header logo image


Page 701«..1020..700701702703..710720..»

Genetics research at BYU may not be what you think – Universe.byu.edu

February 1st, 2020 4:42 am

See also BYU researchers contribute toward finding a cure for Alzheimers disease

Genetics and Alzheimers researchers at BYU have made far-reaching contributions to their fields through two valuable campus resources: the DNA Sequencing Center (DNASC) and the Office of Research Computing.

These resources generate data that is used by BYU faculty researchers, students and collaborators from other universities in their research.

Although many people approach the DNASC requesting sequencing for family history and genealogy related samples, these services are currently not offered. The DNASC, along with the Office of Research Computing, is centered on the primary focus of providing support for academic research.

DNA Sequencing Center

Inside the Life Sciences Building is a collection of small rooms that make up what is known as the BYU DNASC. This center is vital to researchers and houses DNA sequencing machines that are dedicated to efficiently and economically processing DNA samples.

Edward Wilcox, managing director of the sequencing center, has worked as a full-time research faculty member since 2005. He manages everything from the DNA sequencing machines to student employees who help prepare samples.

The process of preparing DNA samples involves isolating them, shearing them down to the right size, making libraries and cleaning them.

A library is just pieces of DNA with adapters on the ends, Wilcox said. The adapters are what allows us to sequence in since its a known sequence. From there, we can sequence into the unknown.

After the libraries are prepared, they are ready to be placed in the sequencing machines. The DNASC currently has three machines: the Illumina, PacBio I and PacBio II. The 2015 Illumina will retire at some point and be replaced by a new machine called the NovaSeq. This machine will cost about a million dollars but is essential for the work and is expected to generate more data at less of a cost.

Handling all this expensive equipment requires great care. Wilcox admits he may come off as overbearing to student employees at times, but thats because everything needs to be done just right.

Thats $20,000 of reagent (a substance or compound added to a system to cause a chemical reaction) were putting on the machines right now. If we dont do things right, and the run fails, were out $20,000, Wilcox said. Its a little concerning, and we cannot afford to lose a run.

BYU junior Miranda Johnson has been working at the DNASC since September 2018. The neuroscience major said the job is stressful and requires a lot of multitasking.

But its less stressful than customer service in my opinion, Johnson said.

The DNASC receives a variety of different samples from all across the United States and the world, including recent samples from Russia, the Czech Republic and Italy. The samples can come from any living organism, including fish, plants, insects, sunflowers and blood.

Its pretty random what we get, Johnson said. Thats the fun part of the DNA Sequencing lab! Its familiar enough you dont get lost, but its always a little bit different.

BYU biology professor and Alzheimers researcher John Kauwe said the DNASC is an important resource that nearly everyone doing genetics research at BYU relies on for some aspects of their data generation.

Its great to have that resource right down the hall, where we know we can get high-quality data, Kauwe said.

The Office of Research Computing

The Office of Research Computing is another vital resource for research at BYU. With over a thousand computer servers and 24,000 processor cores, this valuable resource is utilized by hundreds of users, including BYU faculty researchers, students and a few dozen collaborators from other universities.

Nothing I do would be possible without it, said Perry Ridge, an Alzheimers researcher and biology professor at BYU. Every analysis that we run for every project is on the supercomputer.

Research director computing Ryan Cox oversees the entire office, running everything from the servers to the employees. His team does everything from maintaining the hardware and software that researchers use and purchasing new equipment to staying on top of industry trends and helping people with code optimizations.

The servers that make up the supercomputer are located in three separate rooms across the BYU campus, the biggest being in the James E. Talmage Building. Several departments on campus rely on this resource especially the engineering, physical, mathematical and life sciences colleges.

The DNASC in the life sciences college sends terabyte-sized files to the servers on a weekly basis. Wilcox, the managing director of the sequencing center, said not having enough computer space has been one of their biggest challenges.

Were dealing with some big files here, Wilcox said. The computer center at BYU limits you to 15 terabytes; thats a weeks worth of data and its hard to distribute everyones data in that time.

Realizing this was an issue, Cox said the Office of Research Computing recently started renting out storage space to accommodate those who need the extra space.

Some people use 80 to a 100 times more storage than the allocation we give people, Cox said.

Generally the research computing sources are freely available to everyone, but the limited storage space makes it difficult to satisfy everyones needs. But according to Ridge, Cox and his team are always finding ways to accommodate those in the research community.

The Office of Research Computing is service-oriented and they go out of their way to help faculty and students in doing research, Ridge said. They really make a lot of what we do here at BYU possible, and make it possible for BYU to stand out in positive ways.

Kauwe agrees and added that these campus resources help him and his colleagues make a positive impact in their fields of research.

Its been wonderful coming here and having a DNA sequencing center and a high quality research computing center to analyze the scale of data were generating, Kauwe said. Its allowed us to be competitive on a national scale and to make research progress that is meaningful in our field. They are incredible resources that are key to genetics research at BYU.

See the article here:
Genetics research at BYU may not be what you think - Universe.byu.edu

Read More...

How Genetic Testing with 23andMe Can Improve Your Health – Yahoo Finance

February 1st, 2020 4:42 am

Survey finds 23andMe Health + Ancestry results motivate customers to make positive lifestyle changes.

NEW YORK, Jan. 30, 2020 /PRNewswire-PRWeb/ -- At-home DNA testing service 23andMe is more than just a tool to discover ancestry - it also offers insight into how genes can impact overall health and wellness. 23andMe offers a wealth of reports that provide genetic health information that can help customers be more proactive about their health. Recently, 23andMe Genetics Trends Expert, Madeline Lynch, and customer Michelle Martinez, teamed with YourUpdateTV to discuss.

A video accompanying this announcement is available at: https://youtu.be/VAKAywAd4VY

A recent survey of 23andMe's Health + Ancestry Service customers found that more than three-quarters reported that after receiving their personalized genetic reports they made at least one positive change in their health behavior. Designed by 23andMe and M/A/R/C Research, researchers asked 23andMe Health + Ancestry customers about the overall impact of their 23andMe experience, regardless of their results.

51 percent of respondents reporting they've set future goals to be healthier. Changes included eating healthier, getting more sleep, and exercising more, among others. Of those who responded to the survey:

For more information and to get started, visit 23andMe.com

Madeline Lynch: Madeline Lynch is the Genetics Trends Expert at 23andMe. She serves as a subject matter expert and company spokesperson for media engagements, the analyst community, online communities, and the general public at large. Her responsibilities on the customer care team include providing input on prioritization and resolution of customer-facing issues and working directly with cross-functional teams to influence and support development of new and existing communications materials and messaging from the perspective of the customer. She holds a BA from University of California, Davis.

About Michelle Martinez: Michelle Martinez is a 51-year-old lab assistant from Arlington, Texas. Michelle was inspired to order a 23andMe Health + Ancestry kit to help prepare for any potential genetic health risks, due to several serious health risks running in her family. When she opened her Genetic Weight wellness report, she saw that she is genetically predisposed to weigh less than average. She thought, "I've been denying my genetics and just falling into bad habits. I'm not being my best self." That report, along with the knowledge of lifestyle and environmental factors that affect one's health, inspired Michelle to make better lifestyle decisions like eating healthier. She has since lost more than 50 pounds and gained confidence in being in her own skin. She believes that her weight loss journey is one of patience and acceptance with and of herself -- no matter her size.

About 23andMe: 23andMe, Inc. is the leading consumer genetics and research company. Founded in 2006, the mission of the company is to help people access, understand and benefit from the human genome. The company was named by TIME as a "Genius Company" in 2018 and featured as Fast Company's #2 Most Innovative Health Company in 2018. 23andMe has millions of customers worldwide, with more than 80 percent of customers consented to participate in research. 23andMe, Inc. is located in Sunnyvale, CA. More information is available at http://www.23andMe.com.

About YourUpdateTV: YourUpdateTV is a social media video portal for organizations to share their content, produced by award-winning video communications firm, D S Simon Media (http://www.dssimon.com). It includes separate channels for Health and Wellness, Lifestyle, Media and Entertainment, Money and Finance, Social Responsibility, Sports and Technology.

SOURCE 23andMe

Follow this link:
How Genetic Testing with 23andMe Can Improve Your Health - Yahoo Finance

Read More...

Genetic risk scores open a host of concerns and implications – The Daily Cardinal

February 1st, 2020 4:42 am

A world where we can predict what traits and diseases that a baby will be born with is nearly upon us. With the expanding availability of genetic data, researchers in both universities and industry are trying to figure out the complicated relationship between our DNA and human health. For traits and diseases that reflect the interaction between many genetic and oftentimes environmental risk factors, these sorts of predictions are more difficult to make.

Scientists use genome-wide association studies with very large sample sizes to calculate polygenic scores, which correlate genetic factors with complex traits, like height or BMI, and risk for complex diseases, like heart disease or autism.

Almost everything you can think of is highly polygenic meaning [that] many, many, many genes or hundreds of thousands of genetic locations could be affecting [a complex trait], Jason Fletcher, a UW-Madison professor of public affairs studying some of the ethical, legal and social implications of genomic science, said.

Since an individuals genome generally does not change over the course of their lifetime, polygenic scores could offer an avenue for identifying individuals for specialized treatments or early interventions, Fletcher adds.

The positive case might be something like thinking about an instance where there is polygenic score for dyslexia and potentially being able to use a score like that very early in a child's life as a way of collecting individuals who might benefit from specific learning interventions, Fletcher said.

Intellectual disabilities and learning disabilities often go unnoticed for years, which can leave a child to struggle.

Lauren Schmitz, a UW-Madison assistant professor of public affairs, also notes that whereas for heart disease, preventative measures are viewed favorably, for intellectual disability the measures used to intervene would need to be carefully considered to avoid stigmatizing individuals.

Schmitz also stresses that although the science is moving fast, the predictive accuracy of these polygenic risk scores varies depending on the trait or disease in question. However, the for-profit, direct-to-consumer DNA testing industry is blurring the lines on what genomic science can say.

The way I see it, it's the next frontier in personalized things, Schmitz said. I think we're a culture that loves things that are personalized to us me and my experience and so I think the genome is the next marketing frontier.

For example, last November the biotech company Genomic Prediction claimed it could offer polygenic scores for traits including diabetes, heart disease and even IQ as an additional amenity for parents having children through in vitro fertilization. Currently, IVF clinics test fertilized embryos before they are implanted into a uterus to check for inherited genetic disease, like cystic fibrosis or Tays-Sachs disease, or for major chromosome abnormalities that can dramatically decrease the likelihood of a fetus being carried to term.

The announcement has been met with concern from scientists about the accuracy of these new preimplantation tests as well as the long-term effects of selecting on the basis of these traits.

There's all sorts of things where we don't even understand how these different mechanisms are operating and how they're correlated with other aspects of the genome, Schmitz said.

Measurements of intelligence like IQ tests are controversial, and as Angela Saini writes in Superior: The Return of Race Science, much of the work correlating educational attainment with genetics has direct ties to the vestiges of the eugenics movement in the early 20th century. Additionally, for many complex traits and diseases in combination with social and environmental factors at play, these polygenic scores are not necessarily an indication that the trait or disease will manifest.

We should be clear that the scores are not destiny, and there's an upper limit on how predictive it could be, Fletcher said.

Original post:
Genetic risk scores open a host of concerns and implications - The Daily Cardinal

Read More...

A Woman Who Accused Trump Of Rape Is Now Seeking His DNA To Test Against Genetic Material Found On Her Dress – BuzzFeed News

February 1st, 2020 4:42 am

Lawyers for E. Jean Carroll, who said Donald Trump raped her in a New York department store in the 1990s, are seeking a sample of the president's DNA to determine whether it matches genetic material found on the dress she wore during the alleged assault.

On Thursday, her attorney, Roberta Kaplan, filed court documents calling on Trump to submit a sample on March 2 in Washington, DC, for "analysis and comparison against unidentified male DNA present on the dress" Carroll wore that day.

A Jan. 8 laboratory report attached to the notice said that DNA recovered from the right sleeve of the dress was a mixture of four individuals, Carroll and three others, including at least one male. The report said a number of individuals whose names were redacted were eliminated as potential contributors to the mixture.

This case turns on whether Donald Trump lied when he said that he had not sexually assaulted E Jean Carroll and, in fact, had never even met her," Kaplan said in a statement. "As a result, weve requested a simple saliva sample from Mr. Trump to test his DNA, and there really is no valid basis for him to object.

The lawyer representing Trump in the case did not immediately respond to BuzzFeed News' request for comment.

Carroll, a writer and advice columnist, filed a defamation lawsuit against Trump in November, saying he lied when he denied her rape allegations.

In June, Carroll released a new book, an excerpt from which was published in New York magazine. She alleged Trump raped her in a Bergdorf Goodman dressing room about 23 years ago.

In the dressing room, Carroll alleged Trump grabbed her arms, pinned her against the wall, pulled down her tights, and "thrust his penis" inside her, according to court documents.

After Carroll came forward, Trump denied the allegation and claimed he had "never met that person in my life." He also accused her of making up other allegations Carroll had also accused disgraced former CBS CEO Les Moonves of sexually assaulting her and said the Democratic party must have been involved.

In a statement Thursday, Carroll said that after Trump allegedly sexually assaulted her, she took the black dress she had been wearing and hung it in her closet where it stayed until last year when she wore it for the New York magazine photo shoot.

DNA does degrade over time but, if preserved well, can last millions of years. Genetic material has been obtained from evidence in decades-old cases to use for testing. In 2013, investigators linked the man they believed to be the Boston Strangler, who murdered 13 women in the 1960s, to old fluid samples taken from one victim's body and a blanket from the crime scene.

Unidentified male DNA on the dress could prove that Donald Trump not only knows who I am, but also that he violently assaulted me in a dressing room at Bergdorf Goodman and then defamed me by lying about it and impugning my character," Carroll said.

See the original post here:
A Woman Who Accused Trump Of Rape Is Now Seeking His DNA To Test Against Genetic Material Found On Her Dress - BuzzFeed News

Read More...

OPINION: Jewish or not, this week could save you a lot of heartache – Atlanta Journal Constitution

February 1st, 2020 4:42 am

Monday marks the beginning of the first Jewish Genetic Screening Awareness Week.

And, this being February, there are at least a dozen other awareness efforts just as there were in January and will be come March and the nine months that follow. February is, of course, the month in which we raise awareness about HIV/AIDS, Teen Dating Violence and screen for eating disorders, among a long list of other things.

Now comes Feb. 3-7, the week JScreen hopes will get us to focus on genetic screening and more specifically the need for people here and across the country to take charge of their health and any children they hope to have in the future. To kick things off, the Georgia Legislature is expected to pass a proclamation to highlight the effort midweek.

JScreen, you might recall, is a national nonprofit public health initiative dedicated to preventing Jewish genetic diseases. But the goal is to prevent diseases common in other ethnic groups as well, said Karen Arnovitz Grinzaid, an assistant professor of human genetics at Emory University and JScreens executive director.

The nonprofit, based at Emory University, began in 2010 as a pilot project in Atlanta and has since evolved into a national initiative offering affordable, accessible and comprehensive genetic screening.

RELATED |DeKalb couples personal tragedy becomes crusade for genetic testing

Since its national launch in 2013, Grinzaid said, JScreen has helped thousands, testing people from every state across the country and offering services remotely.

That means once you register for a genetic screen kit atjscreen.org, JScreen will mail the kit to your home. All you have to do is spit in a tube and mail the saliva sample to the lab. A genetic counselor will then report the results either by phone or secure video conference.

For people with health insurance, the cost, regardless of coverage, is $149 and includes the testing and follow-up genetic counseling. The self-pay price is $349.

While the focus is on the Jewish community, screening is encouraged for anyone planning to have a family, Grinzaid said.

JScreen screens for over 200 diseases. For most of these diseases, both parents must carry the same recessive gene in order for their children to be at risk.

So why an awareness week?

Were always trying to raise awareness, but by dedicating a week and calling this out, we can save lives, Grinzaid said. So many people dont hear about genetic screening until they show up pregnant in their doctors office. At that point, if they are a high-risk couple, they dont have as many options to help them plan ahead for a healthy baby. Genetic screening is something people should ideally do before they get pregnant.

Unlike other awareness campaigns, JScreens promises to be very purposeful, focusing each day on a specific theme in hopes that more people will take advantage of screening.

RELATED |A mother and her daughters bare all to help prevent breast cancer

On Monday, organizers will be laser focused on Tay-Sachs, a rare, inherited disorder that destroys nerve cells in the brain and spinal cord.

On Tuesday, theyll turn their focus to college students. While having a baby may be the farthest thing from any students mind, discounted screenings will be provided at colleges and universities across the country so students will have access to important information they need for future family planning.

BRCA awareness will follow on Wednesday. Ashkenazi Jews are at 10 times greater risk to have a mutation in a BRCA gene, increasing their risk for breast, ovarian, prostate and pancreatic cancer.

Then on Thursday, Jews with Sephardi and Mizrahi ancestry, such as Persians, Syrians and Bukharians, are encouraged to be screened.

Finally on Friday, interfaith couples will be the focus. While there are a number of diseases that are commonly found in people with Jewish background, Grinzaid said these diseases also occur in the general population, making screening important for interfaith couples as well.

Thats not all.

Beyond carrier screening, Grinzaid said that JScreen is running the PEACH BRCA study for people with Jewish background who are at risk for carrying a BRCA mutation based on their ancestry. Knowing ones BRCA status can be life-saving.

Were piloting BRCA testing in metro Atlanta, she said. Participation in the study is free, but you must be at least 25 or older, male or female, and have at least one Jewish grandparent and no personal or close family history of related cancers.

Of the 500 available slots, only 100 are left. People interested in learning more about the PEACH BRCA study can log on here:jscreen.org/brca.

Once the study is complete, JScreen will launch a cancer genetic testing program nationally.

For information about any of these programs or to register for a screening kit,log onto jscreen.org.

Sure, the focus for now is on this week, but you can get screened any time and you should. Genetic testing is just that important.

Find Gracie on Facebook (www.facebook.com/graciestaplesajc/) and Twitter (@GStaples_AJC) or email her at gstaples@ajc.com.

Support real journalism. Support local journalism. Subscribe to The Atlanta Journal-Constitution today. See offers.

Your subscription to the Atlanta Journal-Constitution funds in-depth reporting and investigations that keep you informed. Thank you for supporting real journalism.

Read the original post:
OPINION: Jewish or not, this week could save you a lot of heartache - Atlanta Journal Constitution

Read More...

My ‘Tiredness’ Turned Out to Be a Genetic Condition That Raises Cancer Risk – msnNOW

February 1st, 2020 4:42 am

Courtesy Jen B.

In 2012, Bev Michel found a large lump in her breast. This discovery started a medical odyssey that led to a cancer diagnosis and ultimately unraveled the mystery of a variety of health issues that had plagued her for more than eight years.

Following up on the lump with a mammogram and biopsy, Michel got the startling news that she had cancer. The West Chester, Pennsylvania resident immediately jumped into a chemotherapy regimen, undergoing six sessions of chemo and two lumpectomiesonly to find later after genetic testing that her type of cancer, lobular breast cancer, doesn't respond to chemotherapy. She then requested and underwent a double mastectomy, hoping to ensure the cancer was gone for good. But the cancer recurred in 2016near the nodes. So she again had surgery, this time to remove lymph nodes that she later learned were benign.

Michel felt there had to be more to her troubles, and she went to her general practitioner for guidance. "I told her how I was always tired, and how much my joints ached," Michel recalls. "She ran a couple of blood tests, and when she received the results she didn't believe them. She said my iron levels were sky-high, so she retested them. They were even higher." Michel's doctor diagnosed her with hemochromatosis, a metabolic disorder that leads to abnormally high iron levels in the body.

The mineral deposits itself into organs like the heart, liver, and pancreas, and in the joints; it can raise the risk of cancer and other diseases. A normal human absorbs about 8 to 10 percent of the iron they get from their diet; people with hemochromatosis absorb four times as much. The condition is inherited, and people with northern European ancestry have an elevated risk, according to the Genetics Home Reference. Experts estimate that 16 million Americans have elevated iron levels. Michel's diagnosis helped shed light on her family's medical history. "My mom died of breast cancer, had macular degeneration, and heart issueswhich are all signs of the disorder. When I had genetic testing, my results showed that both of my parents had the gene mutation, so of course, I would, too." (Here, doctors reveal the rarest conditions they've ever diagnosed.)

About one in 227 of people of Northern European descent have the condition, and about 10% of white people in the U.S. are carriers, according to National Organization for Rare Disorders. That means they have one copy of the gene mutation that causes hemochromatosis. You need to inherit two copies of the gene, one from each parent, to have the condition, although not everyone with both genes develops it. It's most often diagnosed in men after age 40 and in women after 60, in the postmenopausal years. While it's one of the most common genetic diseases in the U.S., it's less common in African Americans, and people who are of Hispanic, Asian, or Native American descent.

Michel was told she would need to donate blood every few weeks for the rest of her life, as giving blood regularly helps reduce iron levels. The prospect of this sent her to the internet to research other possible treatments. "What I found was that high iron is correlated to cancer, and I'm convinced it's what caused cancer for both my mom and me," she says."I found a doctor at the University of Maryland, Abulkalam M. Shamsuddin, MB, BS, PhD, who had studied the use of something called IP6 for treatment of cancer and iron overload." IP6 stands for inositol hexaphosphate: It's basically a carbohydrate substance that behaves like a vitamin, and it binds with extra iron in the body, explains Michael. "Once I began taking it, I haven't had a blood draw in two years, and my cancer has not recurred. My doctors are amazed."

Through her journey, Michel has found a passion for educating others about this relatively common yet underdiagnosed disorder. "I think there needs to be more open-mindedness among the medical community regarding treatments for conditions like this. Instead of treating only symptoms, look for the cause," she says.

If you have suspicious symptoms and you're not finding answers, Michel advises you be direct: "Ask to be tested for hemochromatosis. It's not an expensive test. If you have cancer, look for a possible correlation to your iron levels. If you test positive, then consider genetic testing for your children's sake. If you have it, they might, too."

Don't miss the 50 everyday habits that reduce your risk of breast cancer.

Gallery: 50 everyday habits that can reduce your risk of breast cancer

See the original post here:
My 'Tiredness' Turned Out to Be a Genetic Condition That Raises Cancer Risk - msnNOW

Read More...

EMA Validates Seattle Genetics’ Marketing Authorization Application for Tucatinib for Patients with Locally Advanced or Metastatic HER2-Positive…

February 1st, 2020 4:42 am

Today, we achieved a significant milestone towards our goal of making tucatinib available to patients with locally advanced unresectable or metastatic HER2-positive breast cancer, including those with brain metastases, around the world, said Roger Dansey, M.D., Chief Medical Officer at Seattle Genetics. We look forward to working with the EMA throughout the review process. If approved, tucatinib has the potential to be a clinically meaningful advance for patients in this disease setting.

The MAA is based on data from the pivotal HER2CLIMB clinical trial, which compared tucatinib in combination with trastuzumab and capecitabine to trastuzumab and capecitabine alone in patients with locally advanced unresectable or metastatic HER2-positive breast cancer. Patients had previously received trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine). Patients had received a median of four prior lines of therapy overall and three in the metastatic setting. Forty-seven percent of the patients enrolled in the trial had brain metastases at the time of enrollment. Results of the pivotal HER2CLIMB trial were presented during an oral presentation at the 2019 San Antonio Breast Cancer Symposium (SABCS) and simultaneously published in the New England Journal of Medicine (NEJM).

The New Drug Application (NDA) for tucatinib was submitted to the U.S. Food and Drug Administration (FDA) on December 23, 2019 under the Real-Time Oncology Review Pilot Program. The review of the tucatinib NDA is also being conducted under Project Orbis, an initiative of the FDA Oncology Center of Excellence. Project Orbis provides a framework for concurrent submission and review of oncology drugs among participating international partners. Tucatinib was recently granted Breakthrough Therapy designation by the FDA in combination with trastuzumab and capecitabine, for the treatment of patients with locally advanced unresectable or metastatic HER2-positive breast cancer, including patients with brain metastases, who have been treated with trastuzumab, pertuzumab, and T-DM1. This designation was based on data from the HER2CLIMB trial.

About HER2CLIMB

HER2CLIMB is a multinational randomized (2:1), double-blind, placebo-controlled, active comparator, pivotal clinical trial comparing tucatinib in combination with trastuzumab and capecitabine compared with trastuzumab and capecitabine alone in patients with locally advanced unresectable or metastatic HER2-positive breast cancer who were previously treated with trastuzumab, pertuzumab and T-DM1. The primary endpoint of the trial was progression-free survival (PFS) per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 as determined by blinded independent central review (BICR) in the first 480 patients enrolled in the trial. HER2CLIMB enrolled a total of 612 patients to support the analyses of key secondary endpoints, including overall survival, PFS per BICR in patients with brain metastases at baseline and confirmed objective response rate (ORR). Safety data were evaluated throughout the study.

About HER2-Positive Breast Cancer

Patients with HER2-positive breast cancer have tumors with high levels of a protein called human epidermal growth factor receptor 2 (HER2), which promotes the aggressive spread of cancer cells. An estimated 271,270 new cases of invasive breast cancer will be diagnosed in the U.S. in 2019.1 Between 15 and 20 percent of breast cancer cases worldwide are HER2-positive.2 Historically, HER2-positive breast cancer tends to be more aggressive and more likely to recur than HER2-negative breast cancer.2, 3, 4 In patients with metastatic breast cancer, the most common site of first metastasis is in bone, followed by lung, brain, and liver.5, 6 Up to 50 percent of metastatic HER2-positive breast cancer patients develop brain metastases over time.2, 7 Despite recent treatment advances, there is still a significant need for new therapies that can impact metastatic disease, especially brain metastases. There are currently no approved therapies demonstrating progression-free survival or overall survival benefit for the treatment of patients with HER2-positive metastatic breast cancer after progression on T-DM1.8, 9, 10

About Tucatinib

Tucatinib is an investigational, orally bioavailable, potent tyrosine kinase inhibitor that is highly selective for HER2 without significant inhibition of EGFR. Inhibition of EGFR has been associated with significant toxicities, including skin rash and diarrhea. Tucatinib has shown activity as a single agent and in combination with both chemotherapy and other HER2 targeted agents such as trastuzumab.1,2 Studies of tucatinib in these combinations have shown activity both systemically and in brain metastases. HER2 is a growth factor receptor that is overexpressed in multiple cancers, including breast, colorectal and gastric cancers. HER2 mediates cell growth, differentiation and survival. Tucatinib has been granted orphan drug designation by the FDA for the treatment of breast cancer patients with brain metastases.

In addition to HER2CLIMB, tucatinib is being evaluated in a randomized, double-blind, placebo-controlled, multi-center phase 3 trial of tucatinib in combination with T-DM1 compared to T-DM1 alone, in patients with unresectable locally advanced or metastatic HER2-positive breast cancer, including those with brain metastases, who have had prior treatment with a taxane and trastuzumab. The primary endpoint is PFS per RECIST criteria. Secondary endpoints include overall survival, objective response rate and duration of response. This global trial is expected to enroll approximately 460 patients. More information about the phase 3 trial, including enrolling centers, is available at http://www.clinicaltrials.gov.

Tucatinib is also being evaluated in a multi-center, open-label, single-arm phase 2 clinical trial known as MOUNTAINEER, which is evaluating tucatinib in combination with trastuzumab in patients with HER2-positive, RAS wildtype metastatic or unresectable colorectal cancer. The primary endpoint of the trial is ORR by RECIST criteria. PFS, duration of response, overall survival and safety and tolerability of the combination regimen are secondary objectives. Results for 26 patients were evaluated in an analysis and presented at the European Society for Medical Oncology (ESMO) 2019 Congress. Enrollment is ongoing. More information about the MOUNTAINEER trial, including enrolling centers, is available at http://www.clinicaltrials.gov.

About Seattle Genetics

Seattle Genetics, Inc. is a global biotechnology company that discovers, develops and commercializes transformative medicines targeting cancer to make a meaningful difference in peoples lives. ADCETRIS (brentuximab vedotin) and PADCEVTM (enfortumab vedotin-ejfv) use the companys industry-leading antibody-drug conjugate (ADC) technology. ADCETRIS is approved in certain CD30-expressing lymphomas, and PADCEV is approved in certain metastatic urothelial cancers. In addition, investigational agent tucatinib, a small molecule tyrosine kinase inhibitor, is in late-stage development for HER2-positive metastatic breast cancer, and in clinical development for metastatic colorectal cancer. The company is headquartered in Bothell, Washington, and has offices in California, Switzerland and the European Union. For more information on our robust pipeline, visit http://www.seattlegenetics.com and follow @SeattleGenetics on Twitter.

Forward Looking Statements

Certain of the statements made in this press release are forward looking, such as those, among others, relating to the therapeutic potential of tucatinib, including its possible efficacy, safety and therapeutic uses; anticipated development activities including ongoing and future clinical trials; and the potential to obtain regulatory approvals of tucatinib in the United States, the European Union and in countries participating in Project Orbis. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the difficulty and uncertainty of pharmaceutical product development, the risk of adverse events or safety signals, the possibility of disappointing results in ongoing or future clinical trials despite earlier promising clinical results, the possibility that data from the HER2CLIMB trial may not be sufficient to support approval of tucatinib in the United States, the European Union or in other countries participating in Project Orbis or that other adverse regulatory actions could occur. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption Risk Factors included in the companys Quarterly Report on Form 10-Q for the quarter ended September 30, 2019 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

References:

1. American Cancer Society, Cancer Facts and Figures 2018-2019.

2. Loibl S, Gianni L (2017). HER2-positive breast cancer. The Lancet 389(10087): 2415-29.

3. Slamon D, Clark G, Wong S, et al. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785): 177-82.

4. American Cancer Society (ACS) (2018). Breast cancer HER2 status. Accessed: December 10, 2018.

5. Kennecke H, Yerushalmi R, Woods R, et al. (2010). Metastatic Behavior of Breast Cancer Subtypes. Journal of Clinical Oncology 28(20): 3271-7.

6. Berman AT, Thukral AD, Hwang W-T, et al. (2013). Incidence and Patterns of Distant Metastases for Patients With Early-Stage Breast Cancer After Breast Conservation Treatment. Clinical Breast Cancer 13(2): 88-94.

7. Duchnowska R, Loibl S, Jassem J (2018). Tyrosine kinase inhibitors for brain metastases in HER2-positive breast cancer. Cancer Treatment Reviews 67: 71-7.

8. Verma S, Miles D, Gianni L, et al. (2012). Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine 367(19): 1783-91.

9. Geyer CE, Forster J, Lindquist D, et al. (2006). Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine 355(26): 2733-43.

10. Blackwell KL, Burstein HJ, Storniolo AM, et al. (2012). Overall Survival Benefit With Lapatinib in Combination With Trastuzumab for Patients With Human Epidermal Growth Factor Receptor 2Positive Metastatic Breast Cancer: Final Results From the EGF104900 Study. Journal of Clinical Oncology 30(21): 2585-92.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200131005084/en/

Read more from the original source:
EMA Validates Seattle Genetics' Marketing Authorization Application for Tucatinib for Patients with Locally Advanced or Metastatic HER2-Positive...

Read More...

How one woman became the exception to her familys Alzheimers history – Science News

February 1st, 2020 4:42 am

A cruel twist of genetic fate brought Alzheimers disease to a sprawling Colombian family. But thanks to a second twist, one member of the clan, a woman, managed to evade the symptoms for decades. Her escape may hold the key to halting, or even preventing, Alzheimers.

The inherited version of Alzheimers disease erodes peoples memories early, starting around age 40. In this family and others, a mutation in a gene called presenilin 1 eventually leaves its carriers profoundly confused and unable to care for themselves. Locals around the Colombian city of Medelln have a name for the condition: la bobera, or the foolishness.

The woman in the afflicted family who somehow fended off the disease carried the same mutation that usually guarantees dementia. And her brain was filled with plaques formed by a sticky protein called amyloid. Many scientists view that accumulation as one of the earliest signs of the disease. Yet she stayed sharp until her 70s.

Researchers were stumped, until they discovered that the woman also carried another, extremely rare genetic mutation that seemed to be protecting her from the effects of the first one. This second mutation, in a different Alzheimers-related gene called APOE, seemed to slow the disease down by decades, says Joseph Arboleda-Velasquez, a cell biologist at Harvard Medical School.

Headlines and summaries of the latest Science News articles, delivered to your inbox

There was this idea of inevitability, he says. But the womans circumstances bring a different perspective one in which amyloid buildup no longer guarantees problems. Arboleda-Velasquez and colleagues reported the details of the womans exceptional case November 4 in Nature Medicine, omitting the womans name and precise age to protect her privacy.

Although the discovery is based on one person, it points to a biological weak spot in the degenerative disease that affects an estimated 5.8 million people in the United States alone. So far, nearly every clinical trial designed to slow or stop the disease has failed. Those heartbreaking disappointments have prompted scientists to expand their search for treatments.

Perhaps this unusually resilient woman in Colombia shows a way to halt the disease, or at least slow it down. Can we come up with a drug that does this to people who dont have a mutation? asks Arboleda-Velasquez. The potential for that is tremendous.

The vast majority of people with Alzheimers have a sporadic form of the disease with no clear genetic culprit. These people often reach their 70s or 80s before signs of dementia appear. Mutations that cause trouble much earlier, such as the Paisa mutation found in the Colombian family, are unusual. But despite their different origins and different timelines, these two versions of Alzheimers are thought to progress in somewhat similar ways.

Normally, presenilin 1 makes a protein that helps chop up the long, sticky amyloid precursor protein. One of the resulting small bits is called amyloid-beta. Those smaller pieces are harmlessly washed out of the brain. The mutated presenilin 1 gene found in the Colombian family, however, creates a kink in the chopping process that leads to an abundance of a version of amyloid that knits itself into plaques between brain cells.

This pileup is already visible in brain scans of people in their 20s who carry the mutation. By their mid-40s, many of these people have trouble remembering; they typically develop full-blown dementia by age 50.

Inheriting just one copy of the mutation is enough to lead to excess amyloid, and ultimately dementia. The mutations powerful effect in this family is one of the strongest arguments for the fact that amyloid plays a critical role in Alzheimers, says immunologist and aging expert Richard J. Hodes, director of the National Institute on Aging in Bethesda, Md. Since taking on the role in 1993, Hodes has helped set the course for U.S.-funded Alzheimers research, allocating support for promising projects, including studies happening in Colombia.

The Colombian family, 5,000 members strong, includes an estimated 1,000 or so people who carry the Paisa mutation in the presenilin 1 gene. Their involvement in the research has been invaluable. Access to hundreds of people known to be at high risk for the disease allows scientists to study how Alzheimers unfolds, particularly at its earliest stages, and has led to reports of early signs of Alzheimers, both in the brain and the blood. Family members have gone to great lengths to help, walking or taking a bicycle to the nearest bus stop, and then taking a bus to a train, for many hours, to come to the clinic, Hodes says.

During Hodes recent visit to the Medelln area, a resident told him how the disease is just a part of their lives: If I have the disease, I know that my family, my brother and my sister, will take care of me. And if I dont, I will take care of them.

When Colombian researchers learned of the woman who stayed sharp until her 70s, they arranged for her to travel to Boston in the summer of 2016, accompanied by family members and a research assistant. There, neuroimaging researcher Yakeel T. Quiroz and her colleagues used brain scans to measure levels of amyloid and other markers of brain health, including another Alzheimers-related protein called tau, which can tangle up inside nerve cells.

Those scans revealed a brain loaded with amyloid, says Quiroz, of Harvard Medical School. This woman had most likely been accumulating amyloid for decades. On a scale commonly used to quantify amyloid in the brain, she scored 1.96, well above the threshold of 1.2 that signifies extensive amyloid buildup. Her score was, pretty much the highest that we have seen in anybody we have scanned so far, Quiroz says.

Genetic analyses revealed that the woman had whats called the Christchurch mutation in both copies of her APOE gene. Further tests suggested that this mutation, named for the New Zealand city where it was first found, was shielding her from the disease. The fact that the woman had huge amounts of amyloid in her brain, yet didnt seem impaired until her 70s, is extremely surprising, interesting, provocative and potentially very, very informative, Hodes says.

Scientists need to do more work to confirm that the APOE Christchurch mutation protected her brain. Still, the results reveal a simple truth, Hodes says. Amyloid itself is not necessarily sufficient to cause dementia.

Studies outside of the Colombian family also make clear that amyloid isnt the whole story. Other cellular actors contribute to the death of nerve cells and memory loss that Alzheimers brings. Nerve cellclogging tangles of tau and other signs of brain illness are tightly linked to brain decline, research from many studies has shown. Thats reflected in observations from a study of 480 people age 60 and older who live around Rochester, Minn.

These people, none of whom showed signs of dementia, were randomly chosen to be invited into the study, an unbiased selection that offered researchers a glimpse of brain health in the wider population.

To find out which brain changes best predict future memory loss, neuroradiologist Clifford R. Jack Jr. of the Mayo Clinic in Rochester and colleagues tested volunteers memory performance while measuring their amyloid levels and other brain signals. Amyloid seemed to be closely involved in memory decline over about five years but only in the right context, the team reported in June 2019 in JAMA.

Without either of two other troublesome markers tau tangles or brain shrinkage amyloid didnt predict memory loss. In other words, amyloid might be setting up the shot, but then it passes the ball.

Amyloid in the head is the first stage of what will ultimately lead to full-blown Alzheimers disease, Jack says. But there can be a lot of time between that early stage of amyloid accumulation and the development of symptoms.

Among the Colombian family members, that interval lasts around 10 to 15 years. The same is roughly true for people with the sporadic form of Alzheimers. But for the woman described in the report in Nature Medicine, that lag seemed twice as long.

That suggests that at least its possible to live with amyloid not just for 15 years, but for many decades, says Paul Aisen, director of the University of Southern Californias Alzheimers Therapeutic Research Institute in San Diego. Living healthy longer: Thats very exciting.

The protective effect of the womans mutation seems to come from an extremely specific change. In the Christchurch variant, a single spot in the APOE gene is tweaked. The resulting protein has a serine amino acid swapped in for the standard arginine.

The swap prevents the APOE protein from binding to some sugar-dotted proteins called heparan sulfate proteoglycans, or HSPGs, experiments on the isolated proteins revealed. Earlier studies showed that HSPGs may promote amyloid accumulation and nudge nerve cells to slurp up more toxic tau.

But to misbehave, HSPGs might need to partner with the APOE protein. The Christchurch mutation could have protected the womans brain by scrambling that nefarious relationship, the researchers suspect. Without that specific connection between APOE and HSPGs, the disease process gets stalled, Arboleda-Velasquez says. This really puts a block on the cascade of events.

Fleshing out the APOE proteins normal biological cascade, and how that changes with the Christchurch mutation, is going to allow for much more finely targeted drug development, says Aisen, who also works as a consultant for Biogen, a biotechnology company in Cambridge, Mass. The company is developing an amyloid-targeting drug called aducanumab and is expected to apply for approval from the U.S. Food and Drug Administration this year (SN: 1/18/20, p. 8).

As one of the strongest genetic risk factors for dementia, the APOE gene has long been scrutinized as a possible target for Alzheimers drugs. People who carry a version of the gene called APOE4 have a higher risk of Alzheimers.

The APOE2 version dramatically lowers the risk, Quiroz, Arboleda-Velasquez and colleagues report in preliminary research posted online November 2 at medRxiv.org. APOE3 usually brings an average risk of Alzheimers, with the notable exception of the version with the Christchurch mutation carried by the Colombian woman.

In the general population, old age is the biggest risk factor for Alzheimers. As the number of older people balloons, so too will the number of people with dementia. By 2050, an estimated 13.8 million people in the United States will have Alzheimers. Worldwide, an estimated 50 million people have dementia; Alzheimers accounts for the bulk of those cases.

The family in Colombia continues to help. A clinical trial testing a drug that is designed to lower amyloid is under way in Colombia. People who have the Paisa mutation but have not shown Alzheimers symptoms, as well as people without the mutation, are receiving the drug. The drug, crenezumab, is an antibody thats thought to mark amyloid for destruction by immune cells. Its being developed by Roche/Genentech.

Quiroz and her colleagues also plan to follow the Colombian woman and other members of the family over time, as part of a research exchange between Fundacin Universidad de Antioquia in Medelln, which has led the studies on this family, and Massachusetts General Hospital in Boston.

Each month, the project, called COLBOS, for Colombia-Boston, flies a new group of about five adult participants to Boston for extensive evaluation, including thinking and memory tests, brain scans and measurements of smelling ability, fitness and music perception. Participants being studied in Colombia are as young as 9 years old.

The project may yield insights about how Alzheimers takes hold early on. But in a way, the initial trigger might not even matter. It could be that the cause or more likely, causes of Alzheimers might ultimately be poor targets for drugs, Arboleda-Velasquez says.

People with loved ones suffering from Alzheimers, including the Colombian family, dont necessarily care what causes the disease, Quiroz says. They are more interested in seeing if there is anything that can help them to get better. Thats what the patients and families are waiting for.

The rest is here:
How one woman became the exception to her familys Alzheimers history - Science News

Read More...

Decibel Therapeutics Announces Strategic Research Focus on Regenerative Medicine for the Inner Ear – Yahoo Finance

February 1st, 2020 4:41 am

Company signs option agreement with The Rockefeller University to access intellectual property covering compounds targeting key regeneration pathway

Decibel Therapeutics, a development-stage biotechnology company developing novel therapeutics for hearing loss and balance disorders, today announced a new strategic research focus on regenerative medicine approaches for the inner ear. The company is also announcing a collaboration and option agreement that gives Decibel exclusive access to novel compounds targeting proteins in a critical regenerative pathway.

Decibels research focus on regeneration will be powered by the companys research and translation platform. The company has built one of the most sophisticated single cell genomics and bioinformatics platforms in the industry to identify and validate targets. Decibel has also developed unique insights into regulatory pathways and inner ear delivery mechanisms that together enable precise control over gene expression in the inner ear and differentiate its AAV-based gene therapy programs.

"Our deep understanding of the biology of the inner ear and our advanced technological capabilities come together to create a powerful platform for regenerative medicine therapies for hearing and balance disorders," said Laurence Reid, Ph.D., acting CEO of Decibel. "We see an exciting opportunity to leverage this platform to address a broad range of hearing and balance disorders that severely compromise quality of life for hundreds of millions of people around the world."

The first program in Decibels regeneration portfolio aims to restore balance function using an AAV-based gene therapy (DB-201), which utilizes a cell-specific promoter to selectively deliver a regeneration-promoting gene to target cells. In collaboration with Regeneron Pharmaceuticals, Decibel will initially evaluate DB-201 as a treatment for bilateral vestibulopathy, a debilitating condition that significantly impairs balance, mobility, and stability of vision. Ultimately, this program may have applicability in a broad range of age-related balance disorders. There are currently no approved medicines to restore balance. Decibel expects to initiate IND-enabling experiments for this program in the first half of 2020.

Decibel is also pursuing novel targets for the regeneration of critical cells in both the vestibule and cochlea of the inner ear; these targets may be addressable by gene therapy or other therapeutic modalities. As a key component of that program, Decibel today announced an exclusive worldwide option agreement with The Rockefeller University, which has discovered a novel series of small-molecule LATS inhibitors. LATS kinases are a core component of the Hippo signaling pathway, which plays a key role in regulating both tissue regeneration and the proliferation of cells in the inner ear that are crucial to hearing and balance. The agreement gives Decibel an exclusive option to license this series of compounds across all therapeutic areas.

The agreement also establishes a research collaboration between Decibel and A. James Hudspeth, M.D., Ph.D., the F.M. Kirby Professor at The Rockefeller University and the director of the F.M. Kirby Center for Sensory Neuroscience. Dr. Hudspeth is a world-renowned neuroscientist, a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and a Howard Hughes Medical Institute investigator. Dr. Hudspeth has been the recipient of numerous prestigious awards, including the 2018 Kavli Prize in Neuroscience.

"Rockefeller scientists are at the leading edge of discovery, and we are excited to see the work of Dr. Hudspeth move forward in partnership with Decibel," said Jeanne Farrell, Ph.D., associate vice president for technology advancement at The Rockefeller University. "The ambitious pursuit of harnessing the power of regenerative medicine to create a new option for patients with hearing loss could transform how we address this unmet medical need in the future."

In parallel with its new research focus on regenerative strategies, Decibel will continue to advance key priority preclinical and clinical programs. DB-020, the companys clinical-stage candidate designed to prevent hearing damage in people receiving cisplatin chemotherapy, is in an ongoing Phase 1b trial. Decibel will also continue to progress DB-OTO, a gene therapy for the treatment of genetic congenital deafness, which is being developed in partnership with Regeneron Pharmaceuticals. The DB-OTO program aims to restore hearing to people born with profound hearing loss due to a mutation in the otoferlin gene and is expected to progress to clinical trials in 2021.

Story continues

To support the new research focus, Decibel is restructuring its employee base and discontinuing some early-stage discovery programs.

About Decibel Therapeutics, Inc.Decibel Therapeutics, a development-stage biotechnology company, has established the worlds first comprehensive drug discovery, development, and translational research platform for hearing loss and balance disorders. Decibel is advancing a portfolio of discovery-stage programs aimed at restoring hearing and balance function to further our vision of a world in which the benefits and joys of hearing are available to all. Decibels lead therapeutic candidate, DB-020, is being investigated for the prevention of ototoxicity associated with cisplatin chemotherapy. For more information about Decibel Therapeutics, please visit decibeltx.com or follow @DecibelTx.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200129005162/en/

Contacts

Matthew Corcoran, Ten Bridge Communicationsmcorcoran@tenbridgecommunications.com (617) 866-7350

Excerpt from:
Decibel Therapeutics Announces Strategic Research Focus on Regenerative Medicine for the Inner Ear - Yahoo Finance

Read More...

Regenerative Medicine Is Transforming Health Care – South Florida Reporter

February 1st, 2020 4:41 am

The recent breakthrough of regenerative immunotherapies, also known as CAR-T cell therapy, which beefs up the bodys ability to attack cancer is an example. And at theCenter for Regenerative Medicineat Mayo Clinic, a collective effort of experts involving multiple departments and divisions is driving this rapidly maturing field forward.

It sounds like science fiction.

We are dropping the fiction part, saysDr. Andre Terzic, director of the Center for Regenerative Medicine at Mayo Clinic.

Dr. Terzic underscores innovations in regenerative medicine as transformative in health care from building new tissues and organs to triggering your body to heal itself.

Lets say you cut your skin and the skin will heal on its own, says Dr. Terzic. That ability that is very preeminent with the skin is what wed like to see with other organs.

The present and future of regenerative medicine could be applied to help healheart diseaseand other vital organs, life-threatening cancer, musculoskeletal and neurological diseases and injuries, and even create new organs for transplantation.

For us, its very important to create true hope for patients, true solutions that are both verifiable, validated through many, many of the clinical studies, says Dr. Terzic.

Its a transformative view of medicine from managing patient symptoms to truly going after the root cause of the problem.

The future is remarkable. The word cures will be increasingly real, says Dr. Terzic.

Link:
Regenerative Medicine Is Transforming Health Care - South Florida Reporter

Read More...

A milestone in the treatment of men’s disease with regenerative medicine – Health Europa

February 1st, 2020 4:41 am

Tissue engineering combines the field of cell biology with material science in order to generate tissues and organs that may be used for regeneration, replacement or reconstruction of human bodies. In the past 10 years, there has been an exponential growth in these therapies, with great optimism and excitement about the potential effects or implications.

Since the end of the 20th century, cultured urethral mucosa cells have been used for repair of hypospadias, a congenital malformation of the urinary tract. In a survey published in 2019, tissue-engineered grafts showed even better results when used in children for primary hypospadias repair than in adults for urethral stricture repair.

Recently, a breakthrough in the surgical treatment of male urethral stricture was reported when a total of 65 patients with urethral strictures successfully were treated with MukoCell, a tissue-engineered oral mucosa transplant. With a mean follow-up of 12.1 months, recurrence was observed in only 12 patients. This corresponds to a success rate of 81.5%.About 1% of the male population suffers from strictures of the urethra.

Patients are chronically ill, with severely diminished quality of life, suffering from low urinary flow, pain, chronic urinary infections, urinary stones, urinary reflux, and damage to and failure of the urinary system. If left untreated, life-threatening urinary retention can occur.

The gold standard for urethral reconstruction is represented by the use of oral mucosa graft, with success rates reported in literature of around 80%. However, due to the complication rate at the mucosa harvest site, only a minority of operative urologists carry out this procedure.

It requires the excision of large segments of mucosa from the mouth of the patients. This severe damage to healthy tissue frequently is accompanied by multiple injuries with a significant impact on patients quality of life intraoral pain, bleeding, swelling, sensory loss and oral numbness which in many cases are persistent.

Other long term consequences include compromised oral health, scarring, chronic ulcers due to repeated bites on scar bulges, impaired lip mobility, permanent salivation, oral stenosis, facial deformities, diminished facial expressions, impaired mouth opening and impaired drinking, eating and speaking, periodontal disease; and loss of teeth and implants. One of the late consequences resulting from chronic irritation and inflammation is the increased risk of oral cancer.

Because of these risks and complications, many doctors and patients refuse this operation. Moreover, in certain situations this operation cannot be performed, such as where the patient only has a small oral cavity or limited mouth opening capacity, meaning access to the oral cavity is limited and excision of larger pieces of oral mucosa is not possible.

A significant proportion of patients are not willing to undergo the excision of oral grafts, including patients with tendency to increased scar formation, where the excision of oral mucosa is associated with risks of parafunctional bites, chronic irritation and inflammation; or patients with dentures, where the excision may lead to poorly fitting dentures or loss of dental implants. This counts even more if there is pre-existing oral mucosal damage, for example after previous removal of oral mucosa.

For other patients, the oral complications cannot be tolerated because impairment of physiognomy, oral anatomy or gustatory sensation impacts their job or social function; such as teachers, singers, politicians, actors, speakers, salespeople, cooks and musicians who play wind or brass instruments.

Tissue-engineered transplants represent the group of advanced tissue-engineered therapies (ATMPs). These are subject to EU regulation; in order to obtain market access, they must receive authorisation from the European Medicines Agency (EMA).

In order to obtain this approval, high standards must be met regarding proof of the quality, safety and efficacy of these products. Although tissue-engineered products may have a high impact on patients health, only a few of them will be approved. Tissue engineering techniques are complex and require a high standard of specialised laboratories.

Regarding quality and safety, MukoCell has already received a certificate from the EMA. MukoCell is manufactured in a state of the art cell culture factory, which has been specifically designed for engineering of tissue especially for medical use and complies with GMP guidelines for the production of pharmaceuticals. The manufacturing process starts with a tiny biopsy from the oral mucosa of the patient.

Oral mucosa is easily accessible in any patient; and biopsy under simple local anaesthesia is easy, non-invasive and painless for patients. The tissue is sent to the tissue factory where the biopsy is explanted in cell culture media. Cells are grown out and undergo a standardised aseptic manufacturing process, at the end of which, before the products are used therapeutically, strict quality and safety tests are conducted. Only if the specified quality criteria are met are the products then released for therapeutic application.

The efficacy of MukoCell has been shown in an open non-interventional study. However, to achieve market authorisation, the EMA requests that efficacy be further confirmed in a pivotal clinical study in direct comparison with native oral mucosa. This study will begin shortly and will involve a total of 200 patients, divided into two therapy groups of 100 patients each. Initial results of the study are expected by the beginning of 2023.

One goal of this clinical study is to show equivalence of the tissue-engineered product with native oral mucosa in urethral stricture treatment; the other goal is to clearly demonstrate the superiority of MukoCell over native oral mucosa as a graft, in terms of the aforementioned frequent and severe intraoral complications and impact on quality of life for patients.

The demonstration of MukoCells superiority is not only important regarding market authorisation, but also with respect to reimbursement by health insurances. The transplantation of native oral mucosa is a procedure developed by hospital surgeons. A critical examination of its safety and effectiveness has never been carried out, and complications are accepted if there is no alternative treatment.

Moreover, besides the surgical procedure which is paid for by the health insurance companies there are no additional costs associated with using native oral mucosa. In contrast, to justify additional costs arising from the use of a cultivated transplant, the efficacy, safety and superiority to native oral mucosa need to be proven.

Therefore, in the clinical trial, it is particularly important that the complications arising from excision of the transplant are recorded and documented as objectively as possible. Since the goal of surgery is to reconstruct the urethra, urologists pay little attention to intraoral complications and commonly play down their severity and importance.

Although the production of MukoCell is very complex and absolute sterility must be maintained during the three-week cultivation period, the costs are acceptable at several thousand euros. What pushes the costs even higher is the need to fulfil the requirements of the EMA in order to obtain marketing authorisation for the product: the planned clinical trial alone will cost around 10m. These costs must also be considered when pricing MukoCell.

The requirements of the regulatory authorities and health insurance companies not only influence the price of the products but also their availability. MukoCell has been on the market since 2013, but its approval is limited to Germany and only applies in a few individual cases due to the issue of reimbursement.

In a 2019 review the opinion was expressed that, due to the specificity of tissue-engineered products and the health benefits they offer, it would be advantageous to reconsider their regulatory requirements. The simplification of these requirements would allow the acceleration of these products into the market, faster availability for the patients and a decrease in the associated costs, making reimbursement less challenging for public health insurances in different countries.

Further, it was stated that the use of MukoCell represents a real, safe and efficient opportunity for patients with urethral stricture diseases. However, at present, regulatory, legal and financial issues represent important factors that restrict and slow down the wider use of MukoCell.

Soeren Liebig, CEOMukoCell GmbHBioMedizinzentrumDortmund+49 (0)23197426370s.liebig@mukocell.comwww.mukocell.com

Please note, this article will appear in issue 12 of Health Europa Quarterly, which will be available to read in February 2020.

Recommended Related Articles

View post:
A milestone in the treatment of men's disease with regenerative medicine - Health Europa

Read More...

The Alliance for Regenerative Medicine Outlines Recommendations on Enabling Cross-border and Regional Access to Advanced Therapy Medicinal Products…

February 1st, 2020 4:41 am

The Alliance for Regenerative Medicine Outlines Recommendations on Enabling Cross-border and Regional Access to Advanced Therapy Medicinal Products (ATMPs) in Europe

BRUSSELS, BELGIUM 27 January, 2020

The Alliance for Regenerative Medicine (ARM), the international advocacy organization representing the cell and gene therapy and broader advanced therapies sector, today published a positioning paper outlining recommendations for the timely and effective access to cross-border healthcare for patients.

Todays new position paper focuses, and further elaborates, on the recommendations of ARMs July 2019 report on ensuring timely access to ATMPs in Europe (see the report here). It represents the views of the ARM members and aims to stimulate debate and reach consensus among key stakeholders, including marketing authorisation holders, payers and treatment centres, on solutions to ensure all European patients can secure access to ATMPs, irrespective of their country or region of origin.

Challenges to expanded ATMP access in Europe

ARMs key recommendations

In order to ensure that patients across Europe can access ATMPs, ARM recommends the following:

Additional recommended measures to facilitate industry engagement in existing initiatives could include: improved opportunities for cross-country collaboration, removing duplicative processes at national level, and adopting policy principles to enhance cross-country collaboration.

Janet Lambert, CEO of ARM, commented: Europe has always been a leader in ATMP innovation, both in R&D and getting products to market, however, to ensure that patients have access to these transformative treatments, there are several challenges that need to be overcome at EU, national and regional levels. This paper builds on the EU Market Access Report published in 2019 and the subsequent European stakeholder meeting in Brussels, and outlines the challenges and the recommendations that we, alongside our members, believe will most effectively get these therapies to patients in a sustainable manner.

To read the report in full, please follow this link.

Press inquiriesFor more information about the report or media requests, please contact Consilium Strategic Communications at arm@consilium-comms.com.

About the Alliance for Regenerative Medicine

The Alliance for Regenerative Medicine (ARM) is an international multi-stakeholder advocacy organization that promotes legislative, regulatory, and reimbursement initiatives necessary to facilitate access to life-giving advances in regenerative medicine worldwide. Founded in 2009, ARM works to increase public understanding of the field and its potential to transform human healthcare, providing business development and investor outreach services to support the growth of its 350+ member organizations worldwide. ARM represents the interests of therapeutic developers, academic research institutions, major medical centers, investors, and patient groups that comprise the broader regenerative medicine community and is the prominent international advocacy organization in this field.

ARM has 70+ members across 15 countries in Europe. ARM aims to work closely with European stakeholders, leveraging its membership to create a supportive commercial and regulatory environment to create better conditions for the development and commercialization of ATMPs in Europe; develop strong stakeholder support around proposed solutions to improve patient access to ATMPs; promote clear, predictable and efficient regulatory framework across Europe; and promote international convergence of key regulations and guidance. For more information, visit alliancerm.org.

The rest is here:
The Alliance for Regenerative Medicine Outlines Recommendations on Enabling Cross-border and Regional Access to Advanced Therapy Medicinal Products...

Read More...

Q&A: Growing Steaks in the Lab – Physics

February 1st, 2020 4:41 am

The approach builds on technology developed for regenerative medicine. I work in a lab that investigates ways to engineer tissue for the replacement or repair of human organs. We use some of these methods to grow meat.

The first step involves what I call a high-tech cotton-candy machine. The machine takes in a solution of water and gelatin, spins it at a high rate, and sends out nano- and microfibers that get woven together into a slab. The texture of the slab mimics that of an animals muscular tissuethe part that gives meat its texture. We then immerse the slab into a solution containing stem cells from a cow or a rabbit, where it acts as a scaffolding for the cells to cling to and grow. We use myoblastsstem cells that are already committed to turning into muscle cells. Once the solution has permeated the scaffolding, we turn the stem cells into muscle cells by tweaking the nutrients in the solution. Et voil, we have long, thin threads of muscle, like in real meat.

Read the original post:
Q&A: Growing Steaks in the Lab - Physics

Read More...

"Mini Brains" Are Not like the Real Thing – Scientific American

February 1st, 2020 4:41 am

The idea of scientists trying to grow brain tissue in a dish conjures up all sorts of scary mental pictures (cue the horror-movie music). But the reality of the research is quite far from that sci-fi visionand always will be, say researchers in the field. In fact, a leader in this area of research, Arnold Kriegstein of the University of California, San Francisco, says the reality does not measure up to what some scientists make it out to be.

In a paper published on January 29 in Nature, Kriegstein and his colleagues identified which genes were active in 235,000 cells extracted from 37 different organoids and compared them with 189,000 cells from normally developing brains. The organoidsat times called mini brains, to the chagrin of some scientistsare not a fully accurate representation of normal developmental processes, according to the study.

Brain organoids are made from stem cells that are transformed from one cell type to the another until they end up as neurons or other mature cells. But according to the Nature paper, they do not always fully complete this developmental process. Instead the organoids tend to end up with cells that have not fully transformed into new cell typesand they do not re-create the normal brains organizational structure. Psychiatric and neurodevelopmental conditionsincluding schizophrenia and autism, respectivelyand neurodegenerative diseases such as Alzheimers are generally specific to particular cell types and circuits.

Many of the organoid cells showed signs of metabolic stress, the study demonstrated. When the team transplanted organoid cells into mice, their identity became crisper, and they acted more like normal cells, Kriegstein says. This result suggests that the culture conditions under which such cells are grown does not match those of a normally developing brain, he adds. Cellular stress is reversible, Kriegstein says. If we can reverse it, were likely to see the identity of cells improve significantly at the same time.

Brain organoids are getting better at recapitulating the activities of small clusters of neurons, says Kriegstein, who is a professor of neurology and director of the Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research at U.C.S.F. Scientists often make organoids from the cells of people with different medical conditions to better understand those conditions. But some scientists may have gone too far in making claims about insights they have derived from patient-specific brain organoids. Id be cautious about that, Kriegstein says. Some of those changes might reflect the abnormal gene expression of the cells and not actually reflect a true disease feature. So thats a problem for scientists to address.

A small ball of cells grown in a dish may be able to re-create some aspects of parts of the brain, but it is not intended to represent the entire brain and its complexity, several researchers have asserted. These organoids are no more sentient than brain tissue removed from a patient during an operation, one scientist has said.

Of course, models are never perfect. Although animal models have led to fundamental insights into brain development, researchers have sought out organoids, or organs-in-a-dish, precisely because of the limitations of extrapolating biological insights from another species to humans. Alzheimers has been cured hundreds of times in mice but never in us, for instance.

That said, the current models are already very useful in addressing some fundamental questions in human brain development, says Hongjun Song, a professor of neuroscience at the Perelman School of Medicine at the University of Pennsylvania, who was not involved in the new research. Using brain organoids, he adds, the Zika virus was recently shown to attack neural stem cells, causing a response that could explain why some babies exposed to Zika in utero develop unusually small brains.

Michael Nestor, a stem cell expert, who did not participate in the new study, says his own organoids are very helpful for identifying unusual activity in brain cells grown from people with autism. And he notes that they will eventually be useful for screening potential drugs.

Even though the models will always be a simplification, the organoid work remains crucial, says PaolaArlotta, chair of the department of stem cell and regenerative biology at Harvard University, who was also not involved in the Nature study. Neuropsychiatric pathologies and neurodevelopmental conditions are generally the result of a large number of genetic changes, which are too complex to be modeled in rodents, she says.

Sergiu Pasca, another leader in the field, says that the cellular stress encountered by Kriegstein and his team might actually be useful in some conditions, helping to create in a dish the kinds of conditions that lead to diseases of neurodegeneration, for instance. What I considerthe most exciting feature remains our ability to derive neural cells and glial cells in vitro, understanding their intrinsic program of maturation in a dish, says Pasca, an assistant professor at Stanford University, who was not part of the new paper.

The ability to improve cell quality when exposed to the environment of the mouse brain suggests that it may be possible to overcome some of the current limitations, Arlotta says. There is not yet a single protocol for making brain organoids in a lab, which may be for the best at this early stage of the field. Eventually, she says, scientists will optimize and standardize the conditions in which these cells are grown.

Arlotta, who is also the Golub Family Professor of Stem Cell and Regenerative Biology at Harvard, published a study last year in Nature showing that she and her colleagues canover a six-month periodmake organoids capable of reliablyincluding a diversity of cell types that are appropriate for the human cerebral cortex. She says it is crucial for organoid work to be done within an ethical framework. Arlotta is part of a federally funded team of bioethicists and scientists working together to ensure that such studies proceed ethically. The scientists educate the bioethicists on the state of the research, she says, and the ethicists inform the scientists about the implications of their work.

Nestor feels so strongly about the importance of linking science, policy and public awareness around stem cell research that he has put his own laboratory at the Hussman Institute for Autism on hold to accept a year-long science-and-technology-policyfellowship with the American Association for the Advancement of Science. He says he took the post to make sure the public and policy makers understand what they need to know about organoids and other cutting-edge science and to learn how to communicate about science with them.

One thing all of the scientists interviewed for this article agree on is that these brain organoids are not actual mini brains, and no one is trying to build a brain in a dish. Even as researchers learn to make more cell types and grow them in more realistic conditions, they will never be able to replicate the brains structure and complexity, Kriegstein says. The exquisite organization of a normal brain is critical to its function, he adds. Brains are still the most complicated structure that nature has ever created.

Excerpt from:
"Mini Brains" Are Not like the Real Thing - Scientific American

Read More...

Allergan to Report Fourth Quarter and Full Year 2019 Financial Results – Yahoo Finance

February 1st, 2020 4:41 am

DUBLIN, Jan. 31, 2020 /PRNewswire/ -- Allergan plc (NYSE: AGN) today announced it will release fourth quarter and full year 2019 financial results on Monday, February 10, 2020, prior to the open of U.S. financial markets.

For additional materials related to Allergan's fourth quarter and full year 2019 financial results, please visit Allergan's Investor Relations website at https://www.allergan.com/investors.

About Allergan plc

Allergan plc (NYSE: AGN), headquartered in Dublin, Ireland, is a global pharmaceutical leader focused on developing, manufacturing and commercializing branded pharmaceutical, device, biologic, surgical and regenerative medicine products for patients around the world. Allergan markets a portfolio of leading brands and best-in-class products primarily focused on four key therapeutic areas including medical aesthetics, eye care, central nervous system and gastroenterology. As part of its approach to delivering innovation for better patient care, Allergan has built one of the broadest pharmaceutical and device research and development pipelines in the industry.

With colleagues and commercial operations located in approximately 100 countries, Allergan is committed to working with physicians, healthcare providers and patients to deliver innovative and meaningful treatments that help people around the world live longer, healthier lives every day.

For more information, visit Allergan's website atwww.Allergan.com.

Forward-Looking Statement

Statements contained in this press release that refer to future events or other non-historical facts are forward-looking statements that reflect Allergan's current perspective on existing trends and information as of the date of this release. Actual results may differ materially from Allergan's current expectations depending upon a number of factors affecting Allergan's business. These factors include, among others, the difficulty of predicting the timing or outcome of FDA approvals or actions, if any; the impact of competitive products and pricing; market acceptance of and continued demand for Allergan's products; the impact of uncertainty around timing of generic entry related to key products, including RESTASIS, on our financial results; risks associated with divestitures, acquisitions, mergers and joint ventures; risks related to impairments; uncertainty associated with financial projections, projected cost reductions, projected debt reduction, projected synergies, restructurings, increased costs, and adverse tax consequences;difficulties or delays in manufacturing; and other risks and uncertainties detailed in Allergan's periodic public filings with the Securities and Exchange Commission, including but not limited to Allergan's Annual Report on Form 10-K for the year ended December 31, 2018 and Allergan's Quarterly Report on Form 10-Q for the period ended September 30, 2019. Except as expressly required by law, Allergan disclaims any intent or obligation to update these forward-looking statements.

CONTACTS:

Allergan:

Investors:

Manisha Narasimhan, PhD

(862) 261-7488

Media:

Lisa Brown

(862) 261-7320

View original content to download multimedia:http://www.prnewswire.com/news-releases/allergan-to-report-fourth-quarter-and-full-year-2019-financial-results-300996711.html

SOURCE Allergan plc

See original here:
Allergan to Report Fourth Quarter and Full Year 2019 Financial Results - Yahoo Finance

Read More...

Space might be the perfect place to grow human organs – Popular Science

February 1st, 2020 4:41 am

Three-dimensional printers have now assembled candy, clothing, and even mouse ovaries. But in the next decade, specialized bioprinters could begin to build functioning human organs in space. It turns out, the minimal gravity conditions in space may provide a more ideal environment for building organs than gravity-heavy Earth.

If successful, space-printed organs could help to shorten transplant waitlists and even eliminate organ rejection. Though they still have a long way to go, researchers at the International Space Station (ISS) hope to eventually assemble organs from adult human cells, including stem cells.

The medical field has only recently embraced 3D printing in general, particularly in biomedical fields like regenerative medicine and prosthetics. So far, these printers have produced early versions of blood vessels, bones, and different types of living tissue by churning out repeated layers of bioinka substance comprised of living human cells and other tissue thats meant to mimic the natural environment that surrounds growing organs.

Recently, researchers are finding that Earth might not be the best environment for growing freestanding organs. Because gravity is constantly pushing down on these delicate structures as they grow, researchers must surround the tissues in scaffolding, which can often debilitate the delicate veins and blood vessels and prevent the soon-to-be organs from growing and functioning properly. Within microgravity, however, soft tissues hold their shape naturally, without the need for surrounding supportan observation thats driven researchers to space.

And one manufacturing lab based in Indiana thinks its tech could play a key role in space. The 3D BioFabrication Facility (BFF) is a specialized 3D printer that uses bioink to build layers several times thinner than human hair. It cost about $7 million to build and employs the smallest print tips in existence.

The brainchild of spaceflight equipment developer Techshot and 3D printer manufacturer nScrypt, the BFF headed to the ISS in July 2019 aboard the SpaceX CRS-18.

Currently, the project focuses on building increasingly thick artificial cardiac tissue and delivering it back to Earth. Once the printed cardiac tissue reaches a certain thickness, it gets harder for researchers to ensure that a printed structures layers effectively grow into one another. Ultimately, though, theyd like the organs to arrive here fully formed.

Printed organs would eventually require vasculature and nerve endings to work properly, though that technology doesnt yet exist.

The next stagetesting heart patches under microscopes and within animalscould span over the next four years. As for whole organs, Techshot claims it plans to begin production after 2025. For now, the project is still in its infancy.

If you were to look at what we printed, it looks very modest, says Techshot vice president of corporate advancement Rich Boling. Its just a cuboid-type shape, this rectangular box. Were just trying to get cells to grow one layer into the next.

Cooking organs like pancakes

Compare the manufacturing process to cooking pancakes, Boling says. The space crew first creates a custom bioink pancake mix with the cells sent from Earth, which they load with syringe-like tools into the BFF.

Researchers then insert a cassette into the BFF containing a bioreactora system that mimics the normal bodily functions essential for growing healthy tissue, like providing nutrients and flushing out waste.

Approximately 200 miles below in Greenville, Indiana, Techshot engineers connect with ISS astronauts on a NASA-enabled secure digital pathway. The linkup allows Techshot to remotely command BFF functions like pump pressure, internal temperature, lighting, and print speed.

Next, the actual printing process occurs within the bioreactor and can take anywhere from moments to hours, depending on the shapes complexity. In the final production step, the cell-culturing ADvanced Space Experiment Processor (ADSEP) cooks the theoretical pancake; essentially, the ADSEP toughens up the printed tissue for its journey back to earth. This step could take anywhere from 12 to 45 days for different tissue types. When completed and hardened, the structure heads home.

The researchers have gone through three testing processes so far, each one getting more exact. This March, theyll begin the third round of experiments.

The bioprinter space race

The BFF lab is the sole team developing this specific type of microgravity bioprinter, Boling says. Theyre not the only ones looking to print human organs in space, though.

A Russian project has also entered the bioprinting space race, however their technique highly differs. Unlike the BFFs bioink layering method, Russian biotechnology laboratory 3D Bioprinting Solutions uses magnetic nanoparticles to produce tissue. An electromagnet creates a magnetic field in which levitating tissue forms the desired structuretechnology that appears ripped from the pages of a sci-fi novel.

After their bioprinter fell victim to an October 2018 spacecraft crash, 3D Bioprinting Solutions rebounded; the team now collaborates with US and Israeli researchers at the ISS. Last month, their crew created the first space-bioprinted bone tissue. Similar to the US project, 3D Bioprinting Solutions aims to manufacture functioning human tissues and organs for transplantation and general repair.

Just because we have the technology to do it, should we do it?

If the 3D BioFabrication Facility prospers in printing working human organs, theyd be subject to thorough regulation here on Earth. The US approval process is stringent for any drug, Rich Boling says, posing a challenge for this unprecedented invention. Techshot predicts at least 10 years for space-printed organs to achieve legal approval, though its an inexact estimate.

Along with regulatory acceptance, human tissue printed in microgravity may encounter societal pushback.

Each country maintains varying laws related to medical transplants. Yet as bioengineering advances into the the final frontier, the international scientific research community may need to shape new guidelines for collaboration among the stars.

As the commercialization of low-Earth orbit continues to ramp up in the next few years, it is certainly true that were going to have to take a very close look at the regulations that apply to that, says International Space Station U.S. National Laboratory interim chief scientist Michael Roberts. And some of those regulations are going to stray into questions related to ethics: Just because we have the technology to do it, should we do it?

Niki Vermeulen, a University of Edinburgh science technology and innovation studies lecturer, has researched the social implications of 3D bioprinting experiments. Like any Earth-bound project, she urges scientists not to get peoples hopes up too early in the process; individuals seeking organ transplants could read about the BFF online and think it could soon be ready to meet their needs.

The most important thing now, I think, is expectation management, Vermeulen says. Because its really quite difficult to do this, and of course we really dont know if its going to work. If it did, it would be amazing.

Another main issue is cost. Like other cutting-edge biotechnology innovations, the organs could also pose a major affordability challenge, she says. Techshot claims that a single space-printed organ could actually cost less than one from a human donor, since some people must pay for a lifetime of anti-rejection meds and/or multiple transplants. Theres currently no telling how long the BFF process would actually take, however, compared to the conventional donor route.

Plus, theres potential health risks for recipients: Techshot chief scientist Eugene Boland says cell manipulation always presents a possibility of genetic mutation. Modified stem cells can potentially cause cancer in recipients, for example.

The team is now working to define and minimize any dangers, he says. The BFF experiment adheres to the FDAs specific regulations for human cells, tissues, and cellular and tissue-based products.

Researchers on the ground now hope to perfect human cell manipulation: Over 100 US clinical trials presently test cultured autologous human cells, and several hundred test cultured stem cells with multiple origins.

What comes next

After the next round of printing tests this March, Techshot will share the bioprinter with companies and research institutions looking to print materials like cartilage, bone, and liver tissue. Theyre currently preparing the bioprinter for these additional uses, Boling says, which could advance health care as a whole.

To speed things up for space crews, Techshot is now building a cell factory that produces multiple cell types in orbit. This technology could cut down the number of cell deliveries between Earth and space.

The ISS has taken in plenty of commercial ventures in recent years, Michael Roberts says, and its getting crowded up there. Space-based experiments ramped up between 40 and 50 years ago, though until recently they mostly prioritized satellite communications and remote observation technology. Since then, satellites have shrunk from bus-sized to smaller than a shoebox.

Roberts has witnessed the scientific areas of interest broaden over the past decade to include medicine. Organizations like the National Institutes of Health are now looking to space to improve treatments, and everything from large pharmaceutical companies to small-scale startups want in.

Theyve got something stuck on every surface up there, he says.

As the ISS runs out of space and exterior attachment points, Roberts predicts that commercial ventures will build new facilities built for specific activities like manufacturing and plant growth. He sees it as a good opportunity for further innovation, since the ISS was originally designed for far more general purposes.

Space, as a whole, may start to look quite different from the first exploration age.

Baby boomers may remember glimpsing at a grainy, black-and-white moon landing five decades ago. Within the same lifetime, they could potentially observe the introduction of space-printed organs.

Go here to read the rest:
Space might be the perfect place to grow human organs - Popular Science

Read More...

Hitachi Opens Cell And Gene Therapy Facility In NJ – Contract Pharma

February 1st, 2020 4:41 am

Hitachi Chemical Advanced Therapeutics Solutions (HCATS), a subsidiary of Hitachi Chemical Co., Ltd. representing Hitachi Chemicals Regenerative Medicine Business Sector (RMBS) in North America, has opened its new cell and gene therapy manufacturing facility in Allendale, NJ. The new facility is the companys first to be designed from the ground up to meet the needs of commercial cell and gene therapy products and more than doubles HCATS existing manufacturing capacity in New Jersey.The facility currently includes six classified environment rooms, with the capacity to add more rooms that can be specifically configured to accommodate growing client needs. The new facility includes state-of-the-art manufacturing development laboratories, quality control and microbiological laboratories, warehousing, executive offices and meeting space. The companys ongoing investment in facility expansion complements ongoing investments in the companys quality systems and commercial expertise, all with the aim of meeting its commitments to existing clients with near-term expectations for commercial product manufacturing.The opening of this new facility marks an important milestone for HCATS and will offer a state-of-the-art resource for our clients as they commercialize cell and gene therapies, said Robert Preti, president and chief executive officer, HCATS, and general manager, RMBS. Access to this type of manufacturing space is needed across the industry to ensure the continued growth and momentum of these promising therapeutics. This facility will require up to 500 more employees to reach full operational capacity over the next several years, supporting our growing roster of clients.Governor Phil Murphy of New Jersey, said, I am excited for Hitachi Chemical Advanced Therapeutics Solutions future in New Jersey, and I have no doubt that their new, state-of-the-art facility will not only help New Jersey residents, but also contribute to expanding the innovation economy by bringing up to 500 new jobs to our state. With our highly educated and diverse workforce, New Jersey is the perfect location for expanding biotech firms like Hitachi Chemical.The leadership and employees of HCATS, along with officials of Hitachi Chemical and local dignitaries, commemorated the milestone with a ribbon cutting ceremony on January 29 at the new facility.

See more here:
Hitachi Opens Cell And Gene Therapy Facility In NJ - Contract Pharma

Read More...

Lab-grown heart cells implanted into human patient for the first time – New Atlas

February 1st, 2020 4:41 am

In what is a world-first and potentially the dawn of a new medical technology to treat damaged hearts, scientists in Japan have succeeded in transplanting lab-grown heart cells into a human patient for the first time ever. The procedure is part of a cutting-edge clinical trial hoped to open up new avenues in regenerative medicine, with the treatment to be given to a further nine patients over the coming years.

The clinical trial harnesses the incredible potential of induced pluripotent stem cells (IPSCs), a Nobel Prize-winning technology developed at Kyoto University in 2006. These are created by first harvesting cells from donor tissues and returning them to their immature state by exposing them to a virus. From there, they can develop into essentially any cell type in the body.

Professor Yoshiki Sawa is a cardiac surgeon at Osaka University in Japan, who has been developing a technique to turn IPSCs into sheets of 100 million heart muscle cells, which can be grafted onto the heart to promote regeneration of damaged muscles. This was first tested on pigs and was shown to improve organ function, which led Japans health ministry to conditionally approve a research plan involving human subjects.

The first transplantation of these cells is a huge milestone for the researchers, with the operation taking place earlier this month and the patient now recovering in the general ward of the hospital. The sheets are biodegradable, and once implanted on the surface of the heart are designed to release growth factors that encourage new formation of healthy vessels and boost cardiac function.

The team will continue to monitor the first patient over the coming year, and over the next three years aims to carry out the procedure on a total of 10 patients suffering from ischemic cardiomyopathy, a condition caused by a heart attack or coronary disease that has left the muscles severely weakened.

I hope that [the transplant] will become a medical technology that will save as many people as possible, as Ive seen many lives that I couldnt save, Sawa said at a news conference on Tuesday, according to The Japan Times.

Source: The Japan Times

Visit link:
Lab-grown heart cells implanted into human patient for the first time - New Atlas

Read More...

Hitachi Chemical Advanced Therapeutics Solutions Announces Opening of Its New Facility Designed to Manufacture Commercial Cell and Gene Therapies -…

February 1st, 2020 4:41 am

Company Expects to Add Up to 500 Employees in New Jersey

Hitachi Chemical Advanced Therapeutics Solutions, LLC ("HCATS"), a subsidiary of Hitachi Chemical Co., Ltd. representing Hitachi Chemicals Regenerative Medicine Business Sector ("RMBS") in North America, today announced the opening of its new cell and gene therapy manufacturing facility in Allendale, New Jersey. The new facility is the companys first to be designed from the ground up to meet the unique needs of commercial cell and gene therapy products and more than doubles HCATS existing manufacturing capacity in New Jersey.

The facility ("75 Commerce") currently includes six classified environment rooms, with the capacity to add more rooms that can be specifically configured to accommodate growing client needs. The new facility includes state-of-the-art manufacturing development laboratories, quality control and microbiological laboratories, warehousing, executive offices and meeting space. The companys ongoing investment in facility expansion complements ongoing investments in the companys Quality Systems and commercial expertise, all with the aim of meeting its commitments to existing clients with near-term expectations for commercial product manufacturing.

"The opening of this new facility marks an important milestone for HCATS and will offer a state-of-the-art resource for our clients as they commercialize cell and gene therapies. Access to this type of manufacturing space is needed across the industry to ensure the continued growth and momentum of these promising therapeutics," said Robert Preti, Ph.D., President and CEO, HCATS, and General Manager, RMBS. "This facility will require up to 500 more employees to reach full operational capacity over the next several years, supporting our growing roster of clients."

"I am excited for Hitachi Chemical Advanced Therapeutics Solutions future in New Jersey, and I have no doubt that their new, state-of-the-art facility will not only help New Jersey residents, but also contribute to expanding the innovation economy by bringing up to 500 new jobs to our state," said Governor Phil Murphy of New Jersey. "With our highly educated and diverse workforce, New Jersey is the perfect location for expanding biotech firms like Hitachi Chemical."

The leadership and employees of HCATS, along with officials of Hitachi Chemical and local dignitaries, commemorated the milestone with a ribbon cutting ceremony on January 29 at the new facility. For a selection of images from the ceremony please visit https://www.pctcelltherapy.com/pct-pulse/HCATS-Opens-Second-New-Jersey-Facility

About the Hitachi Chemical Regenerative Medicine Business Sector

The Hitachi Chemicals Regenerative Medicine Business Sector provides contract development and manufacturing organization (CDMO) services at current Good Manufacturing Practices (cGMP) standards, including clinical manufacturing, commercial manufacturing, and manufacturing development. The global footprint of the business is over 200,000 square feet and includes operations in North America (Allendale, New Jersey and Mountain View, California), Europe (Munich, Germany), and Japan (Yokohama). The business leverages two decades of experience exclusively focused on the cell therapy industry.

For more information on North America services, please visit http://www.pctcelltherapy.com.

For more information on Europe services, please visit http://www.apceth.com.

For more information on Japan services, please visit http://www.hitachi-chem.co.jp/english/

View source version on businesswire.com: https://www.businesswire.com/news/home/20200130005221/en/

Contacts

Hitachi Chemical Advanced Therapeutics Solutions, LLC Gregory Johnsongregory.johnson.jt@hitachi-chem.com Tel: +1 201 515 2153

Continued here:
Hitachi Chemical Advanced Therapeutics Solutions Announces Opening of Its New Facility Designed to Manufacture Commercial Cell and Gene Therapies -...

Read More...

New Gene Therapy Successfully Sends Six Patients With Rare Blood Disorder Into Remission – IFLScience

February 1st, 2020 4:41 am

Six patients with a rare blood disease are now in remission thanks to a new gene therapy. The condition, known as X-CGD, weakens the immune system leaving the body vulnerable to a range of nasty infections and shortens a persons lifespan. It is normally treated using bone marrow transplants, but matching donors to patients can be tricky and time-consuming and the procedure comes with risks.

A team led by UCLA recently treated nine people with the disease and six successfully went into remission, allowing them to stop other treatments. All six patients are doing well and havent suffered any adverse effects.

X-CGD is a form of chronic granulomatous disease (CGD). People with CGD have an inherited mutation in one of five genes involved in helping their immune system attack invading microbes with a burst of chemicals. This means that CGD sufferers have weaker immune systems than healthy people, so they have a greater risk of getting infections. These infections can be life-threatening, particularly if they affect the bones or cause abscesses in vital organs.

X-CGD is the most common type of CGD and only affects males. It is caused by a mutation in a gene on the X-chromosome. Current treatments are limited to targeting the actual infections with antibiotics as well as bone marrow transplants. Bone marrow contains stem cells that develop into white blood cells, so bone barrow from a healthy donor can provide a CGD patient with healthy white blood cells that can help their body to fend off disease.

However, bone marrow transplants are far from ideal. The patient has to be matched to a specific donor, and the body can reject the implanted bone marrow. That means that following a transplant, the patient needs to take anti-rejection drugs for at least six months.

For their new treatment, researchers removed blood cell-forming stem cells from the patients themselves and genetically modified them so that they no longer carried the unwanted mutation. Then, the edited stem cells were returned to their bodies, ready to produce healthy new infection-fighting white blood cells.

This is the first time this treatment has been used to try to correct X-CGD. The researchers followed up with the nine patients but sadly, two passed away within three months of the treatment. Its important to note that their deaths were not a result of the treatment but of rather severe infections that they had been suffering from for a long time. The remaining seven were followed for 12 to 36 months all remain free from infections related to their condition, and six have been able to stop taking preventative antibiotics entirely. The results are reported in Nature Medicine.

None of the patients had complications that you might normally see from donor cells and the results were as good as youd get from a donor transplant or better, said Dr Donald Kohn, a member of theEli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAand a senior author of the paper.

Whats more, four new patients have also been treated since the initial research was conducted. None experienced any adverse reactions and all remain infection-free. Now, the team plans to conduct a bigger clinical trial to further test the safety and efficacy of their new treatment, with the hopes that it may one day become available to the masses.

Visit link:
New Gene Therapy Successfully Sends Six Patients With Rare Blood Disorder Into Remission - IFLScience

Read More...

Page 701«..1020..700701702703..710720..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick