes febrile illness, characterized by the onset of a sudden fever known as Oropouche fever.[97]

The Oropouche virus also causes disruption in cultured cells cells that are cultivated in distinct and specific conditions. An example of this can be seen in HeLa cells, whereby the cells begin to degenerate shortly after they are infected.[95]

With the use of gel electrophoresis, it can be observed that OROV causes DNA fragmentation in HeLa cells. It can be interpreted by counting, measuring, and analyzing the cells of the Sub/G1 cell population.[95] When HeLA cells are infected with OROV, the cytochrome C is released from the membrane of the mitochondria, into the cytosol of the cells. This type of interaction shows that apoptosis is activated via an intrinsic pathway.[92]

In order for apoptosis to occur within OROV, viral uncoating, viral internalization, along with the replication of cells is necessary. Apoptosis in some viruses is activated by extracellular stimuli. However, studies have demonstrated that the OROV infection causes apoptosis to be activated through intracellular stimuli and involves the mitochondria.[95]

Many viruses encode proteins that can inhibit apoptosis.[98] Several viruses encode viral homologs of Bcl-2. These homologs can inhibit proapoptotic proteins such as BAX and BAK, which are essential for the activation of apoptosis. Examples of viral Bcl-2 proteins include the Epstein-Barr virus BHRF1 protein and the adenovirus E1B 19K protein.[99] Some viruses express caspase inhibitors that inhibit caspase activity and an example is the CrmA protein of cowpox viruses. Whilst a number of viruses can block the effects of TNF and Fas. For example, the M-T2 protein of myxoma viruses can bind TNF preventing it from binding the TNF receptor and inducing a response.[100] Furthermore, many viruses express p53 inhibitors that can bind p53 and inhibit its transcriptional transactivation activity. As a consequence, p53 cannot induce apoptosis, since it cannot induce the expression of proapoptotic proteins. The adenovirus E1B-55K protein and the hepatitis B virus HBx protein are examples of viral proteins that can perform such a function.[101]

Viruses can remain intact from apoptosis in particular in the latter stages of infection. They can be exported in the apoptotic bodies that pinch off from the surface of the dying cell, and the fact that they are engulfed by phagocytes prevents the initiation of a host response. This favours the spread of the virus.[100]

Programmed cell death in plants has a number of molecular similarities to that of animal apoptosis, but it also has differences, notable ones being the presence of a cell wall and the lack of an immune system that removes the pieces of the dead cell. Instead of an immune response, the dying cell synthesizes substances to break itself down and places them in a vacuole that ruptures as the cell dies. Whether this whole process resembles animal apoptosis closely enough to warrant using the name apoptosis (as opposed to the more general programmed cell death) is unclear.[102]

The characterization of the caspases allowed the development of caspase inhibitors, which can be used to determine whether a cellular process involves active caspases. Using these inhibitors it was discovered that cells can die while displaying a morphology similar to apoptosis without caspase activation.[103] Later studies linked this phenomenon to the release of AIF (apoptosis-inducing factor) from the mitochondria and its translocation into the nucleus mediated by its NLS (nuclear localization signal). Inside the mitochondria, AIF is anchored to the inner membrane. In order to be released, the protein is cleaved by a calcium-dependent calpain protease.

In 2003, a method was developed for predicting subcellular location of apoptosis proteins.[104]Subsequent to this, various modes of Chou's pseudo amino acid composition were developed for improving the quality of predicting subcellular localization of apoptosis proteins based on their sequence information alone.[105][106][107][108]

Continued here:
Apoptosis - Wikipedia

Read More...

About Regenerative Medicine – Center for Regenerative …

July 7th, 2018 4:43 pm

Though great progress has been made in medicine, current evidence-based and palliative treatments are increasingly unable to keep pace with patients' needs, especially given our aging population. There are few effective ways to treat the root causes of many diseases, injuries and congenital conditions. In many cases, clinicians can only manage patients' symptoms using medications or devices.

Regenerative medicine is a game-changing area of medicine with the potential to fully heal damaged tissues and organs, offering solutions and hope for people who have conditions that today are beyond repair.

Regenerative medicine itself isn't new the first bone marrow and solid-organ transplants were done decades ago. But advances in developmental and cell biology, immunology, and other fields have unlocked new opportunities to refine existing regenerative therapies and develop novel ones.

The Center for Regenerative Medicine takes three interrelated approaches:

Rejuvenation. Rejuvenation means boosting the body's natural ability to heal itself. Though after a cut your skin heals within a few days, other organs don't repair themselves as readily.

But cells in the body once thought to be no longer able to divide (terminally differentiated) including the highly specialized cells constituting the heart, lungs and nerves have been shown to be able to remodel and possess some ability to self-heal. Teams within the center are studying how to enhance self-healing processes.

Replacement. Replacement involves using healthy cells, tissues or organs from a living or deceased donor to replace damaged ones. Organ transplants, such as heart and liver transplants, are good examples.

The center aims to expand opportunities for transplants by finding ways to overcome the ongoing donor shortage, the need for immunosuppression and challenges with organ rejection.

Regenerative medicine holds the promise of definitive, affordable health care solutions that heal the body from within.

Stem cells have the ability to develop through a process called differentiation into many different types of cells, such as skin cells, brain cells, lung cells and so on. Stem cells are a key component of regenerative medicine, as they open the door to new clinical applications.

Regenerative medicine teams are studying a variety of stem cells, including adult and embryonic stem cells. Also being studied are various types of progenitor cells, such as those found in umbilical cord blood, and bioengineered cells called induced pluripotent stem cells. Each type has unique qualities, with some being more versatile than others.

Many of the regenerative therapies under development in the Center for Regenerative Medicine begin with the particular patient's own cells. For example, a patient's own skin cells may be collected, reprogrammed in a laboratory to give them certain characteristics, and delivered back to the patient to treat his or her disease.

Stem cells and their use in regenerative medicine have been in the media a lot lately. But what exactly does it mean? Physicians and researchers in the Center for Regenerative Medicine say it has to do with developing completely new ways to treat and manage chronic diseases such as diabetes, heart failure, and degenerative nerve, bone and joint conditions.

.

Read more here:
About Regenerative Medicine - Center for Regenerative ...

Read More...

What Is Regenerative Medicine? | Regenerative Medicine at …

July 7th, 2018 4:43 pm

Regenerative medicine seeks to replace tissue or organs that have been damaged by disease, trauma, or congenital issues, vs. the current clinical strategy that focuses primarily on treating the symptoms. The tools used to realize these outcomes are tissue engineering, cellular therapies, and medical devices and artificial organs.

Combinations of these approaches can amplify our natural healing process in the places it is needed most, or take over the function of a permanently damaged organ. Regenerative medicine is a relatively new field that brings together experts in biology, chemistry, computer science, engineering, genetics, medicine, robotics, and other fields to find solutions to some of the most challenging medical problems faced by humankind.

When injured or invaded by disease, our bodies have the innate response to heal and defend. What if it was possible to harness the power of the body to heal and then accelerate it in a clinically relevant way? What if we could help the body heal better?

The promising field of Regenerative Medicine is working to restore structure and function of damaged tissues and organs. It is also working to create solutions for organs that become permanently damaged. The goal of this approach is to find a way to cure previously untreatable injuries and diseases.

1. Tissue Engineering and BiomaterialsTissue engineering is a strategy where biologically compatible scaffolds are implanted in the body at the site where new tissue is to be formed. If the scaffold is in the geometric shape of the tissue that needs to be generated, and the scaffold attracts cells the outcome is new tissue in the shape desired. If the newly forming tissue is subjected to exercise as it forms, the outcome can be new functional engineered issue.

Millions of patients have been treated with some form of tissue engineered devices, yet the field is in its infancy. The primary success stories have been with soft tissue regeneration. To learn more about some of the promising studies and clinical trials involving tissue engineering,click here.

2. Cellular TherapiesMany millions of adult stem cells are found in every human. Our body uses stem cells as one way of repairing itself. Studies have illustrated that if adult stem cells are harvested and then injected at the site of diseased or damaged tissue, reconstruction of the tissue is feasible under the right circumstances. These cells can be collected from blood, fat, bone marrow, dental pulp, skeletal muscle and other sources. Cord blood provides yet another source of adult stem cells. Scientists and clinicians are developing and refining their ability to prepare harvested stem cells to be injected into patients to repair diseased or damaged tissue.

To learn more about some of the promising studies and clinical trials involving cellular therapies,click here.

3. Medical Devices and Artificial OrgansIn cases where an organ fails, the predominant clinical strategy is to transplant a replacement organ from a donor. The principal challenges are the availability of donor organs, and the requirement that the donor take immunosuppression drugswhich have side effects. Further, there are many instances where the time to find a suitable donor organ requires an interim strategy to support or supplement the function of the failing organ until a transplantable organ is found. Using circulatory support as an example, there are technologies in various stages of maturity, initially using ventricular assist devices (VADs) as a bridge to a heart transplant, and now there are VADs that are used for long-term circulatory support (destination therapy).

Scientists and clinicians around the world are developing and evaluation devices to supplement or to replace the function of many organ systems including the heart, lung, liver and kidney.

To learn more about some of the promising studies and clinical trials involving medical devices and artificial organs, click here.

See the original post here:
What Is Regenerative Medicine? | Regenerative Medicine at ...

Read More...

Body Focus Midland & Odessa | Non Invasive Cosmetic Procedures

July 6th, 2018 9:45 pm

Welcome to Body Focus Laser and Longevity Center, an office committed to the health, beauty, safety and comfort of all of our patients. Our professional staff, headed by Dr. Anna Rosinska, offers a wide range of cosmetic treatments and wellness programs to help you look and feel your best at every stage of life. Our dedication to patient care is evident from the time you call our office for the very first time, until your last follow-up appointment after your procedure.

Customizable Solutions

Body Focus offers treatments and procedures customized to the unique needs of each patient. Aesthetic procedures include non-invasive options in skin rejuvenation, hair removal and treatments for specific conditions. We also move beyond skin care treatments to medically-supervised weight loss programs and non-invasive body shaping procedures to give our patients even more options in a single location.

We believe you dont have to undergo invasive surgical procedures and long recovery periods to achieve your cosmetic goals. Instead, our procedures offer excellent results with minimal discomfort and downtime, so you can get the look you want without a major disruption to your life.

Innovative Treatments, High Quality Care

We provide the latest technology and techniques to bring you the best possible results. Through innovative procedures using lasers, radiofrequency energy and injectables, we can address a broad spectrum of skin conditions and concerns. You can rest assured your comfort is our top priority and we will ensure your procedure is a positive experience from the moment you walk in our door until your treatment is complete. Our staff is also available to answer questions and provide you with the information you need to make the best choices for your health and personal appearance.

Feel free to browse our website and learn more about the various treatments and programs we offer. You can also give us a call at 432-219-2270 or complete the online form in the box at the right to get more information. We look forward to hearing from you!

Read the original:
Body Focus Midland & Odessa | Non Invasive Cosmetic Procedures

Read More...

Immune system – Britannica.com

July 6th, 2018 9:45 pm

Most microorganisms encountered in daily life are repelled before they cause detectable signs and symptoms of disease. These potential pathogens, which include viruses, bacteria, fungi, protozoans, and worms, are quite diverse, and therefore a nonspecific defense system that diverts all types of this varied microscopic horde equally is quite useful to an organism. The innate immune system provides this kind of nonspecific protection through a number of defense mechanisms, which include physical barriers such as the skin, chemical barriers such as antimicrobial proteins that harm or destroy invaders, and cells that attack foreign cells and body cells harbouring infectious agents. The details of how these mechanisms operate to protect the body are described in the following sections.

The skin and the mucous membrane linings of the respiratory, gastrointestinal, and genitourinary tracts provide the first line of defense against invasion by microbes or parasites.

Human skin has a tough outer layer of cells that produce keratin. This layer of cells, which is constantly renewed from below, serves as a mechanical barrier to infection. In addition, glands in the skin secrete oily substances that include fatty acids, such as oleic acid, that can kill some bacteria; skin glands also secrete lysozyme, an enzyme (also present in tears and saliva) that can break down the outer wall of certain bacteria. Victims of severe burns often fall prey to infections from normally harmless bacteria, illustrating the importance of intact, healthy skin to a healthy immune system.

Like the outer layer of the skin but much softer, the mucous membrane linings of the respiratory, gastrointestinal, and genitourinary tracts provide a mechanical barrier of cells that are constantly being renewed. The lining of the respiratory tract has cells that secrete mucus (phlegm), which traps small particles. Other cells in the wall of the respiratory tract have small hairlike projections called cilia, which steadily beat in a sweeping movement that propels the mucus and any trapped particles up and out of the throat and nose. Also present in the mucus are protective antibodies, which are products of specific immunity. Cells in the lining of the gastrointestinal tract secrete mucus that, in addition to aiding the passage of food, can trap potentially harmful particles or prevent them from attaching to cells that make up the lining of the gut. Protective antibodies are secreted by cells underlying the gastrointestinal lining. Furthermore, the stomach lining secretes hydrochloric acid that is strong enough to kill many microbes.

Some microbes penetrate the bodys protective barriers and enter the internal tissues. There they encounter a variety of chemical substances that may prevent their growth. These substances include chemicals whose protective effects are incidental to their primary function in the body, chemicals whose principal function is to harm or destroy invaders, and chemicals produced by naturally occurring bacteria.

Some of the chemicals involved in normal body processes are not directly involved in defending the body against disease. Nevertheless, they do help repel invaders. For example, chemicals that inhibit the potentially damaging digestive enzymes released from body cells which have died in the natural course of events also can inhibit similar enzymes produced by bacteria, thereby limiting bacterial growth. Another substance that provides protection against microbes incidentally to its primary cellular role is the blood protein transferrin. The normal function of transferrin is to bind molecules of iron that are absorbed into the bloodstream through the gut and to deliver the iron to cells, which require the mineral to grow. The protective benefit transferrin confers results from the fact that bacteria, like cells, need free iron to grow. When bound to transferrin, however, iron is unavailable to the invading microbes, and their growth is stemmed.

A number of proteins contribute directly to the bodys nonspecific defense system by helping to destroy invading microorganisms. One group of such proteins is called complement because it works with other defense mechanisms of the body, complementing their efforts to eradicate invaders. Many microorganisms can activate complement in ways that do not involve specific immunity. Once activated, complement proteins work together to lyse, or break apart, harmful infectious organisms that do not have protective coats. Other microorganisms can evade these mechanisms but fall prey to scavenger cells, which engulf and destroy infectious agents, and to the mechanisms of the specific immune response. Complement cooperates with both nonspecific and specific defense systems.

Another group of proteins that provide protection are the interferons, which inhibit the replication of manybut not allviruses. Cells that have been infected with a virus produce interferon, which sends a signal to other cells of the body to resist viral growth. When first discovered in 1957, interferon was thought to be a single substance, but since then several types have been discovered, each produced by a different type of cell. Alpha interferon is produced by white blood cells other than lymphocytes, beta interferon by fibroblasts, and gamma interferon by natural killer cells and cytotoxic T lymphocytes (killer T cells). All interferons inhibit viral replication by interfering with the transcription of viral nucleic acid. Interferons exert additional inhibitory effects by regulating the extent to which lymphocytes and other cells express certain important molecules on their surface membranes.

In the small and large intestines the growth of invading bacteria can be inhibited by naturally gut-dwelling bacteria that do not cause disease. These gut-dwelling microorganisms secrete a variety of proteins that enhance their own survival by inhibiting the growth of the invading bacterial species.

If an infectious agent is not successfully repelled by the chemical and physical barriers described above, it will encounter cells whose function is to eliminate foreign substances that enter the body. These cells are the nonspecific effector cells of the innate immune response. They include scavenger cellsi.e., various cells that attack infectious agents directlyand natural killer cells, which attack cells of the body that harbour infectious organisms. Some of these cells destroy infectious agents by engulfing and destroying them through the process of phagocytosis, while other cells resort to alternative means. As is true of other components of innate immunity, these cells interact with components of acquired immunity to fight infection.

All higher animals and many lower ones have scavenger cellsprimarily leukocytes (white blood cells)that destroy infectious agents. Most vertebrates, including all birds and mammals, possess two main kinds of scavenger cells. Their importance was first recognized in 1884 by Russian biologist lie Metchnikoff, who named them microphages and macrophages, after Greek words meaning little eaters and big eaters.

Microphages are now called either granulocytes, because of the numerous chemical-containing granules found in their cytoplasm, or polymorphonuclear leukocytes, because of the oddly shaped nucleus these cells contain. Some granules contain digestive enzymes capable of breaking down proteins, while others contain bacteriocidal (bacteria-killing) proteins. There are three classes of granulocytesneutrophils, eosinophils, and basophilswhich are distinguished according to the shape of the nucleus and the way in which the granules in the cytoplasm are stained by dye. The differences in staining characteristics reflect differences in the chemical makeup of the granules. Neutrophils are the most common type of granulocyte, making up about 60 to 70 percent of all white blood cells. These granulocytes ingest and destroy microorganisms, especially bacteria. Less common are the eosinophils, which are particularly effective at damaging the cells that make up the cuticle (body wall) of larger parasites. Fewer still are the basophils, which release heparin (a substance that inhibits blood coagulation), histamine, and other substances that play a role in some allergic reactions (see immune system disorder: Allergies). Very similar in structure and function to basophils are the tissue cells called mast cells, which also contribute to immune responses.

Granulocytes, which have a life span of only a few days, are continuously produced from stem (i.e., precursor) cells in the bone marrow. They enter the bloodstream and circulate for a few hours, after which they leave the circulation and die. Granulocytes are mobile and are attracted to foreign materials by chemical signals, some of which are produced by the invading microorganisms themselves, others by damaged tissues, and still others by the interaction between microbes and proteins in the blood plasma. Some microorganisms produce toxins that poison granulocytes and thus escape phagocytosis; other microbes are indigestible and are not killed when ingested. By themselves, then, granulocytes are of limited effectiveness and require reinforcement by the mechanisms of specific immunity.

The other main type of scavenger cell is the macrophage, the mature form of the monocyte. Like granulocytes, monocytes are produced by stem cells in the bone marrow and circulate through the blood, though in lesser numbers. But, unlike granulocytes, monocytes undergo differentiation, becoming macrophages that settle in many tissues, especially the lymphoid tissues (e.g., spleen and lymph nodes) and the liver, which serve as filters for trapping microbes and other foreign particles that arrive through the blood or the lymph. Macrophages live longer than granulocytes and, although effective as scavengers, basically provide a different function. Compared with granulocytes, macrophages move relatively sluggishly. They are attracted by different stimuli and usually arrive at sites of invasion later than granulocytes. Macrophages recognize and ingest foreign particles by mechanisms that are basically similar to those of granulocytes, although the digestive process is slower and not as complete. This aspect is of great importance for the role that macrophages play in stimulating specific immune responsessomething in which granulocytes play no part.

Natural killer cells do not attack invading organisms directly but instead destroy the bodys own cells that have either become cancerous or been infected with a virus. NK cells were first recognized in 1975, when researchers observed cells in the blood and lymphoid tissues that were neither the scavengers described above nor ordinary lymphocytes but which nevertheless were capable of killing cells. Although similar in outward appearance to lymphocytes, NK cells contain granules that harbour cytotoxic chemicals.

NK cells recognize dividing cells by a mechanism that does not depend on specific immunity. They then bind to these dividing cells and insert their granules through the outer membrane and into the cytoplasm. This causes the dividing cells to leak and die.

NK cells are the third most abundant type of lymphocyte in the body (B and T lymphocytes being present in the greatest numbers). They develop from hematopoietic stem cells and mature in the bone marrow and the liver.

The body has a number of nonspecific methods of fighting infection that are called early induced responses. They include the acute-phase response and the inflammation response, which can eliminate infection or hold it in check until specific, acquired immune responses have time to develop. Nonspecific immune responses occur more rapidly than acquired immune responses do, but they do not provide lasting immunity to specific pathogens.

Nonadaptive immune responses rely on a number of chemical signals, collectively called cytokines, to carry out their effects. These cytokines include members of the family of proteins called interleukins, which induce fever and the acute-phase response, and tumour necrosis factor-alpha, which initiates the inflammatory response.

When the body is invaded by a pathogen, macrophages release the protein signals interleukin-1 (IL-1) and interleukin-6 (IL-6) to help fight the infection. One of their effects is to raise the temperature of the body, causing the fever that often accompanies infection. (The interleukins increase body temperature by acting on the temperature-regulating hypothalamus in the brain and by affecting energy mobilization by fat and muscle cells.) Fever is believed to be helpful in eliminating infections because most bacteria grow optimally at temperatures lower than normal body temperature. But fever is only part of the more general innate defense mechanism called the acute-phase response. In addition to raising body temperature, the interleukins stimulate liver cells to secrete increased amounts of several different proteins into the bloodstream. These proteins, collectively called acute-phase proteins, bind to bacteria and, by doing so, activate complement proteins that destroy the pathogen. The acute-phase proteins act similarly to antibodies but are more democraticthat is, they do not distinguish between pathogens as antibodies do but instead attack a wide range of microorganisms equally. Another effect the interleukins have is to increase the number of circulating neutrophils and eosinophils, which help fight infection.

Infection often results in tissue damage, which may trigger an inflammatory response. The signs of inflammation include pain, swelling, redness, and fever, which are induced by chemicals released by macrophages. These substances promote blood flow to the area, increase the permeability of capillaries, and induce coagulation. The increased blood flow is responsible for redness, and the leakiness of the capillaries allows cells and fluids to enter tissues, causing pain and swelling. These effects bring more phagocytic cells to the area to help eliminate the pathogens. The first cells to arrive, usually within an hour, are neutrophils and eosinophils, followed a few hours later by macrophages. Macrophages not only engulf pathogens but also help the healing process by disposing of cellular debris which accumulates from destroyed tissue cells and neutrophils that self-destruct after ingesting microorganisms. If infection persists, components of specific immunityantibodies and T cellsarrive at the site to fight the infection.

It has been known for centuries that persons who contract certain diseases and survive generally do not catch those illnesses again. Greek historian Thucydides recorded that, when the plague was raging in Athens during the 5th century bce, the sick and dying would have received no nursing at all had it not been for the devotion of those who had already recovered from the disease; it was known that no one ever caught the plague a second time. The same applies, with rare exceptions, to many other diseases, such as smallpox, chicken pox, measles, and mumps. Yet having had measles does not prevent a child from contracting chicken pox or vice versa. The protection acquired by experiencing one of these infections is specific to that infection; in other words, it is due to specific, acquired immunity, also called adaptive immunity.

There are other infectious conditions, such as the common cold, influenza, pneumonia, and diarrheal diseases, that can be caught again and again; these seem to contradict the notion of specific immunity. But the reason such illnesses can recur is that many different infectious agents produce similar symptoms (and thus the same disease). For example, more than 200 viruses can cause the cluster of symptoms known as the common cold. Consequently, even though infection with a particular agent does protect against reinfection by that same pathogen, it does not confer protection from other pathogens that have not been encountered.

Acquired immunity is dependent on the specialized white blood cells known as lymphocytes. This section describes the various ways in which lymphocytes operate to confer specific immunity. Although pioneer studies were begun in the late 19th century, most of the knowledge of specific immunity has been gained since the 1960s, and new insights are continually being obtained.

Lymphocytes are the cells responsible for the bodys ability to distinguish and react to an almost infinite number of different foreign substances, including those of which microbes are composed. Lymphocytes are mainly a dormant population, awaiting the appropriate signals to be stirred to action. The inactive lymphocytes are small, round cells filled largely by a nucleus. Although they have only a small amount of cytoplasm compared with other cells, each lymphocyte has sufficient cytoplasmic organelles (small functional units such as mitochondria, the endoplasmic reticulum, and a Golgi apparatus) to keep the cell alive. Lymphocytes move only sluggishly on their own, but they can travel swiftly around the body when carried along in the blood or lymph. At any one time an adult human has approximately 2 1012 lymphocytes, about 1 percent of which are in the bloodstream. The majority are concentrated in various tissues scattered throughout the body, particularly the bone marrow, spleen, thymus, lymph nodes, tonsils, and lining of the intestines, which make up the lymphatic system. Organs or tissues containing such concentrations of lymphocytes are described as lymphoid. The lymphocytes in lymphoid structures are free to move, although they are not lying loose; rather, they are confined within a delicate network of lymph capillaries located in connective tissues that channel the lymphocytes so that they come into contact with other cells, especially macrophages, that line the meshes of the network. This ensures that the lymphocytes interact with each other and with foreign materials trapped by the macrophages in an ordered manner.

Lymphocytes originate from stem cells in the bone marrow; these stem cells divide continuously, releasing immature lymphocytes into the bloodstream. Some of these cells travel to the thymus, where they multiply and differentiate into T lymphocytes, or T cells. The T stands for thymus-derived, referring to the fact that these cells mature in the thymus. Once they have left the thymus, T cells enter the bloodstream and circulate to and within the rest of the lymphoid organs, where they can multiply further in response to appropriate stimulation. About half of all lymphocytes are T cells.

Some lymphocytes remain in the bone marrow, where they differentiate and then pass directly to the lymphoid organs. They are termed B lymphocytes, or B cells, and they, like T cells, can mature and multiply further in the lymphoid organs when suitably stimulated. Although it is appropriate to refer to them as B cells in humans and other mammals, because they are bone-marrow derived, the B actually stands for the bursa of Fabricius, a lymphoid organ found only in birds, the organisms in which B cells were first discovered.

B and T cells both recognize and help eliminate foreign molecules (antigens), such as those that are part of invading organisms, but they do so in different ways. B cells secrete antibodies, proteins that bind to antigens. Since antibodies circulate through the humours (i.e., body fluids), the protection afforded by B cells is called humoral immunity. T cells, in contrast, do not produce antibodies but instead directly attack invaders. Because this second type of acquired immunity depends on the direct involvement of cells rather than antibodies, it is called cell-mediated immunity. T cells recognize only infectious agents that have entered into cells of the body, whereas B cells and antibodies interact with invaders that remain outside the bodys cells. These two types of specific, acquired immunity, however, are not as distinct as might be inferred from this description, since T cells also play a major role in regulating the function of B cells. In many cases an immune response involves both humoral and cell-mediated assaults on the foreign substance. Furthermore, both classes of lymphocytes can activate or enhance a variety of nonspecific immune responses.

Lymphocytes are distinguished from other cells by their capacity to recognize foreign molecules. Recognition is accomplished by means of receptor molecules. A receptor molecule is a special protein whose shape is complementary to a portion of a foreign molecule. This complementarity of shape allows the receptor and the foreign molecule to conform to each other in a fashion roughly analogous to the way a key fits into a lock.

Receptor molecules are either attached to the surface of the lymphocyte or secreted into fluids of the body. B and T lymphocytes both have receptor molecules on their cell surfaces, but only B cells manufacture and secrete large numbers of unattached receptor molecules, called antibodies. Antibodies correspond in structure to the receptor molecules on the surface of the B cell.

Any foreign materialusually of a complex nature and often a proteinthat binds specifically to a receptor molecule made by lymphocytes is called an antigen. Antigens include molecules found on invading microorganisms, such as viruses, bacteria, protozoans, and fungi, as well as molecules located on the surface of foreign substances, such as pollen, dust, or transplanted tissue. When an antigen binds to a receptor molecule, it may or may not evoke an immune response. Antigens that induce such a response are called immunogens. Thus, it can be said that all immunogens are antigens, but not all antigens are immunogens. For example, a simple chemical group that can combine with a lymphocyte receptor (i.e., is an antigen) but does not induce an immune response (i.e., is not an immunogen) is called a hapten. Although haptens cannot evoke an immune response by themselves, they can become immunogenic when joined to a larger, more complex molecule such as a protein, a feature that is useful in the study of immune responses.

Many antigens have a variety of distinct three-dimensional patterns on different areas of their surfaces. Each pattern is called an antigenic determinant, or epitope, and each epitope is capable of reacting with a different lymphocyte receptor. Complex antigens present an antigenic mosaic and can evoke responses from a variety of specific lymphocytes. Some antigenic determinants are better than others at effecting an immune response, presumably because a greater number of responsive lymphocytes are present. It is possible for two or more different substances to have an epitope in common. In these cases, immune components induced by one antigen are able to react with all other antigens carrying the same epitope. Such antigens are known as cross-reacting antigens.

T cells and B cells differ in the form of the antigen they recognize, and this affects which antigens they can detect. B cells bind to antigen on invaders that are found in circulation outside the cells of the body, while T cells detect only invaders that have somehow entered the cells of the body. Thus foreign materials that have been ingested by cells of the body or microorganisms such as viruses that penetrate cells and multiply within them are out of reach of antibodies but can be eliminated by T cells.

The specific immune system (in other words, the sum total of all the lymphocytes) can recognize virtually any complex molecule that nature or science has devised. This remarkable ability results from the trillions of different antigen receptors that are produced by the B and T lymphocytes. Each lymphocyte produces its own specific receptor, which is structurally organized so that it responds to a different antigen. After a cell encounters an antigen that it recognizes, it is stimulated to multiply, and the population of lymphocytes bearing that particular receptor increases.

How is it that the body has such an incredible diversity of receptors that are always ready to respond to invading molecules? To understand this, a quick review of genes and proteins will be helpful. Antigen receptor molecules are proteins, which are composed of a few polypeptide chains (i.e., chains of amino acids linked together by chemical bonds known as peptide bonds). The sequence in which the amino acids are assembled to form a particular polypeptide chain is specified by a discrete region of DNA, called a gene. But if every polypeptide region of every antigen receptor were encoded by a different gene, the human genome (all the genetic information encoded in the DNA that is carried on the chromosomes of cells) would need to devote trillions of genes to code just for these immune system proteins. Since the entire human genome contains approximately 25,000 genes, individuals cannot inherit a gene for each particular antigen receptor component. Instead, a mechanism exists that generates an enormous variety of receptors from a limited number of genes.

What is inherited is a pool of gene segments for each type of polypeptide chain. As each lymphocyte matures, these gene segments are pieced together to form one gene for each polypeptide that makes up a specific antigen receptor. This rearrangement of alternative gene segments occurs predominantly, though not entirely, at random, so that an enormous number of combinations can result. Additional diversity is generated from the imprecise recombination of gene segmentsa process called junctional diversificationthrough which the ends of the gene segments can be shortened or lengthened. The genetic rearrangement takes place at the stage when the lymphocytes generated from stem cells first become functional, so that each mature lymphocyte is able to make only one type of receptor. Thus, from a pool of only hundreds of genes, an unlimited variety of diverse antigen receptors can be created.

Still other mechanisms contribute to receptor diversity. Superimposed on the mechanism outlined in simplified terms above is another process, called somatic mutation. Mutation is the spontaneous occurrence of small changes in the DNA during the process of cell division. It is called somatic when it takes place in body cells (Greek soma means body) rather than in germ-line cells (eggs and sperm). Although somatic mutation can be a chance event in any body cell, it occurs regularly in the DNA that codes for antigen receptors in lymphocytes. Thus, when a lymphocyte is stimulated by an antigen to divide, new variants of its antigen receptor can be present on its descendant cells, and some of these variants may provide an even better fit for the antigen that was responsible for the original stimulation.

The antigen receptors on B lymphocytes are identical to the binding sites of antibodies that these lymphocytes manufacture once stimulated, except that the receptor molecules have an extra tail that penetrates the cell membrane and anchors them to the cell surface. Thus, a description of the structure and properties of antibodies, which are well studied, will suffice for both.

Antibodies belong to the class of proteins called globulins, so named for their globular structure. Collectively, antibodies are known as immunoglobulins (abbreviated Ig). All immunoglobulins have the same basic molecular structure, consisting of four polypeptide chains. Two of the chains, which are identical in any given immunoglobulin molecule, are heavy (H) chains; the other two are identical light (L) chains. The terms heavy and light simply mean larger and smaller. Each chain is manufactured separately and is encoded by different genes. The four chains are joined in the final immunoglobulin molecule to form a flexible Y shape, which is the simplest form an antibody can take.

At the tip of each arm of the Y-shaped molecule is an area called the antigen-binding, or antibody-combining, site, which is formed by a portion of the heavy and light chains. Every immunoglobulin molecule has at least two of these sites, which are identical to one another. The antigen-binding site is what allows the antibody to recognize a specific part of the antigen (the epitope, or antigenic determinant). If the shape of the epitope corresponds to the shape of the antigen-binding site, it can fit into the sitethat is, be recognized by the antibody. Chemical bonds called weak bonds then form to hold the antigen within the binding site.

The heavy and light chains that make up each arm of the antibody are composed of two regions, called constant (C) and variable (V). These regions are distinguished on the basis of amino acid similaritythat is, constant regions have essentially the same amino acid sequence in all antibody molecules of the same class (IgG, IgM, IgA, IgD, or IgE), but the amino acid sequences of the variable regions differ quite a lot from antibody to antibody. This makes sense, because the variable regions determine the unique shape of the antibody-binding site. The tail of the molecule, which does not bind to antigens, is composed entirely of the constant regions of heavy chains.

The variable and constant regions of both the light and the heavy chains are structurally folded into functional units called domains. Each light chain consists of one variable domain (VL) and one constant domain (CL). Each heavy chain has one variable domain (VH) and three or four constant domains (CH1, CH2, CH3, CH4). Those domains that make up the tail of the basic Y-shaped molecule (in other words, all the H-chain constant domains except CH1) are responsible for the special biological properties of immunoglobulinsexcept, of course, for the capacity to bind to a specific antigenic determinant. The tail of the antibody determines the fate of the antigen once it becomes bound to the antibody.

The hinge region of the antibody is a short stretch of amino acids on the heavy chain located between the chains CH1 and CH2 regions. It provides the molecule with flexibility, which is very useful in binding antigens. This flexibility can actually improve the efficiency with which an antigen binds to the antibody. It can also help in cross-linking antigens into a large lattice of antigen-antibody complexes, which are easily identified and destroyed by macrophages.

The term constant region is a bit misleading in that these segments are not identical in all immunoglobulins. Rather, they are basically similar among broad groups. All immunoglobulins that have the same basic kinds of constant domains in their H chains are said to belong to the same class. There are five main classesIgG, IgM, IgA, IgD, and IgEsome of which include a number of distinct subclasses. Each class has its own properties and functions determined by the structural variations of the H chains. In addition, there are two basic kinds of L chains, called lambda and kappa chains, either of which can be associated with any of the H chain classes, thereby increasing still further the enormous diversity of immunoglobulins.

IgG is the most common class of immunoglobulin. It is present in the largest amounts in blood and tissue fluids. Each IgG molecule consists of the basic four-chain immunoglobulin structuretwo identical H chains and two identical L chains (either kappa or lambda)and thus carries two identical antigen-binding sites. There are four subclasses of IgG, each with minor differences in its H chains but with distinct biological properties. IgG is the only class of immunoglobulin capable of crossing the placenta; consequently, it provides some degree of immune protection to the developing fetus. These molecules also are secreted into the mothers milk and, once they have been ingested by an infant, can be transported into the blood, where they confer immunity.

IgM is the first class of immunoglobulin made by B cells as they mature, and it is the form most commonly present as the antigen receptor on the B-cell surface. When IgM is secreted from the cells, five of the basic Y-shaped units become joined together to make a large pentamer molecule with 10 antigen-binding sites. This large antibody molecule is particularly effective at attaching to antigenic determinants present on the outer coats of bacteria. When this IgM attachment occurs, it causes microorganisms to agglutinate, or clump together.

IgA is the main class of antibody found in many body secretions, including tears, saliva, respiratory and intestinal secretions, and colostrum (the first milk produced by lactating mothers). Very little IgA is present in the serum. IgA is produced by B cells located in the mucous membranes of the body. Two molecules of IgA are joined together and associated with a special protein that enables the newly formed IgA molecule to be secreted across epithelial cells that line various ducts and organs. Although IgG is the most common class of immunoglobulin, more IgA is synthesized by the body daily than any other class of antibody. However, IgA is not as stable as IgG, and therefore it is present in lower amounts at any given time.

IgD molecules are present on the surface of most, but not all, B cells early in their development, but little IgD is ever released into the circulation. It is not clear what function IgD performs, though it may play a role in determining whether antigens activate the B cells.

IgE is made by a small proportion of B cells and is present in the blood in low concentrations. Each molecule of IgE consists of one four-chain unit and so has two antigen-binding sites, like the IgG molecule; however, each of its H chains has an extra constant domain (CH4), which confers on IgE the special property of binding to the surface of basophils and mast cells. When antigens bind to these attached IgE molecules, the cell is stimulated to release chemicals, such as histamines, that are involved in allergic reactions (see immune system disorder: Type I hypersensitivity). IgE antibodies also help protect against parasitic infections.

Most individuals have fairly constant amounts of immunoglobulin in their blood, which represent the balance between continuous breakdown of these proteins and their manufacture. There is about 4 times as much IgG (including its subclasses) as IgA, 10 to 15 times as much as IgM, 300 times as much as IgD, and 30,000 times as much as IgE.

Part of the normal production of immunoglobulin undoubtedly represents the response to antigenic stimulation that happens continually, but even animals raised in surroundings completely free from microbes and their products make substantial, though lesser, amounts of immunoglobulin. Much of the immunoglobulin therefore must represent the product of all the B cells that are, so to speak, ticking over even if not specifically stimulated. It is therefore not surprising that extremely sensitive methods can detect traces of antibodies that react with antigenic determinants to which an animal has never been exposed but for which cells with receptors are present.

All B cells have the potential to use any one of the constant-region classes to make up the immunoglobulin they secrete. As noted above, when first stimulated, most secrete IgM. Some continue to do so, but others later switch to producing IgG, IgA, or IgE. Memory B cells, which are specialized for responding to repeat infections by a given antigen, make IgG or IgA immediately. What determines the balance among the classes of antibodies is not fully understood. However, it is influenced by the nature and site of deposition of the antigen (for example, parasites tend to elicit IgE), and their production is clearly mediated by factors, called cytokines, which are released locally by T cells.

T-cell antigen receptors are found only on the cell membrane. For this reason, T-cell receptors were difficult to isolate in the laboratory and were not identified until 1983. T-cell receptors consist of two polypeptide chains. The most common type of receptor is called alpha-beta because it is composed of two different chains, one called alpha and the other beta. A less common type is the gamma-delta receptor, which contains a different set of chains, one gamma and one delta. A typical T cell may have as many as 20,000 receptor molecules on its membrane surface, all of either the alpha-beta or gamma-delta type.

The T-cell receptor molecule is embedded in the membrane of the cell, and a portion of the molecule extends away from the cell surface into the area surrounding the cell. The chains each contain two folded domains, one constant and one variable, an arrangement similar to that of the chains of antibody molecules. And, as is true of antibody structure, the variable domains of the chains form an antigen-binding site. However, the T-cell receptor has only one antigen-binding site, unlike the basic antibody molecule, which has two.

Many similarities exist between the structures of antibodies and those of T-cell receptors. Therefore, it is not surprising that the organization of genes that encode the T-cell receptor chains is similar to that of immunoglobulin genes. Similarities also exist between the mechanisms B cells use to generate antibody diversity and those used by T cells to create T-cell diversity. These commonalities suggest that both systems evolved from a more primitive and simpler recognition system.

Despite the structural similarities, the receptors on T cells function differently from those on B cells. The functional difference underlies the different roles played by B and T cells in the immune system. B cells secrete antibodies to antigens in blood and other body fluids, but T cells cannot bind to free-floating antigens. Instead they bind to fragments of foreign proteins that are displayed on the surface of body cells. Thus, once a virus succeeds in infecting a cell, it is removed from the reach of circulating antibodies only to become susceptible to the defense system of the T cell.

But how do fragments of a foreign substance come to be displayed on the surface of a body cell? First, the substance must enter the cell, which can happen through either phagocytosis or infection. Next, the invader is partially digested by the body cell, and one of its fragments is moved to the surface of the cell, where it becomes bound to a cell-surface protein. This cell-surface protein is the product of one of a group of molecules encoded by the genes of the major histocompatibility complex (MHC). In humans MHC proteins were first discovered on leukocytes (white blood cells) and therefore are often referred to as HLA (human leukocyte antigens). (For information on the genetic basis of the HLA, see human genetics.) There are two major types of MHC molecules: class I molecules, which are present on the surfaces of virtually all cells of the body that contain nucleithat is, most body cellsand class II molecules, which are restricted to the surfaces of most B cells and some T cells, macrophages, and macrophage-like cells.

Two main types of mature T cellscytotoxic T cells and helper T cellsare known. Some scientists hypothesize the existence of a third type of mature T cell called regulatory T cells. Some T cells recognize class I MHC molecules on the surface of cells; others bind to class II molecules. Cytotoxic T cells destroy body cells that pose a threat to the individualnamely, cancer cells and cells containing harmful microorganisms. Helper T cells do not directly kill other cells but instead help activate other white blood cells (lymphocytes and macrophages), primarily by secreting a variety of cytokines that mediate changes in other cells. The function of regulatory T cells is poorly understood. To carry out their roles, helper T cells recognize foreign antigens in association with class II MHC molecules on the surfaces of macrophages or B cells. Cytotoxic T cells and regulatory T cells generally recognize target cells bearing antigens associated with class I molecules. Because they recognize the same class of MHC molecule, cytotoxic and regulatory T cells are often grouped together; however, populations of both types of cells associated with class II molecules have been reported. Cytotoxic T cells can bind to virtually any cell in the body that has been invaded by a pathogen.

T cells have another receptor, or coreceptor, on their surface that binds to the MHC molecule and provides additional strength to the bond between the T cell and the target cell. Helper T cells display a coreceptor called CD4, which binds to class II MHC molecules, and cytotoxic T cells have on their surfaces the coreceptor CD8, which recognizes class I MHC molecules. These accessory receptors add strength to the bond between the T cell and the target cell.

The T-cell receptor is associated with a group of molecules called the CD3 complex, or simply CD3, which is also necessary for T-cell activation. These molecules are agents that help transduce, or convert, the extracellular binding of the antigen and receptor into internal cellular signals; thus, they are called signal transducers. Similar signal transducing molecules are associated with B-cell receptors.

When T-cell precursors leave the bone marrow on their way to mature in the thymus, they do not yet express receptors for antigens and thus are indifferent to stimulation by them. Within the thymus the T cells multiply many times as they pass through a meshwork of thymus cells. In the course of multiplication they acquire antigen receptors and differentiate into helper or cytotoxic T cells. As mentioned in the previous section, these cell types, similar in appearance, can be distinguished by their function and by the presence of the special surface proteins, CD4 and CD8. Most T cells that multiply in the thymus also die there. This seems wasteful until it is remembered that the random generation of different antigen receptors yields a large proportion of receptors that recognize self antigensi.e., molecules present on the bodys own constituentsand that mature lymphocytes with such receptors would attack the bodys own tissues.

Most such self-reactive T cells die before they leave the thymus, so that those T cells that do emerge are the ones capable of recognizing foreign antigens. These travel via the blood to the lymphoid tissues, where, if suitably stimulated, they can again multiply and take part in immune reactions. The generation of T cells in the thymus is an ongoing process in young animals. In humans large numbers of T cells are produced before birth, but production gradually slows down during adulthood and is much diminished in old age, by which time the thymus has become small and partly atrophied. Cell-mediated immunity persists throughout life, however, because some of the T cells that have emerged from the thymus continue to divide and function for a very long time.

B-cell precursors are continuously generated in the bone marrow throughout life, but, as with T-cell generation, the rate diminishes with age. Unless they are stimulated to mature, the majority of B cells also die, although those that have matured can survive for a long time in the lymphoid tissues. Consequently, there is a continuous supply of new B cells throughout life. Those with antigen receptors capable of recognizing self antigens tend to be eliminated, though less effectively than are self-reactive T cells. As a result, some self-reactive cells are always present in the B-cell population, along with the majority that recognize foreign antigens. The reason the self-reactive B cells normally do no harm is explained in the following section.

In its lifetime a lymphocyte may or may not come into contact with the antigen it is capable of recognizing, but if it does it can be activated to multiply into a large number of identical cells, called a clone. Each member of the clone carries the same antigen receptor and hence has the same antigen specificity as the original lymphocyte. The process, called clonal selection, is one of the fundamental concepts of immunology.

Two types of cells are produced by clonal selectioneffector cells and memory cells. Effector cells are the relatively short-lived activated cells that defend the body in an immune response. Effector B cells are called plasma cells and secrete antibodies, and activated T cells include cytotoxic T cells and helper T cells, which carry out cell-mediated responses.

The production of effector cells in response to first-time exposure to an antigen is called the primary immune response. Memory cells are also produced at this time, but they do not become active at this point. However, if the organism is reexposed to the same antigen that stimulated their formation, the body mounts a second immune response that is led by these long-lasting memory cells, which then give rise to another population of identical effector and memory cells. This secondary mechanism is known as immunological memory, and it is responsible for the lifetime immunities to diseases such as measles that arise from childhood exposure to the causative pathogen.

Helper T cells do not directly kill infected cells, as cytotoxic T cells do. Instead they help activate cytotoxic T cells and macrophages to attack infected cells, or they stimulate B cells to secrete antibodies. Helper T cells become activated by interacting with antigen-presenting cells, such as macrophages. Antigen-presenting cells ingest a microbe, partially degrade it, and export fragments of the microbei.e., antigensto the cell surface, where they are presented in association with class II MHC molecules. A receptor on the surface of the helper T cell then binds to the MHC-antigen complex. But this event alone does not activate the helper T cell. Another signal is required, and it is provided in one of two ways: either through stimulation by a cytokine or through a costimulatory reaction between the signaling protein, B7, found on the surface of the antigen-presenting cell, and the receptor protein, CD28, on the surface of the helper T cell. If the first signal and one of the second signals are received, the helper T cell becomes activated to proliferate and to stimulate the appropriate immune cell. If only the first signal is received, the T cell may be rendered anergicthat is, unable to respond to antigen.

A discussion of helper-T-cell activation is complicated by the fact that helper T cells are not a uniform group of cells but rather can be divided into two general subpopulationsTH1 and TH2 cellsthat have significantly different chemistry and function. These populations can be distinguished by the cytokines they secrete. TH1 cells primarily produce the cytokines gamma interferon, tumour necrosis factor-beta, and interleukin-2 (IL-2), while TH2 cells mainly synthesize the interleukins IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13. The main role of the TH1 cells is to stimulate cell-mediated responses (those involving cytotoxic T cells and macrophages), while TH2 cells primarily assist in stimulating B cells to make antibodies.

Once the initial steps of activation have occurred, helper T cells synthesize other proteins, such as signaling proteins and the cell-surface receptors to which the signaling proteins bind. These signaling molecules play a critical role not only in activating the particular helper T cell but also in determining the ultimate functional role and final differentiation state of that cell. For example, the helper T cell produces and displays IL-2 receptors on its surface and also secretes IL-2 molecules, which bind to these receptors and stimulate the helper T cell to grow and divide.

The overall result of helper-T-cell activation is an increase in the number of helper T cells that recognize a specific foreign antigen, and several T-cell cytokines are produced. The cytokines have other consequences, one of which is that IL-2 allows cytotoxic or regulatory T cells that recognize the same antigen to become activated and to multiply. Cytotoxic T cells, in turn, can attack and kill other cells that express the foreign antigen in association with class I MHC molecules, whichas explained aboveare present on almost all cells. So, for example, cytotoxic T cells can attack target cells that express antigens made by viruses or bacteria growing within them. Regulatory T cells may be similar to cytotoxic T cells, but they are detected by their ability to suppress the action of B cells or even of helper T cells (perhaps by killing them). Regulatory T cells thus act to damp down the immune response and can sometimes predominate so as to suppress it completely.

A B cell becomes activated when its receptor recognizes an antigen and binds to it. In most cases, however, B-cell activation is dependent on a second factor mentioned abovestimulation by an activated helper T cell. Once a helper T cell has been activated by an antigen, it becomes capable of activating a B cell that has already encountered the same antigen. Activation is carried out through a cell-to-cell interaction that occurs between a protein called the CD40 ligand, which appears on the surface of the activated helper T cells, and the CD40 protein on the B-cell surface. The helper T cell also secretes cytokines, which can interact with the B cell and provide additional stimulation. Antigens that induce a response in this manner, which is the typical method of B-cell activation, are called T-dependent antigens.

Most antigens are T-dependent. Some, however, are able to stimulate B cells without the help of T cells. The T-independent antigens are usually large polymers with repeating, identical antigenic determinants. Such polymers often make up the outer coats and long, tail-like flagella of bacteria. Immunologists think that the enormous concentration of identical T-independent antigens creates a strong enough stimulus without requiring additional stimulation from helper T cells.

Interaction with antigens causes B cells to multiply into clones of immunoglobulin-secreting cells. Then the B cells are stimulated by various cytokines to develop into the antibody-producing cells called plasma cells. Each plasma cell can secrete several thousand molecules of immunoglobulin every minute and continue to do so for several days. A large amount of that particular antibody is released into the circulation. The initial burst of antibody production gradually decreases as the stimulus is removed (e.g., by recovery from infection), but some antibody continues to be present for several months afterward.

The process just described takes place among the circulating B lymphocytes. The B cells that are called memory cells, however, encounter antigen in the germinal centrescompartments in the lymphoid tissues where few T cells are presentand are activated in a different way. Memory cells, especially those with the most effective receptors, multiply extensively, but they do not secrete antibody. Instead, they remain in the tissues and the circulation for many months or even years. If, with the help of T cells, memory B cells encounter the activating antigen again, these B cells rapidly respond by dividing to form both activated cells that manufacture and release their specific antibody and another group of memory cells. The first group of memory cells behaves as though it remembers the initial contact with the antigen. So, for example, if the antigen is microbial and an individual is reinfected by the microbe, the memory cells trigger a rapid rise in the level of protective antibodies and thus prevent the associated illness from taking hold.

Many pathogenic microorganisms and toxins can be rendered harmless by the simple attachment of antibodies. For example, some harmful bacteria, such as those that cause diphtheria and tetanus, release toxins that poison essential body cells. Antibodies, especially IgG, that combine with such toxins neutralize them. Also susceptible to simple antibody attachment are the many infectious microbesincluding all viruses and some bacteria and protozoansthat live within the body cells. These pathogens bear special molecules that they use to attach themselves to the host cells so that they can penetrate and invade them. Antibodies can bind to these molecules to prevent invasion. Antibody attachment also can immobilize bacteria and protozoans that swim by means of whiplike flagella. In these instances antibodies protect simply by combining with the repeating protein units that make up these structures, although they do not kill or dispose of the microbes. The actual destruction of microbes involves phagocytosis by granulocytes and macrophages, and this is greatly facilitated by the participation of the complement system.

Complement is a term used to denote a group of more than 30 proteins that act in concert to enhance the actions of other defense mechanisms of the body. Complement proteins are produced by liver cells and, in many tissues, by macrophages. Most of these proteins circulate in the blood and other body fluids in an inactive form. They become activated in sequential fashion; once the first protein in the pathway is turned on, the following complement proteins are called into action, with each protein turning on the next one in line.

The action of complement is nonspecifici.e., complement proteins are not recognized by and do not interact with antigen-binding sites. In fact, complement proteins probably evolved before antibodies. Complement functions are similar among many species, and corresponding components from one species can carry out the same functions when introduced into another species. The complement system is ingenious in providing a way for antibodies, whatever their specificity, to produce the same biological effects when they combine with antigens.

Originally immunologists thought that the complement system was initiated only by antigen-antibody complexes, but later evidence showed that other substances, such as the surface components of a microorganism alone, could trigger complement activation. Thus, there are two complement activation pathways: the first one to be discovered, the classical pathway, which is initiated by antigen-antibody complexes; and the alternative pathway, which is triggered by other means, including invading pathogens or tumour cells. (The term alternative is something of a misnomer because this pathway almost certainly evolved before the classical pathway. The terminology reflects the order of discovery, not the evolutionary age of the pathways.) The classical and alternative pathways are composed of different proteins in the first part of their cascades, but eventually both pathways converge to activate the same complement components, which destroy and eliminate invading pathogens.

The classical complement pathway is activated most effectively by IgM and the most abundant of the immunoglobulins, IgG. But, for activation to occur, antibodies must be bound to antigens (the antigen-antibody complex mentioned above). Free antibodies do not activate complement. To initiate the cascade, the first complement protein in the pathway, C1, must interact with a bound immunoglobulin. Specifically, C1 interacts with the tail of the Y portion of the bound antibody moleculei.e., the nonspecific part of the antibody that does not bind antigen. Once bound to the antibody, C1 is cleaved, a process that activates C1 and allows it to split and activate the next complement component in the series. This process is repeated on the following proteins in the pathway until the complement protein C3the most abundant and biologically the most important component of the complement systemis activated. The classical and alternative complement pathways converge here, at the cleavage of the C3 molecule, which, once split, produces C3a and the large active form of C3, the fragment called C3b.

C3b carries out several functions:

It brings about lysis (bursting) of the target cell by activating subsequent steps in the cascade, leading to the formation of a ringlike structure called the membrane attack complex. This structure, which is composed of complement proteins C5 through C9, inserts itself into the membrane of the invading pathogen and creates a hole through which the cell contents leak out, killing the cell.

C3b can combine with another protein that converts more C3 protein to C3b.

C3b can initiate the alternative pathway of complement activation.

The small protein fragments that are released during the activation of complement are potent pharmacological agents that help promote an inflammatory response by causing mast cells and basophils to release histamine, which increases the permeability of blood vessels, and by attracting granulocytes and monocytes.

Thus, when a microbe penetrates the body, if antibodies reactive with its surface are already present (or if the microorganism activates complement without the help of antibodies, through the alternative complement pathway), the complete complement sequence may be activated and the microbe killed by damage to its outer membrane. This mechanism is effective only with bacteria that lack protective coats and with certain large viruses, but it is nevertheless important. Persons who lack C3 and thus cannot complete the later steps in the complement sequence are vulnerable to repeated bacterial infections.

Clearly such a biologically important chain of reactions could do more harm than good if its effects were to spread beyond the site of antigen invasion. Fortunately, the active intermediates at each stage in the complement sequence become rapidly inactivated or destroyed by inhibitors if they fail to initiate the next step. With rare exceptions, this confines the activation to the place in the body where it is needed.

Some cells that bear antigen-antibody complexes do not attract complement; their antibody molecules are far apart on the cell surface or are of a class that does not readily activate the complement system (e.g., IgA, IgD, and IgE). Other cells have outer membranes that are so tough or can be repaired so quickly that the cells are impermeable to activated complement. Still others are so large that phagocytes cannot ingest them. Such cells, however, can be attacked by killer cells present in the blood and lymphoid tissues. Killer cells, which may be either cytotoxic T cells or natural killer cells, have receptors that bind to the tail portion of the IgG antibody molecule (the part that does not bind to antigen). Once bound, killer cells insert a protein called perforin into the target cell, causing it to swell and burst. Killer cells do not harm bacteria, but they play a role in destroying body cells infected by viruses and some parasites.

The protection conferred by IgA antibodies, which are transported to the surface of mucous-membrane-lined passages, is somewhat different. Complement activation is not involved; there are no complement proteins in the lining of the gut or the respiratory tract. Here the available immune defense mechanism is primarily the action of IgA combining with microbes to prevent them from entering the cells of the lining. The bound microbes are then swept out of the body. IgA also appears to direct certain types of cell-mediated killing.

IgE antibodies also invoke unique mechanisms. As stated earlier, most IgE molecules are bound to special receptors on mast cells and basophils. When antigens bind to IgE antibodies on these cells, the interaction does not cause ingestion of the antigens but rather triggers the release of pharmacologically active chemical contents of the cells granules. The chemicals released cause a sudden increase in permeability of the local blood vessels, the adhesion and activation of platelets (blood cell fragments that trigger clotting), which release their own active agents, the contraction of smooth muscle in the gut or in the respiratory tubes, and the secretion of fluidsall of which tend to dislodge large multicellular parasites such as hookworms. Eosinophil granulocytes and IgE together are particularly effective at destroying parasites such as the flatworms that cause schistosomiasis. The eosinophils plaster themselves to the worms bound to IgE and release chemicals from their granules that break down the parasites tough protective skin. Therefore, IgE antibodiesalthough they can be a nuisance when they react with otherwise harmless antigensappear to have a special protective role against the larger parasites.

A newborn mammal has no opportunity to develop protective antibodies on its own, unless, as happens very rarely, it was infected while in the uterus. Yet it is born into an environment similar to its mothers, which contains all the potential microbial invaders to which she is exposed. Although the fetus possesses the components of innate immunity, it has few or none of its mothers lymphocytes. The placenta generally prevents the maternal lymphocytes from crossing into the uterus, where they would recognize the fetal tissues as foreign antigens and cause a reaction similar to the rejection of an incompatible organ transplant.

What is transferred across the placenta in many species is a fair sample of the mothers antibodies. How this happens depends on the structure of the placenta, which varies among species. In humans maternal IgG antibodiesbut not those of the other immunoglobulin classesare transported across the placenta into the fetal bloodstream throughout the second two-thirds of pregnancy. In many rodents a similar transfer occurs, but primarily across the yolk sac.

In horses and cattle, which have more layers of cells in their placentas, no antibodies are transferred during fetal life, and the newborn arrives into the world with no components of specific immunity. There is, however, a second mechanism that makes up for this deficiency. The early milk (colostrum) is very rich in antibodiesmainly IgA but also some IgM and IgGand during the first few days of life the newborn mammal can absorb these proteins intact from the digestive tract directly into the bloodstream. Drinking colostrum is therefore essential for newborn horses and cattle and required to a somewhat lesser extent by other mammals. The capacity of the digestive tract to absorb intact proteins must not last beyond one or two weeks, since once foods other than milk are ingested, the proteins and other antigens in them would also be absorbed intact and could act as immunogens to which the growing animal would become allergic (see immune system disorder: Allergies). IgA in milk is, however, rather resistant to digestion and can function within the gut even after intact absorption into the bloodstream has ended. Human colostrum is also rich in IgA, with the concentration highest immediately after birth.

After a newborn has received its supply of maternal antibodies, it is as fully protected as its mother. This means, of course, that if the mother has not developed immunity to a particular pathogen, the newborn will likewise be unprotected. For this reason, a physician may recommend that a prospective mother receive immunizations against tetanus and certain other disorders. (The active immunization of pregnant women against certain viral diseases, such as rubella [German measles], must be avoided, however, because the immunizing agent can cross the placenta and produce severe fetal complications.)

As important as the passively transferred maternal antibodies are, their effects are only temporary. The maternal antibodies in the blood become diluted as the animal grows; moreover, they gradually succumb to normal metabolic breakdown. Because the active development of acquired immunity is a slow and gradual process, young mammals actually become more susceptible to infection during their early stages of growth than they are immediately after birth.

Occasionally the transfer of maternal antibodies during fetal life can have harmful consequences. A well-known example of this is erythroblastosis fetalis, or hemolytic disease of the newborn, a disorder in which maternal antibodies destroy the childs red blood cells during late pregnancy and shortly after birth. The most severe form of erythroblastosis fetalis is Rh hemolytic disease, which develops when:

The mother is Rh-negative, which is to say her red blood cells lack the Rh factor.

Rh hemolytic disease can be prevented by giving the mother injections of anti-Rh antibody shortly after the birth of an Rh-positive child. This antibody destroys any Rh-positive fetal cells in the maternal circulation, thereby preventing the activation of the mothers immune system should she conceive another Rh-positive fetus.

In addition to their importance in cooperating with B cells that secrete specific antibodies, T cells have important, separate roles in protecting against antigens that have escaped or bypassed antibody defenses. Immunologists have long recognized that antibodies do not necessarily protect against viral infections, because many viruses can spread directly from cell to cell and thus avoid encountering antibodies in the bloodstream. It is also known that persons who fail to make antibodies are very susceptible to bacterial infections but are not unduly liable to viral infections. Protection in these cases results from cell-mediated immunity, which destroys and disposes of body cells in which viruses or other intracellular parasites (such as the bacteria that cause tuberculosis and leprosy) are actively growing, thus depriving microorganisms of their place to grow and exposing them to antibodies.

As discussed in the section Activation of T and B lymphocytes, cell-mediated immunity has two mechanisms. One involves activated helper T cells, which release cytokines. In particular, the gamma interferon produced by helper T cells greatly increases the ability of macrophages to kill ingested microbes; this can tip the balance against microbes that otherwise resist killing. Gamma interferon also stimulates natural killer cells. The second mechanism of cell-mediated immunity involves cytotoxic T cells. They attach themselves by their receptors to target cells whose surface expresses appropriate antigens (notably ones made by developing viruses) and damage the infected cells enough to kill them.

Cytotoxic T cells may kill infected cells in a number of ways. The mechanism of killing used by a given cytotoxic T cell depends mainly on a number of costimulatory signals. In short, cytotoxic T cells can kill their target cells either through the use of pore-forming molecules, such as perforins and various components of cytoplasmic granules, or by triggering a series of events with the target cell that activate a cell death program, a process called apoptosis. In general, the granular cytotoxic T cells tend to kill cells directly by releasing the potent contents of their cytotoxic granules at the site of cell-to-cell contact. This renders the cell membrane of the target cell permeable, which allows the cellular contents to leak out and the cell to die. The nongranular cytotoxic T cells often kill cells by inducing apoptosis, usually through the activation of a cell-surface protein called Fas. When a protein on the surface of the cytotoxic T cell interacts with the Fas protein on the target cell, Fas is activated and sends a signal to the nucleus of the target cell, thus initiating the cell death process. The target cell essentially commits suicide, thereby destroying the virus within the cell as well.

Read more:
Immune system - Britannica.com

Read More...

Wake Forest Institute for Regenerative Medicine (WFIRM …

July 6th, 2018 9:43 pm

New Video Series - Watch Now

Scroll down to get an inside look into the lab and hear directly from our scientists about their projects aimed at helping patients with conditions such as diabetes, lung disease, hemophilia A and gastrointestinal disorders.

An International Leader in Regenerative Medicine

The Wake Forest Institute for Regenerative Medicine (WFIRM) is a leader in translating scientific discovery into clinical therapies. Physicians and scientists at WFIRM were the first in the world to engineer laboratory-grown organs that were successfully implanted into humans. Today, this interdisciplinary team is working to engineer more than 30 different replacement tissues and organs and to develop healing cell therapies - all with the goal to cure, rather than merely treat, disease.

The Next Evolution of Medical Treatments

Regenerative medicine has been called the "next evolution of medical treatments," by the U.S. Department of Health and Human Services. With its potential to heal, this new field of science is expected to revolutionize health care. It is our mission at WFIRM to improve patients' lives by developing regenerative medicine therapies and support technologies.

"We have many challenges to meet, but are optimistic about the ability of the field to have a significant impact on human health. We believe regenerative medicine promises to be one of the most pervasive influences on public health in the modern era."-Anthony Atala, MD, Director

See the article here:
Wake Forest Institute for Regenerative Medicine (WFIRM ...

Read More...

Human Stem Cells Institute

July 6th, 2018 9:41 pm

Human Stem Cells Institute PJSC (HSCI) is a Russian public biotech company founded in 2003.

HSCI is engaged in drug discovery, R&D and marketing of innovative proprietary products and services in the field of regenerative medicine, bio-insurance, medical genetics, including reproductive genetics,gene therapy and biopharmaceutics.

The Company aims to foster a new culture of medical care developing new health care opportunities in such areas as personalized and preventive medicine.

HSCI owns the largest family cord blood stem cell bank in Russia and the CIS Gemabank, as well as the reproductive cell and tissue bank Reprobank(personal storage and donation).

The Company launched Neovasculgen, the first-in-class gene therapy drug for the treatment of Peripheral Arterial Disease, including Critical Limb Ischemia, and also introduced the innovative cell technology SPRS-therapy, which entails the use of autologous dermal fibroblasts to repair skin damage due to aging and other structural changes.

HSCI is implementing a socially significant Genetico project for the development of its own Medical genetics center & lab to provide a wide range ofgenetic testing and counseling serviceswith the aim of early identification, prediction and prophylactic treatment of genetic disorders, including reproductive system diseases(e.g. PGS/PGD,NIPT, Oncogenetics, Bioinformatics, diagnostic panels for specific disease categories and cases).

The Company actively promotes its products on the Russian market and intends to open new markets throughout the world.

HSCI is listed on the Innovation & Investment Market (iIM) of the Moscow Exchange (ticker ISKJ). The Company conducted its IPO in December 2009, becoming the first Russian biotech company to go public.

Read this article:
Human Stem Cells Institute

Read More...

Causes of Blindness BLIND, Inc.

July 5th, 2018 5:46 pm

Vision loss and blindness can be caused by several factors. These factors can be genetic, environmental or accidental. In order to better comprehend how blindness can affect the individual, it is important to understand what blindness is.

A person is legally blind if his/her central visual acuity, that is (what they see in front of them), is less than 20/200 in their good eye after correction, such as glasses or contacts. 20/200 visual acuity means that a person can see at 20 feet what a person with 20/20 vision can at 200 feet. A person can also be considered legally blind if their visual field, that is what they perceive to either side of them is 20 degrees or less.

For the purposes of this article, we will look at the top five eye conditions that cause blindness: Cataracts, Glaucoma, Age-Related Macular Degeneration, Diabetic Retinopathy and Retinitis Pigmentosa. Other conditions do exist, however, they will not be discussed here.

Cataracts are caused by the clouding of the lens of the eye. This means that the light that comes through the pupil and passes through the lens to be focused to the retina is blurred. This will cause your vision to become cloudy, blurry and, or, dim. Colors may not seem as bright or vivid as before. Its like looking through the dirty windshield of a car. This condition occurs gradually and you may not notice it at first. Cataracts can be treated with surgery.

Glaucoma is a disease that damages your eyes optic nerve. It is caused by excess fluid in the eye which increases the eye pressure. This fluid is called aqueous humor. It is produced in the front portion of the eye and leaves the eye through the drainage angle. This keeps the intraocular pressure, at a healthy level. This pressure may vary from person to person. When the fluid does not leave the eye correctly, it will cause pressure to increase which will gradually damage the optic nerve.

There are several types of glaucoma. The two most common forms being: Primary Open-angle Glaucoma and Normal-tension Glaucoma. Open-angle Glaucoma is the most prevalent and happens when your eye can no longer drain fluid efficiently, causing the pressure to build. Open-angle Glaucoma has no early symptoms. As it progresses the optic nerve will become damaged, and you will start to notice blank spots in your field of vision. These spots will grow larger until all optic nerves are damaged, at which point, you will be blind.

Normal Tension Glaucoma is characterized by low pressure in the eye. This type of Glaucoma can also cause nerve damage and loss of vision. Treatment for both Open-angle Glaucoma and Normal tension Glaucoma is the same. The disease can be managed by prescription eye drops or surgery.

Unlike Primary Open-angle Glaucoma however, Primary Acute Closed-angle Glaucoma happens quite suddenly and should be attended to immediately. It results from a buildup of fluid because the drainage system is blocked and fluid can no longer drain from the eye.

Macular Degeneration destroys the light sensitive cells in the macula, the part of the eye that lets you see objects in great detail. Often, the progress of AMD is so slow that you do not notice any change in your vision, but it can progress quickly as well. There are two types of Macular Degeneration: wet and dry. Wet Macular Degeneration occurs when irregular blood vessels begin growing behind the retina under the macula. Dry Macular Degeneration is caused by the breakdown of light sensitive cells in the macula causing the central vision to blur. The treatment for Wet Macular Degeneration includes surgery. At this time, no treatment exists for Dry Macular Degeneration.

Diabetic Retinopathy is caused by diabetes. It affects the retina, the part of the eye sensitive to light. It is a result of high blood glucose, or sugar, over a prolonged period of time. High blood sugar prevents the blood vessels in the back of the eye from delivering the proper nutrients to the retina. Early on in the progress of the disease, these blood vessels will leak fluid and will cause site distortions. As the disease progresses, new blood vessels are formed around the retina and in the vitreous humor. These blood vessels will bleed making the vision cloudy and eventually causing the retina to detach. If not treated, a retinal detachment may cause permanent blindness. Vision loss caused by Diabetic Retinopathy can be prevented by laser surgery, a proper diet and controlling your blood glucose levels and blood pressure.

Retinitis Pigmentosa affects the retinas ability to respond to light. It is a geneticly inherited disease. The symptoms include loss of night vision and peripheral vision. The gradual degeneration of the retinas Photoreceptor cells (rods and cones) will eventually cause the individual to become blind As the disease progresses. While research is on-going, there is no cure at this time.

Read the rest here:
Causes of Blindness BLIND, Inc.

Read More...

Page 905«..1020..904905906907..910920..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick