header logo image


Page 634«..1020..633634635636..640650..»

Stem Cell Therapy Market: Using Stem Cell Therapy to Accelerate Cardiovascular Healing – BioSpace

March 14th, 2020 7:43 pm

Researchers are occupied with finding novel strategies to make human stem cells. This is to address the expanding interest for stem cell creation for potential examination in malady administration. This factor is absolutely anticipated that would quicken the improvement of regenerative pharmaceutical, along these lines driving mechanical development. Also, cellular treatments are perceived as the following real progressions in changing social insurance. Firms are extending their cellular therapy portfolio, understanding the future capability of this field in the treatment of Parkinsons ailment, type 1 diabetes, spinal string damage, Alzheimers sickness, and others.

One of the essential variables driving this present Stem Cell Therapy market development is the restrictions in customary organ transplantations. The developing worries with organ transplantations have driven the interest for stem cell therapy items. Traditional organ gift is related with disease hazard, immunosuppression hazard, and dismissal. Additionally, the interest for organs is expanding, and the doctors very subject to organ benefactors. To beat these issues scientists are presently investigating approaches to distinguish the use of stem cell treatments in different transplants. For example, pluripotent stem cells offer a conceivably boundless wellspring of human cells, which can determine the majority of the cells in the body. Besides, the join dismissal can be diminished with the stem cells, as these are developed utilizing a similar individual cells. These points of interest in the transplantations of organs will bring about the development of the worldwide stem cell therapy market.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

Another key variables boosting the development of this market is the constraints of customary organ transplantation, for example, the danger of disease, dismissal, and immunosuppression hazard. Another disadvantage of ordinary organ transplantation is the fact that specialists need to rely upon organ contributors totally. Every one of these problems can be killed, by the utilization of stem cell therapy. The other factor which is helping the development in this market is the developing pipeline and advancement of medications for rising applications. Expanded research thinks about meaning to extend the extent of stem cell will likewise fuel the development of the market. Researchers are continually occupied with endeavoring to discover novel strategies for making human stem cells because of the developing interest for stem cell creation to be utilized for malady administration.

The worldwide market for stem cell therapy can be fragmented into North America, Europe, Latin America, Asia Pacific, the Middle East and Africa. North America rose as the main territorial market, activated by the rising rate of government help and interminable wellbeing conditions. Europe additionally shows huge development potential, as the advantages of this therapy are progressively recognized.

Asia Pacific is known for most extreme development, on account of the monstrous patient pool, main part of interests in stem cell therapy ventures, and the expanding acknowledgment of development openings in nations, for example, Japan, China, and India by the main market players.

The worldwide stem cell therapy market is in an early stage with the nearness of couple of universal merchants. With changing directions regarding transplantations in different created and creating nations, various new players are relied upon to enter the market space. Additionally, the developing pipeline and advancement of medications for rising applications will build the opposition among merchants amid the conjecture time frame.

Check Table of Contents of this Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

Other conspicuous merchants in the stem cell therapy market incorporate VistaGen Therapeutics, AbbVie, Anterogen, Astellas Pharma, Beike Biotechnology, Cellular Dynamics International (a backup of Fujifilm), Cellular Biomedicine Group, Opsis Therapeutics, Mesoblast, Laboratorios Salvat, TWO CELLS, Pharmicell, Ivy Institute of Stem Cells, Pluristem Therapeutics, U.S. Stem Cell, Taiwan Bio Therapeutics, ReNeuron, Translational Biosciences, Nuo Therapeutics, BIOTIME, Promethera Biosciences.

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Link:
Stem Cell Therapy Market: Using Stem Cell Therapy to Accelerate Cardiovascular Healing - BioSpace

Read More...

Lattice Biologics to Evaluate Anti-Inflammatory Stem Cell Therapy Treatment of COVID-19 Lung Disease – BioSpace

March 14th, 2020 7:43 pm

AmnioBoost has potential for use in the treatment of ARDS, which is the principal cause of death in COVID-19 infection.1 Mortality in COVID-19 infected patients with the inflammatory lung condition (ARDS) is reported to approach 50%, and is associated with older age, co-morbidities such as diabetes, higher disease severity, and elevated markers of inflammation.1 Current therapeutic interventions do not appear to improve in-hospital survival.1

AmnioBoost is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in several diseases by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.

Major anti-inflammatory cytokines found in AmnioBoost include: interleukin (IL)-1beta, IL-1ra, TNF-alpha, IL-6, IL-8, IL-16, CCL2, CXCL7, MIF, and GRO a/b/g. Specific cytokine receptors for IL-1, and tumor necrosis factor-alpha, function as proinflammatory cytokine inhibitors.

This is supported by recently published results from an investigator-initiated clinical study conducted in China which reported that allogeneic mesenchymal stem cells (MSCs) cured or significantly improved functional outcomes in all seven treated patients with severe COVID-19 pneumonia.2

AmnioBoost

AmnioBoost was originally developed for chronic adult inflammatory conditions such as osteoarthritis, but has found multiple uses in the treatment of bone and cartilage repair, as well as soft tissue repair. It is an investigational therapy comprising concentrated allogeneic MSCs and cytokines derived from amniotic fluid.

The amniotic fluid is donated from non-related, healthy mothers and recovered by caesarian section; the baby is not harmed in any way. Additionally, AmnioBoost has been injected in over 1,000 patients with no adverse events, and appears to be well tolerated.

References

1. Liu Y et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. Medrxiv 2020; https://doi.org/10.1101/2020.02.17.20024166 2. Leng Z, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia[J]. Aging and Disease, 10.14336/AD.2020.0228

About Lattice Biologics Ltd.:

Lattice Biologics is traded on the TSX-V under the symbol: LBL. The Company is an emerging leader in the field of cellular therapies and tissue engineering, with a focus on dental indications.

Lattice Biologics develops and manufactures biologic products to domestic and international markets. The Companys products are used in a variety of surgical applications.

Lattice Biologics maintains its headquarters, laboratory and manufacturing facilities in Belgrade, Montana as well as offices in Phoenix, Arizona. The facility includes ISO Class 1000 clean rooms, and specialized equipment capable of crafting traditional allografts and precision specialty allografts for various clinical applications. The Lattice Biologics team includes highly trained tissue bank specialists, surgical technicians, certified sterile processing and distribution technicians, and CNC operators who maintain the highest standards of aseptic technique throughout each step of the manufacturing process. From donor acceptance to the final packaging and distribution of finished allografts, Lattice is committed to maintaining the highest standards of allograft quality, innovation, and customer satisfaction.

Lattice Biologics maintains all necessary licensures to process and sell its tissue engineered products within the U.S. and internationally. This includes Certificates to Foreign Governments from the U.S. Food and Drug Administration (FDA) and registrations for multiple countries, which allow the export of bone, tendon, meniscus, ligament, soft tissue, and cartilage products outside of the U.S.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Cautionary Statement on Forward-Looking Information:

Certain information contained in this news release constitutes forward-looking statements within the meaning of the safe harbour provisions of Canadian securities laws. All statements herein, other than statements of historical fact, are to be considered forward looking. Generally, forward-looking information can be identified by the use of forward-looking terminology such as planned, potential, future, expected, could, possible, goal, intends, will or similar expressions. Forward-looking statements in this news release include, without limitation: information pertaining to the Companys strategy, plans, or future financial performance, such as statements with respect to the Transaction, and other statements that express managements expectations or estimates of future performance. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of Lattice to be materially different from those expressed or implied by such forward-looking statements.

Forward-looking statements are necessarily based upon a number of factors and assumptions that, while considered reasonable by management as of the date such statements are made, are inherently subject to significant business, economic and competitive uncertainties and contingencies. The factors and assumptions that could prove to be incorrect, include, but are not limited to: that market prices will be consistent with expectations, the continued availability of capital and financing, and that general economic, market and business conditions will be consistent with expectations. The forward-looking statements are not guarantees of future performance. We disclaim any obligation to update or revise any forward-looking statements, except as required by law. Readers are cautioned not to put undue reliance on these forward-looking statements.

United States Advisory: The securities referred to herein have not been and will not be registered under the United States Securities Act of 1933, as amended (the "U.S. Securities Act"), and may not be offered, sold, or resold in the United States or to, or for the account of or benefit of, a U.S. Person (as such term is defined in Regulation S under the U.S. Securities Act) unless an exemption from the registration requirements of the U.S. Securities Act is available. This press release shall not constitute an offer to sell or the solicitation of an offer to buy any securities, nor shall there be any sale of securities in the state in the United States in which such offer, solicitation or sale would be unlawful.

Subscribe to Lattice News Updates Follow us on Twitter: @LatticeBio

View source version on businesswire.com: https://www.businesswire.com/news/home/20200313005049/en/

Link:
Lattice Biologics to Evaluate Anti-Inflammatory Stem Cell Therapy Treatment of COVID-19 Lung Disease - BioSpace

Read More...

Second patient cured of HIV using stem cell therapy – European Pharmaceutical Review

March 14th, 2020 7:43 pm

Researchers report that a patient who underwent stem-cell transplantation and a chemotherapy drug regimen has been cured of HIV.

An HIV patient to undergo stem cell transplantation from donors with a HIV-resistant gene no longer suffers from the condition, according to a new study. Researchers reveal that there was no active viral infection in the patients blood 30 months after they stopped anti-retroviral therapy, making him the second person cured of HIV.

However, they report that although there was no active viral infection in the patients body, remnants of integrated HIV-1 DNA remained in tissue samples, which were also found in the first patient to be cured of HIV. The authors suggest that these can be regarded as so-called fossils, as they are unlikely to be capable of reproducing the virus.

We propose that these results represent the second ever case of a patient to be cured of HIV. Our findings show that the success of stem cell transplantation as a cure for HIV, first reported nine years ago in the Berlin patient, can be replicated, said lead author on the study, Professor Ravindra Kumar Gupta at the University of Cambridge, UK.

The London and Berlin patient are examples of using the CCR5 gene in curative therapies outside of gene editing

He emphasised that as a high-risk treatment, this therapy is unlikely to be offered widely to patients with HIV who are on successful antiretroviral treatment.

In 2011, a patient based in Berlin (the Berlin patient) was the first HIV patient to be reportedly cured of the virus three and half years after undergoing similar treatment. This therapy included total body irradiation, two rounds of stem cell transplant from a donor who carried a CCR532/32 gene, which is resistant to HIV and finally a chemotherapy drug regimen. The transplant aimed to make the virus unable to replicate in the patients body, whilst the body irradiation and chemotherapy targeted any residual HIV virus.

The patient reported in this study (the London patient), underwent one stem-cell transplantation and a reduced-intensity chemotherapy drug regimen, without whole body irradiation. In 2019, it was reported that his HIV was in remission and the new study provides follow-up viral load blood test results at 30-months, as well as a modelling analysis to predict the chances of viral re-emergence.

Ultrasensitive viral load sampling from the London patients cerebrospinal fluid, intestinal tissue or lymphoid tissue was taken at 29 months after interruption of antiretroviral therapy (ART) and viral load sampling of his blood at 30 months. At 29 months, CD4 cell count (indicators of immune system health and stem cell transplantation success) was measured and analysed to identify the extent to which the patients immune cells have been replaced by those derived from the transplant.

The results showed no active viral infection was detected in samples of the patients blood at 30 months or in his cerebrospinal fluid, semen, intestinal tissue and lymphoid tissue 29 months after stopping ART.The patient also had a healthy CD4 cell count, suggesting he recovered well from the transplant, with his CD4 cells replaced by cells derived from the HIV-resistant transplanted stem cells. Furthermore, 99 percent of his immune cells were derived from the donors stem cells, indicating the stem-cell transplant had been successful.

The authors highlight that their case study of the London patient represents a step towards a less intensive treatment approach. They suggest that the long-term remission of HIV can be achieved using reduced intensity drug regimens, with one stem cell transplant (rather than two) and without total body irradiation.

However, being only the second reported patient to undergo this experimental treatment successfully, the authors note that that the London patient will need continued, but much less frequent, monitoring for re-emergence of the virus.

Speculating on what their results might mean for future developments of HIV cures that utilise the CCR5 gene, co-author on the study, Dr Dimitra Peppa at the University of Oxford, UK, said: Gene editing using the CCR5 has received a lot of attention recently. The London and Berlin patient are examples of using the CCR5 gene in curative therapies outside of gene editing. There are still many ethical and technical barriers eg, gene editing, efficiency and robust safety data to overcome before any approach using CCR5 gene editing can be considered as a scalable cure strategy for HIV.

The study was published in The Lancet HIV.

HIV

Follow this link:
Second patient cured of HIV using stem cell therapy - European Pharmaceutical Review

Read More...

Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease – BioSpace

March 14th, 2020 7:43 pm

NEW YORK, March 10, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited(Nasdaq: MESO; ASX:MSB) today announced that it plans to evaluate its allogeneic mesenchymal stem cell (MSC) product candidate remestemcel-L in patients with acute respiratory distress syndrome (ARDS) caused by coronavirus (COVID-19) in the United States, Australia, China and Europe. The Company is in active discussions with various government and regulatory authorities, medical institutions and pharmaceutical companies to implement these activities.

Mortality in COVID-19 infected patients with the inflammatory lung condition acute respiratory distress syndrome (ARDS) is reported to approach 50%, and is associated with older age, co-morbidities such as diabetes, higher disease severity, and elevated markers of inflammation.1 Current therapeutic interventions do not appear to be improving in-hospital survival.1

Remestemcel-L has potential for use in the treatment of ARDS, which is the principal cause of death in COVID-19 infection.1 This is supported by recently published results from an investigator-initiated clinical study conducted in China which reported that allogeneic MSCs cured or significantly improved functional outcomes in all seven treated patients with severe COVID-19 pneumonia.2

Additionally, in post-hoc analyses of a 60-patient randomized controlled study in chronic obstructive pulmonary disease (COPD), remestemcel-L infusions were well tolerated, significantly reduced inflammatory biomarkers, and significantly improved pulmonary function in those patients with elevated inflammatory biomarkers. Since the same inflammatory biomarkers are also elevated in COVID-19, these data suggest that remestemcel-L could be useful in the treatment of patients with ARDS due to COVID-19.The COPD study results have been submitted for presentation at an international conference, with full results to be submitted for publication shortly.

Remestemcel-L is being studied in numerous clinical trials across several inflammatory conditions, including in elderly patients with lung disease and adults and children with steroid-refractory acute graft versus host disease (aGVHD).3-5 This product candidate is currently being reviewed by the United States Food and Drug Administration (FDA) for potential approval in the treatment of children with steroid-refractory aGVHD.

Remestemcel-L Remestemcel-L is being developed for rare pediatric and adult inflammatory conditions. It is an investigational therapy comprising culture-expanded MSCs derived from the bone marrow of an unrelated donor and is administered in a series of intravenous infusions. Remestemcel-L is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in several diseases by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.

Intellectual PropertyMesoblasts intellectual property (IP) portfolio encompasses over 1,000 patents or patent applications in all major markets and includes the use of MSCs obtained from any source for patients with acute respiratory distress syndrome (ARDS),and for inflammatory lung disease due to coronavirus (COVID-19), influenza and other viruses. Additionally, these patents cover Mesoblasts manufacturing processes that yield industrial-scale cellular medicines.This IP position is expected to provide Mesoblast with substantial commercial advantages as it develops its product candidates for these conditions.

References1. Liu Y et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. Medrxiv 2020; https://doi.org/10.1101/2020.02.17.200241662. Leng Z, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia[J]. Aging and Disease, 10.14336/AD.2020.02283. Kurtzberg J et al. Annual Meeting of the American Society for Transplantation Cell Therapy, 2020.4. Chaudhury S et al. A Phase 3 Single-Arm, Prospective Study of Remestemcel-L, Ex-Vivo Cultured Adult Human Mesenchymal Stromal Cells, for the Treatment of Steroid Refractory Acute GVHD in Pediatric Patients. Biol Blood Marrow Transplant 2018; 24:S119S290.5. Kurtzberg J et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014 Feb;20(2):229-35.

About MesoblastMesoblast Limited (Nasdaq: MESO; ASX: MSB) is a world leader in developing allogeneic (off-the-shelf) cellular medicines. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platform to establish a broad portfolio of commercial products and late-stage product candidates. Mesoblasts proprietary manufacturing processes yield industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblast has filed a Biologics License Application to the United States Food and Drug Administration (FDA) to seek approval of its product candidate RYONCIL (remestemcel-L) for steroid-refractory acute graft versus host disease (acute GvHD). Remestemcel-L is also being developed for other rare diseases. Mesoblast is completing Phase 3 trials for its product candidates for advanced heart failure and chronic low back pain. If approved, RYONCIL is expected to be launched in the United States in 2020 for pediatric steroid-refractory acute GVHD. Two products have been commercialized in Japan and Europe by Mesoblasts licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see http://www.mesoblast.com, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

Forward-Looking StatementsThis announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements should not be read as a guarantee of future performance or results, and actual results may differ from the results anticipated in these forward-looking statements, and the differences may be material and adverse. Forward- looking statements include, but are not limited to, statements about: the initiation, timing, progress and results of Mesoblasts preclinical and clinical studies, and Mesoblasts research and development programs; Mesoblasts ability to advance product candidates into, enroll and successfully complete, clinical studies, including multi-national clinical trials; Mesoblasts ability to advance its manufacturing capabilities; the timing or likelihood of regulatory filings and approvals, manufacturing activities and product marketing activities, if any; the commercialization of Mesoblasts product candidates, if approved; regulatory or public perceptions and market acceptance surrounding the use of stem-cell based therapies; the potential for Mesoblasts product candidates, if any are approved, to be withdrawn from the market due to patient adverse events or deaths; the potential benefits of strategic collaboration agreements and Mesoblasts ability to enter into and maintain established strategic collaborations; Mesoblasts ability to establish and maintain intellectual property on its product candidates and Mesoblasts ability to successfully defend these in cases of alleged infringement; the scope of protection Mesoblast is able to establish and maintain for intellectual property rights covering its product candidates and technology; estimates of Mesoblasts expenses, future revenues, capital requirements and its needs for additional financing; Mesoblasts financial performance; developments relating to Mesoblasts competitors and industry; and the pricing and reimbursement of Mesoblasts product candidates, if approved. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblasts actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

For further information, please contact:

Continue reading here:
Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease - BioSpace

Read More...

Cancer Stem Cell Therapy Market Global Size, Demand-sales, Suppliers by Key Applications 2019 Detailed Analysis and Growth Aspects on Manufacturing…

March 14th, 2020 7:43 pm

In this report, the global Cancer Stem Cell Therapy market is valued at USD XX million in 2019 and is projected to reach USD XX million by the end of 2025, growing at a CAGR of XX% during the period 2019 to 2025.

For top companies in United States, European Union and China, this report investigates and analyzes the production, value, price, market share and growth rate for the top manufacturers, key data from 2019 to 2025.

The Cancer Stem Cell Therapy market report firstly introduced the basics: definitions, classifications, applications and market overview; product specifications; manufacturing processes; cost structures, raw materials and so on. Then it analyzed the worlds main region market conditions, including the product price, profit, capacity, production, supply, demand and market growth rate and forecast etc. In the end, the Cancer Stem Cell Therapy market report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

Request Sample Report @ https://www.marketresearchhub.com/enquiry.php?type=S&repid=2542097&source=atm

The major players profiled in this Cancer Stem Cell Therapy market report include:

The following manufacturers are covered:AVIVA BioSciencesAdnaGenAdvanced Cell DiagnosticsSilicon Biosystems

Segment by RegionsNorth AmericaEuropeChinaJapanSoutheast AsiaIndia

Segment by TypeAutologous Stem Cell TransplantsAllogeneic Stem Cell TransplantsSyngeneic Stem Cell TransplantsOther

Segment by ApplicationHospitalClinicMedical Research InstitutionOther

You can Buy This Report from Here @ https://www.marketresearchhub.com/checkout?rep_id=2542097&licType=S&source=atm

The study objectives of Cancer Stem Cell Therapy Market Report are:

To analyze and research the Cancer Stem Cell Therapy market status and future forecast in United States, European Union and China, involving sales, value (revenue), growth rate (CAGR), market share, historical and forecast.

To present the Cancer Stem Cell Therapy manufacturers, presenting the sales, revenue, market share, and recent development for key players.

To split the breakdown data by regions, type, companies and applications

To analyze the global and key regions Cancer Stem Cell Therapy market potential and advantage, opportunity and challenge, restraints and risks.

To identify significant trends, drivers, influence factors in global and regions

To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the keyword market.

Make An EnquiryAbout This Report @ https://www.marketresearchhub.com/enquiry.php?type=E&repid=2542097&source=atm

Original post:
Cancer Stem Cell Therapy Market Global Size, Demand-sales, Suppliers by Key Applications 2019 Detailed Analysis and Growth Aspects on Manufacturing...

Read More...

Transcript: Disabled and out of money in North Korea – BBC News

March 14th, 2020 7:43 pm

This is a full transcript of Disabled and out of money in North Korea as first broadcast on 13 March and presented by Beth Rose

JITE- I got a few stares of course. I'm bald. I had a beard. I was in a wheelchair. I'm black. The first two that I went to said, "No, no, no, we probably can't do that." I didn't want to do something which was challenging for me only, rather than North Korea. Oh, well that's a tough place to go to.

[jingle: Ouch]

BETH-I've been so excited about bringing you this Ouch podcast. A few months ago I received an email. It said, "Hi Beth, a friend of mine, Jite Ugono has multiple sclerosis, or MS, and uses a wheelchair. He's just about to travel to North Korea. Would you like to talk to him?" "Yes," was my answer, "very much so."

I'm Beth Rose, and you're listening to the BBC Ouch podcast, and for a while Jite has been on my mind. From the day he flew to China to get his visa, to the five days he would spend in the country we know very little about. And finally, he's back. Also, just a quick note to say that this podcast was recorded long before the Corona virus outbreak.

[music]

BETH-Hello.

JITE-Hello, hi.

BETH-So how was the trip?

JITE-Everyone says surreal, but it was surreal. Being inside a communist country and being restricted. Also in a wheelchair, there are no provisions at all for wheelchair access and that kind of stuff. Most of the places I went to were only accessible by stairs, so they carried me, which was nice. And that's one of the good things about having a guide, because I had two guides and a driver.

BETH-So you said you were thinking about this trip a year ago. It's the kind of trip that most people won't even think you can do, so why did you suddenly decide to book your holiday to North Korea?

JITE-Well I've got MS so they said one of the treatments of MS could be stem cell therapy. So stem cell therapy involves chemo and the rest of it. I thought to myself why not do something as rare as stem cell therapy? It was almost like a redefinition of my identity. I didn't really want to be known solely because of MS or the treatment, because everyone's going to ask about the chemo. I wanted to do something else which was kind of equal and opposite.

BETH-It's quite rare, stem cell therapy for multiple sclerosis isn't it?

JITE-It is. I hadn't heard of it. Chemo for cancer, we know all about that, but as soon as she said chemo for this For me it was quite emotional because my mum died the year before of cancer and she went through chemo as well. It was a shock, but it was also some hope. It seems less bleak. What I have is Primary Progressive MS, a steady degradation of mobilities. And they have less treatment for that, so most other treatment comes for Secondary Remitting, when you have attacks and then you can recover.

BETH-So what does the chemo do?

JITE-Chemo reduces your immune system. So what they want to do is kind of knock out the immune system and then reintroduce the stem cells and then restart the immune system.

BETH-That sounds quite an intense treatment.

JITE-I was in hospital for a month. So I went in for chemo, I was in hospital for a week or so, first of all, came back out, did the injections, back into hospital for a month. It was tough going through, but easier when you do it in stages. You think, okay I'm going to do this chemo first, in ten days I'll do the injections. Bite size. So by the end of it it's like oh, I've done it. I think it taught me whatever I go through I have to be a bit more patient.

BETH-How long ago were you diagnosed with MS?

JITE-2009.

BETH-So you were quite young?

JITE-I'm 45 now, so yeah, the symptoms got worse maybe six or seven years ago in terms of difficulty walking. And that's the main thing. The first thing was the eyesight, so the eyes were playing up and I thought maybe I should go to the optician. It didn't really make a difference. So it got progressively worse. I did an MRI scan and then the consultant said, "Well, it could be MS." So I was kind of aware and I kind of knew that it was something quite serious. So when he came back and he said MS. You make a decision about how you're going to deal with it.

For me, it was you're not going to feel sorry for yourself because people go through worse. For me, it's only when I'm faced with stuff you realise you can do it. I didn't just want to survive. Because when you're diagnosed with stuff it's like getting through the day. Everyone says, "Oh, you're so brave. You went to work?" For me it's just one life, you can't spend it getting through the day, you want to do something else.

BETH-So was it when you were having your chemo when you were in hospital, the idea for North Korea?

JITE-It was actually the first consultation when she told me, "You're going to do stem cell therapy." They told me that I was going to be able to maybe walk with sticks and I thought, why waste it?

BETH-I feel like a lot of people would have had similar thoughts but maybe thought South of France would be quite nice?

JITE-It would have been challenging. If anyone said they were going to the South of France, oh okay. I didn't want to do something which was challenging for me only, rather than North Korea, oh well, that's a tough place to go to, regardless of whether you're in a wheelchair. It was important to me to do something which was challenging, not because of MS, not because of the wheelchair, but it was challenging.

BETH-So how do you go about booking a trip? Can you go to a travel agent?

JITE-I mean, that's what I did. So the first two that I went to said, "No, no, no. We can't do that, there's no access." And I was probably more determined. That's another lesson it taught me, it's more important for me that I wanted to do it. And no one was coming back to me to say, "Why don't you go?" So when the third person came back and said, "Actually, we could do that," the normal way of going to North Korea is through a group tour, with my condition anyway. You think about what the problems could be. Getting onto the coach. Holding people up.

So my tour was me on my own. I had two guides and a driver and that was it. They sorted out the visa to China and once you get to China you get the visa to North Korea from China.

BETH-Touching upon the issues of getting onto a bus, what is it like for you with MS? How does it manifest itself?

JITE-My balance is a problem. I can't really use my left leg at all. My eyesight's a problem. Maybe sometimes my memory and my vocabulary. They're difficulties which arose mainly because I did chemo. We know that the drugs are quite aggressive and concentrated, so they give you lots of water to dilute and because you're given that you're given drugs to help you relieve that stuff, so you're peeing like every ten minutes.

So it went down to probably once every hour and that became a problem and that affects your confidence, you're afraid to kind of go out, maybe there won't be toilets around, that's kind of what I was thinking about, going to North Korea.

BETH-Did you even know about that? Is there information about toilets or accessibility?

JITE-Not at all, not at all. It's only when I got there that I realised that the And sorry to go on about toilets, but it was important to me. [laughs] Okay, so in North Korea they had two types of toilets, they had the European toilets and then they had the Korean toilets, ground toilets, so you have to kind of balance, which I didn't even attempt. So everywhere we went to it was okay, "Is it a Korean toilet here or a European toilet?" Even the guides started to realise and started to know after a while.

BETH-I mean, that's such a gamble isn't it, not knowing the accessibility, not knowing what the toilet situation's going to be like. I'm guessing this was all in your mind?

JITE-Every problem has to have a solution. So before I went I'd got it up to you can pass an hour now, because I'd gone to the gym, I'd started doing core stuff, even in the plane, because it was ten and a half hours there. You think about the problems that you could face, it's personal of course, but also there are people around that can give you a hand.

And that was another thing, getting vaccinations was a problem, because when you do chemo and your immune system is low they don't advise that you have vaccinations. So I was intending to go to Korea in September but that was super close to my stem cell.

BETH-When you were flying, initially to China, what was going through our mind?

JITE-It was just getting through that first bit, hoping that someone's going to be there to meet me. The luggage I even took I had to make sure that I could carry. That's one of the solutions with a wheelchair, you're going to have to push the luggage as well so it can't be too big. Two pieces of hand luggage is what I took. That's what I was thinking about, I wasn't thinking about Pyongyang yet, I was thinking about how to get to China.

Beijing was packed, traffic everywhere. It was surprisingly western. The cars were German cars. In North Korea I had the guides, in China I didn't have guides, I had a person to take me from the airport to the hotel and that was it. So I didn't really have the confidence to kind of venture out. I got in a day before, so as soon as I landed in China I had to go and get the visa. As soon as you get the visa is when they give you a briefing, what you should and shouldn't do. The chap apparently had been doing it for 28 years, and no one had ever missed a briefing until me.

BETH-Ah! [laughs]

JITE-I mean, only because the person who picked me up said, "Oh, I can get the visa for you."

BETH-So they were being helpful, but actually

JITE-Yeah, so they went out and got the And I was appreciative, because getting in and out of the car was such a pain. And I am quite lazy naturally. If I can do without it then I won't do it, you know. So when they gave me an opportunity not to, oh okay. The travel agent contact in China was almost panicky on the phone, "No one's ever done this."

BETH-Wow, and I bet your heart was racing at that point.

JITE-To an extent, but I kind of knew what not to do. I mean, I'm not rude, and plus I'd seen stuff on YouTube and the guides tell you as well. So I was quite prepared. I flew into Pyongyang. The airport was a surprise. They only have a few planes that land for the day. They had one from Beijing, one from Shanghai and one from Moscow. There are soldiers everywhere, but the soldiers were, "Oh, look at this guy," I suppose maybe because I was a novelty in a sense. They'd never really seen someone in a wheelchair before. They were super helpful.

I'd met the guides at the airport as well. I got a few stares of course. I'm bald, and they have like five haircuts. I had a beard, I was in a wheelchair. I'm black. So all those things together.

BETH-So did you feel like you stuck out?

JITE-I didn't feel like I could relax, only because you feel like you're always on. I couldn't be anonymous, there's always someone watching, and that's tiring.

BETH-And did you feel like you were being watched by your guides?

JITE-Maybe the brief was to watch, but it is different when you have a relationship with people. So I didn't feel that way. I suppose they were constantly on about how great the leader is and after a while it got a bit tedious. Everyone walked around with badges. And it's difficult to tell because they spoke the language quite a bit. I don't know what they're saying.

BETH-They greeted you at the airport.

JITE-Yes.

BETH-Had they had disabled travellers before?

JITE-I don't think they had. What happens is that when you go on your own there is no camaraderie, I was mostly alone, but the advantage is you could probably get closer to people. There's good and there's bad about it.

BETH-What's it like, Pyongyang?

JITE-For me it was super quiet. I mean here we have adverts and stuff, people are selling you stuff all the time, there is different, you have pictures of the leaders surrounded by flowers and you have to respect that. If there's an image of a leader you can't really take a photo of it and you can't stand in front of it obscuring it. Or you can't crop it. Apparently they check people's phones to see what they've taken.

BETH-Did you take photos?

JITE-I took photos but they didn't check. But everywhere was empty. The place is set up for tourists but there are not many tourists. You go into a restaurant and there are people standing around. The restaurants are empty. It's bizarre.

BETH-So it's not really like a bustling city?

JITE-Not at all. Actually I went during King Il Sung who's the grandad of this present leader, it was his birthday, so there were two days of celebrations. I think there were more people on the street than normal, and then they had volunteers picking up stuff or gardening or I mean, because it's a communist environment they pay for everything but you have to work. They've got big roads, no cars.

BETH-Wow.

JITE-Yeah. The days were quite long. Maybe eight o'clock they'll come for me and then eight o'clock in the evening I'd finish. So there was always something to do and you were always with people. I think they had five channels, that was about it.

BETH-TV channels?

JITE-Five TV channels. On the channels they have the leader, Kim, pointing at stuff. He designed the theme park.

BETH-What's the tourist trail like?

JITE-There is an itinerary, so you would go to the war museum, flower exhibition. I went to their subway, it's the deepest subway in the world. So everything's the best in the world or the tallest in the world.

BETH-How did the subway compare to the tube?

JITE-It was more opulent. I only saw two of them and I think those are the two they show people, so maybe the others are less. There are chandeliers and stuff.

BETH-And the restaurants, you said you went into one, but they've got all the staff just waiting around?

JITE-Yeah, the restaurants seem to be for tourists, and because I was on my own, seven, ten people just standing around looking. I went to a casino, which was strange.

BETH-Oh, okay?

JITE-Yeah. But the casino was in the hotel. I think I was the only one in there. So when I went to North Korea I didn't take enough cash, and that was a problem obviously because no cards. So the guys were like, "You need some money? Go to the casino, you can change your money."

BETH-Oh, I thought you were going to say to like gamble and win.

JITE-At first I went to change money, but they didn't take sterling, they took US dollars and euros, but I didn't have either, so they allowed me to gamble, so I did.

BETH-Did you win? Did you get some money?

JITE-Yeah, I did. I don't want to get used to it. [laughs]

BETH-What game did you play?

JITE-Black Jack. I didn't know what was going on, but people around, they were almost cheering, and I was thinking by the time I won a hundred dollars I thought it's time to go, it's time to go. And everyone's around you willing you on and you don't want to disappoint them but you think okay, I'm going guys.

BETH-Is it expensive then, if you ran out of money and you're having to gamble to boost your-?

JITE-To boost. Okay, so I mean they have their own currency and they don't let you take the currency out.

BETH-I bet your guides quite enjoyed being in the casino.

JITE-The guides said, "Oh, we're not allowed in." Even when they came up to my hotel room I had to have Al Jazeera because that's the only English speaking channel, but they were almost transfixed. They were shaking their heads. Look around the world, look how happy we are type of thing. So you kind of understand why they would let Al Jazeera in, because Al Jazeera can be quite, look what's happening around the world, the protests here, the protests there.

BETH-And did you find people were willing to help you?

JITE-I think it was more because they see you as being vulnerable. "Oh, you're not comfortable, let me move your legs." So you always get somebody helping, which is not necessarily what you want all the time. Because you want to be able to be self-sufficient. Certainly in London people are a bit more patient to offer, "Okay, how can I help?" and then they stand back. In Korea it was, "Oh, we can do that for you." [laughs]

BETH-Did you see any other disabled people out and about?

JITE-No, I didn't.

BETH-No one at all?

JITE-I didn't at all. One of the guides was quite insistent on how great their society is. That's why they stay kind of thing, away from everyone else, and they obviously saw it as a good thing.

BETH-Oh, that's interesting. I was going some research, and there's a lot of reports from the UN and different charities where they say basically they send people away in an out of town community.

JITE-Yeah, they don't expect you to try. So maybe that was part of it, they were almost surprised that this person is doing something on their own.

BETH-And were they quite surprised how you just got on with everything?

JITE-Yeah, I suppose. Maybe they were. So even when I'd be going down the road people would lean over and look. They weren't rude about it. They would look, they were curious, but they weren't intrusive. And sometimes you look and they look away, except the kids, so the kids would be staring. But that's normal though, even in London you'll get kids staring. One of the guides took a video of me being lifted up the stairs, and it was quite tough to watch because you don't really see yourself as being vulnerable, except when you see it.

It's like hearing a recording of yourself and you think oh, do I sound like that? Or do I look like that? Am I really that vulnerable kind of thing? No wonder everyone helps. [laughs] It was tough to see. I didn't really see the footage until I got to the hotel and you kind of think, you know, is that how it is? They were helpful, and it sounds ungrateful almost, but it is what you think about.

It's a lack of confidence to think people only help you because you look so vulnerable. Maybe people are just nice. And that was one of the good things about going to North Korea. People say that Londoners are quite cold and I don't find that, Londoners can be helpful, and especially if you're patient enough. And MS for me does that, it allows you to be patient.

BETH-So what kinds of things is nice to have help for?

JITE-Probably getting in and out of cars. In London not so much, in London you kind of want to get strong. I know that I'm going to have to get in a car, and not everybody gives the same level of help, so you have to be self-sufficient. In North Korea there's no need. And I'm never going to be in North Korea again.

BETH-How did the access pan out? Because that was the big mystery wasn't it really? I mean, you had no idea.

JITE-It was just people lifting me. Only one place, the museum was difficult.

Go here to see the original:
Transcript: Disabled and out of money in North Korea - BBC News

Read More...

Canine Stem Cell Therapy Market to Witness Growth Acceleration During 2029 – Monroe Scoop

March 14th, 2020 7:43 pm

Canine Stem Cell Therapy Market size will reach xx million US$ by 2029, from xx million US$ in 2018, at a CAGR of xx% during the forecast period. In this study, 2018 has been considered as the base year and2029 as the forecast period to estimate the market size for Canine Stem Cell Therapy.

This industry study presents the Canine Stem Cell Therapy Market size, historical breakdown data 2014-2019 and forecast 2029. The Private Plane production, revenue and market share by manufacturers, key regions and type; The consumption of Canine Stem Cell Therapy Market in volume terms are also provided for major countries (or regions), and for each application and product at the global level.

ThisPress Release will help you to understand the Volume, growth with Impacting Trends. Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) at https://www.xploremr.com/connectus/sample/2360

Canine Stem Cell Therapy Market report coverage:

The Canine Stem Cell Therapy Market report covers extensive analysis of the market scope, structure, potential, fluctuations, and financial impacts. The report also enfolds the precise evaluation of market size, share, product & sales volume, revenue, and growth rate. It also includes authentic and trustworthy estimations considering these terms.

The Canine Stem Cell Therapy Market has been reporting substantial growth rates with considerable CAGR for the last couple of decades. According to the report, the market is expected to grow more vigorously during the forecast period and it can also influence the global economic structure with a higher revenue share. The market also holds the potential to impact its peers and parent market as the growth rate of the market is being accelerated by increasing disposable incomes, growing product demand, changing consumption technologies, innovative products, and raw material affluence.

The study objectives are Canine Stem Cell TherapyMarket Report:

In this study, the years considered to estimate the market size of Canine Stem Cell TherapyMarket:

History Year: 2014 2018

Base Year: 2018

Estimated Year: 2019

Forecast Year:2029

This report includes the estimation of market size for value (million USD) and volume (K Units). Both top-down and bottom-up approaches have been used to estimate and validate the market size of Canine Stem Cell Therapy Market, to estimate the size of various other dependent submarkets in the overall market. Key players in the market have been identified through secondary research, and their market shares have been determined through primary and secondary research. All percentage shares, splits, and breakdowns have been determined using secondary sources and verified primary sources.

For the data information by region, company, type and application, 2018 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Get Your Copy at a Discounted Rate!!! Limited Time Offer!!! https://www.xploremr.com/connectus/check-discount/2360

The report covers exhaustive analysis on:

Regional analysis includes

Get Full Report Access athttps://www.xploremr.com/cart/2360/SL

Benefits of Purchasing from XMR:

About Us

XploreMR is one of the worlds leading resellers of high-quality market research reports. We feature in-depth reports from some of the worlds most reputed market research companies and international organizations. We serve across a broad spectrum from Fortune 500 to small and medium businesses. Our clients trust us for our unwavering focus onquality and affordability. We believe high price should not be a bottleneck for organizations looking to gain access to quality information.

Contact us:

XploreMR111 North Market Street, Suite 300,San Jose, CA 95113, United StatesPh.No: +16692840108E-mail id-[emailprotected]Web-https://www.xploremr.com

Read more:
Canine Stem Cell Therapy Market to Witness Growth Acceleration During 2029 - Monroe Scoop

Read More...

A new therapeutic approach against COVID-19 Pneumonia – Institute for Ethics and Emerging Technologies

March 14th, 2020 7:42 pm

The novel coronavirus disease 2019 (COVID-19) has grown to become a global public health emergency. Currently, no specific drugs or vaccines are available to cure the patients with COVID-19 infection. Hence, there is a large unmet need for a safe and effective treatment for COVID-19 infected patients, especially the severe cases. A new study offers a promising pathway for developing such a treatment.

The new approach involves intravenous transplantation of mesenchymal stem cells (MSCs) into the patients. It was successfully tested in 7 COVID-19 patients, in Beijing YouAn Hospital, Capital Medical University, China. The results are published in the scientific journal Aging and Disease, entitled "Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia".

http://www.aginganddisease.org/article/0000/2152-5250/ad-0-0-216.shtml

The study was conducted by a team led by Dr. Robert Chunhua Zhao, with Shanghai University and Chinese Academy of Medical Sciences & Peking Union Medical College, China.

Moreover the study was reviewed by a scientific committee of the International Society on Aging and Disease (ISOAD) and the recently established UNESCO-affiliated committee on Anti-Aging and Disease Prevention http://www.aginganddisease.org/article/2020/2152-5250/ad-11-1-212.shtml

Based on the 14 days observation, MSCs could cure or significantly improve the functional outcomes of all the seven tested patients without observed adverse effects, contrary to 3 controls. The pulmonary function and symptoms of these seven patients were significantly improved after MSC transplantation. Among them, one severe and two common patients recovered and were discharged in 10 days after the treatment. The improvement was particularly dramatic for an elderly (65 y.o.) male patient in severe critical condition. All of his primary and secondary outcomes improved: the inflammation status, the oxygen saturation, and the functional biochemical indicators returned to normal reference values in 2~4 days after the treatment.

The presented evidence suggests that the therapeutic effects are based on the immunomodulatory capacity of mesenchymal stem cells (restoring the balance of the immune system). The coronavirus infection can stimulate a terrible cytokine storm in the lung, disrupting the balance of cytokines (signaling molecules of the immune system) such as IL-2, IL-6, IL-7, GSCF, IP10, MCP1, MIP1A and TNF cytokines, followed by the edema, dysfunction of the air exchange, acute respiratory distress syndrome, acute cardiac injury and the secondary infection, which may lead to death. The bone-marrow derived MSCs could inhibit the over-activation of the immune system and promote endogenous repair by improving the microenvironment, thus they could represent a safe and effective treatment for patients with COVID-19 pneumonia, especially for the patients in critically severe conditions. A larger validation study is required and is already underway, yet the initial results are encouraging.

Notably, the coronavirus-infected pneumonia is more likely to affect older individuals, especially older males, with comorbidities, resulting in their severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In other words, aging appears to be the main risk factor for bad outcomes. However, the cure essentially depends on the patient's own immune system. When the overactivated immune system kills the virus, it produces a large number of inflammatory factors, leading to the severe cytokine storms. This suggests that the main reason for the organs damage may be the virus-induced cytokine storm. Older subjects may be much easier to be affected due to immunosenescence. The study showed remarkable recovery of the elderly patients thanks to restoring their immune function.

Thus, the study may have a broader significance, even beyond the treatment of the severe coronavirus disease. This study exemplifies that the general therapeutic improvement of the immune system in the elderly can improve outcome and survival, which may have more general relevance for other aging-related communicable diseases. Thus, this study may inspire and pave the way for further promising directions to investigate the connection between aging and disease, and to treat both communicable and non-communicable aging-related diseases.

The Romanian journalist Laura tefnu spoke with Dr. Ilia Stambler about the broader implications of this research. Ilia Stambler is a co-author in this study who was involved in the study review, interpretation and discussion. He serves as the Outreach Coordinator of the International Society on Aging and Disease (ISOAD) and Director of Research and Development at Shmuel Harofe Geriatric Medical Center in Israel.

Q: How does it feel to be part of the team which discovered a groundbreaking treatment for what is currently considered one of the biggest global challenges?

A: I feel very honored to be included in this extended international team. I hope this team continues its work that will also involve additional collaborations.

Q: As a researcher, what did you find most interesting about this novel coronavirus? What seems most threatening about this new virus?

A: The spreading ability of this virus is relatively high and it has the capacity to affect the entire global population. This is what makes this virus a particularly strong concern for global public health. The social effects of this epidemic are also of great importance. In a sense, this virus is testing the strength of our public health systems. Will the immunity of our public healthcare be strong enough to contain it? I hope it is.

Q: Did the discovery of this groundbreaking new therapeutic approach make you more optimistic (when it comes to containing and limiting the damage of Covid-19)? In which sense (where was your optimism before the discovery)?

A: I was optimistic before, as I believe that, same as for many infectious diseases in the past, also for this disease, effective therapeutic and preventive measures will be found and used. This work further increased my optimism. Of course, this is an initial study, and this is only one of the potential means in the therapeutic, preventive and hygienic arsenal. More research and confirmation will be needed. Yet, even at this stage, the clear positive result of this study shows that it is indeed possible to improve the outcomes for COVID-19 patients even in severe conditions. Moreover, it gives more hope that effective treatments can be sought and found also for other aging-related infectious diseases and conditions.

Q: Is there an explanation regarding the reasons why Covid-19 seems to pardon children and affects the most elder individuals, especially men?

A: There is yet no clear or fully agreed explanation. But a plausible cause may be due to the so called immuno-senescence phenomenon, or the inability of the aging immune system to cope with new threats and restore the immune balance following the infection. In men the immuno-senescence effects are often more strongly present than in women. Thus, aging appears to be the main risk factor for this disease and if we really wish to defeat this epidemic, we need to address this main risk factor, in other words, we need to therapeutically intervene and ameliorate the degenerative aging process. The proposed mesenchymal stem cell therapy shows the so-called immuno-modulation effects or the ability to generally improve the immune system, help restore the immune balance after disturbances, especially for the elderly. And this can be the more general explanation for its effects against the aging-related COVID-19 pneumonia, as well as potentially other aging-related diseases.

Q: How did you manage to find so fast a treatment that is responding so well?

A: The mesenchymal stem cell treatment has been researched and developed by Dr. Zhao and his team for many years, and indicated positive effects for multiple health conditions. It is exactly because of the common and critical role of the immune system impairment in all these conditions, that the treatment developed by Dr. Zhaos team was already in place and could be immediately used also for this condition dependent on the immune function. Moreover, the success of this therapy against COVID-19 can further boost the research and therapy of other immunity-dependent health conditions and diseases, especially aging-related diseases, due to the common mechanisms of action.

Q: How may this discovery change the game?

A: Unlike other public health measures, like quarantine and hygiene, that can be very quickly applied, the research, development, regulatory approval and application of new therapies is a much slower process. So we should first of all apply the public health measures to contain the epidemic. But the hope is that this therapy will undergo further research and validation as soon as possible, and in case of validated efficacy and safety, will be used in as many patients who need it as possible, as soon as possible. That is exactly why we need to accelerate the research, development and application of promising new therapies. When the new therapy enters wide clinical practice, there are grounds to believe it can improve the health and even save the lives of many patients, not only suffering from COVID-19, but also other conditions.

Q: Which was the response/reaction of authorities after you published the results of your research?

A: The outreach to the authorities in several countries has only started. Moreover, the study is only initial and it is too early to make policy recommendations. A larger validation study is required. Yet, if there is even a slight possibility this could become a life-saving therapy for COVID-19 patients and others, this opportunity should not be missed by the decision makers.

Q: Some treatments are more expensive than others. Will the treatment you discovered be accessible to people, or the cost for producing it will limit its accessibility?

A: The cells for this treatment can be mass produced and can be rather affordable. Of course, the actual price will depend both on the scale of production and pricing policies. And this is already a question that goes beyond pure technology, but becomes a question about the social means to make new therapies available to all. This should also be a crucial part of the public discussion about the social need to promote the rapid research and development as well as broad application of new therapies that are proven to be safe and effective.

Q: Which are the best measures a country can take to limit the spread and the consequences of the novel coronavirus?

The usual quarantine and public hygiene measures are the most feasible and effective: minimization of large gatherings, minimization of travel, cleanliness. We should hope and work for new effective therapies to arrive as soon as possible. But so far public health measures are the most effective and feasible.

Ilia Stambler is an IEET Affiliate Scholar. He completed his PhD degree at the Department of Science, Technology and Society, Bar-Ilan University. His thesis subject, and his main interest, is the History of Life-extensionism in the 20th Century.

Read the rest here:
A new therapeutic approach against COVID-19 Pneumonia - Institute for Ethics and Emerging Technologies

Read More...

Disabled and out of money in North Korea – BBC News

March 14th, 2020 7:42 pm

Londoner Jite Ugono never expected to find himself playing blackjack in a North Korean casino having run out of cash, but a few life-changing moments had led him there.

In his 30s he was diagnosed with multiple sclerosis (MS), then 10 years later in 2019 he was offered rare stem cell therapy, involving chemotherapy, on the NHS to help stall the progress of the condition.

It was hopeful, but he didnt want this complex treatment to become the main topic of conversation for friends and family so he decided to "do something equally rare, but opposite" and booked his trip to North Korea.

But would the country be ready to accept a traveller in a wheelchair and would his guides even turn up?

Presented by Beth Rose. A full transcript is available here.

Subscribe to Ouch Disability Talk podcast on BBC Sounds or say "Ask the BBC for Ouch" to your smart speaker.

Excerpt from:
Disabled and out of money in North Korea - BBC News

Read More...

Stem Cell And Regenerative Therapy Market 2019-2024 Chain Analysis, Upstream Raw Materials Sourcing and Downstream Buyers – Feed Road

March 14th, 2020 7:42 pm

The global stem cell and regenerative medicines market should grow from $21.8 billion in 2019 to reach $55.0 billion by 2024 at a compound annual growth rate (CAGR) of 20.4% for the period of 2019-2024.

Report Scope:

The scope of this report is broad and covers various type of product available in the stem cell and regenerative medicines market and potential application sectors across various industries. The current report offers a detailed analysis of the stem cell and regenerative medicines market.

Request For Report Sample:https://www.trendsmarketresearch.com/report/sample/11723

The report highlights the current and future market potential of stem cell and regenerative medicines and provides a detailed analysis of the competitive environment, recent development, merger and acquisition, drivers, restraints, and technology background in the market. The report also covers market projections through 2024.

The report details market shares of stem cell and regenerative medicines based on products, application, and geography. Based on product the market is segmented into therapeutic products, cell banking, tools and reagents. The therapeutics products segments include cell therapy, tissue engineering and gene therapy. By application, the market is segmented into oncology, cardiovascular disorders, dermatology, orthopedic applications, central nervous system disorders, diabetes, others

The market is segmented by geography into the following regions: North America, Europe, Asia-Pacific, South America, and the Middle East and Africa. The report presents detailed analyses of major countries such as the U.S., Canada, Mexico, Germany, the U.K. France, Japan, China and India. For market estimates, data is provided for 2018 as the base year, with forecasts for 2019 through 2024. Estimated values are based on product manufacturers total revenues. Projected and forecasted revenue values are in constant U.S. dollars, unadjusted for inflation.

Report Includes:

28 data tables An overview of global markets for stem cell and regenerative medicines Analyses of global market trends, with data from 2018, estimates for 2019, and projections of compound annual growth rates (CAGRs) through 2024 Details of historic background and description of embryonic and adult stem cells Information on stem cell banking and stem cell research A look at the growing research & development activities in regenerative medicine Coverage of ethical issues in stem cell research & regulatory constraints on biopharmaceuticals Comprehensive company profiles of key players in the market, including Aldagen Inc., Caladrius Biosciences Inc., Daiichi Sankyo Co. Ltd., Gamida Cell Ltd. and Novartis AG

Summary

The global market for stem cell and regenerative medicines was valued at REDACTED billion in 2018. The market is expected to grow at a compound annual growth rate (CAGR) of REDACTED to reach approximately REDACTED billion by 2024. Growth of the global market is attributed to the factors such as growingprevalence of cancer, technological advancement in product, growing adoption of novel therapeuticssuch as cell therapy, gene therapy in treatment of chronic diseases and increasing investment fromprivate players in cell-based therapies.

To Get Discount:https://www.trendsmarketresearch.com/report/discount/11723

In the global market, North America held the highest market share in 2018. The Asia-Pacific region is anticipated to grow at the highest CAGR during the forecast period. The growing government funding for regenerative medicines in research institutes along with the growing number of clinical trials based on cell-based therapy and investment in R&D activities is expected to supplement the growth of the stem cell and regenerative market in Asia-Pacific region during the forecast period.

Reasons for Doing This Study

Global stem cell and regenerative medicines market comprises of various products for novel therapeutics that are adopted across various applications. New advancement and product launches have influenced the stem cell and regenerative medicines market and it is expected to grow in the near future. The biopharmaceutical companies are investing significantly in cell-based therapeutics. The government organizations are funding research and development activities related to stem cell research. These factors are impacting the stem cell and regenerative medicines market positively and augmenting the demand of stem cell and regenerative therapy among different application segments. The market is impacted through adoption of stem cell therapy. The key players in the market are investing in development of innovative products. The stem cell therapy market is likely to grow during the forecast period owing to growing investment from private companies, increasing in regulatory approval of stem cell-based therapeutics for treatment of chronic diseases and growth in commercial applications of regenerative medicine.

Products based on stem cells do not yet form an established market, but unlike some other potential applications of bioscience, stem cell technology has already produced many significant products in important therapeutic areas. The potential scope of the stem cell market is now becoming clear, and it is appropriate to review the technology, see its current practical applications, evaluate the participating companies and look to its future.

The report provides the reader with a background on stem cell and regenerative therapy, analyzes the current factors influencing the market, provides decision-makers the tools that inform decisions about expansion and penetration in this market.

Make an Inquiry before [emailprotected]https://www.trendsmarketresearch.com/checkout/11723/Single

Read the original here:
Stem Cell And Regenerative Therapy Market 2019-2024 Chain Analysis, Upstream Raw Materials Sourcing and Downstream Buyers - Feed Road

Read More...

Looking to the future with Dr. Francis Collins – UAB News

March 14th, 2020 7:41 pm

In a talk at UAB on March 6, the NIH director shared his thoughts on exceptional opportunities for science and young scientists and highlighted several exciting UAB projects.

NIH Director Francis Collins, M.D., Ph.D., visited UAB on March 6. In addition to his public talk, Collins had breakfast with UAB medical students and met with groups of young researchers and other investigators across campus.Speaking to a packed University of Alabama at Birmingham audience March 6, Francis Collins, M.D., Ph.D., director of the National Institutes of Health, shared his picks of 10 areas of particular excitement and promise in biomedical research.

In nearly every area, UAB scientists are helping to lead the way as Collins himself noted in several cases. At the conclusion of his talk, Collins addedhis advice for young scientists. Here is Collins top 10 list, annotated with some of the UAB work ongoing in each area and ways that faculty, staff and students can get involved.

I am so jazzed with what has become possible with the ability to study single cells and see what they are doing, Collins said. They have been out of our reach now we have reached in. Whether you are studying rheumatoid arthritis, diabetes or the brain, you have the chance to ask each cell what it is doing.

Single-cell sequencing and UAB:Collins noted that Robert Carter, M.D., the acting director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, was a longtime faculty member at UAB (serving as director of the Division of Clinical Immunology and Rheumatology). For the past several years, UAB researchers have been studying gene expression in subpopulations of immune cells inpatients with rheumatoid arthritis.

Join in:Researchers can take advantage of the single-cell sequencing core facility in UABsComprehensive Flow Cytometry Core, directed by John Mountz, M.D., Ph.D., Goodwin-Blackburn Research Chair in Immunology and professor in the Department of Medicine Division of Clinical Immunology and Rheumatology.

Learn more:Mountz and other heavy users of single-cell sequencing explain how the techniqueslet them travel back in time and morein this UAB Reporter story.

The NIHsBRAIN Initiativeis making this the era where we are going to figure out how the brain works all 86 billion neurons between your ears, Collins said. The linchpin of this advance will be the development of tools to identify new brain cell types and circuits that will improve diagnosis, treatment and prevention of autism, schizophrenia, Parkinsons and other neurological conditions, he said.

Brain tech and UAB:Collins highlighted thework of BRAIN Initiative granteeHarrison Walker, M.D., an associate professor in the Department of Neurology, whose lab has been developing a more sophisticated way to understand the benefits of deep brain stimulation for people with Parkinsons and maybe other conditions, Collins said.

Join in:UABs planned new doctoral program in neuroengineering would be the first of its kind in the country.

Learn more:Find out why neuroengineering is asmart career choicein this UAB Reporter story.

Researchers can now take a blood cell or skin cell and, by adding four magic genes, Collins explained, induce the cells to become stem cells. These induced pluripotent stem (iPS) cells can then in turn be differentiated into any number of different cell types, including nerve cells, heart muscle cells or pancreatic beta cells. The NIH has invested in technology to put iPS-derived cells on specialized tissue chips. Youve got you on a chip, Collins explained. Some of us dream of a day where this might be the best way to figure out whether a drug intervention is going to work for you or youre going to be one of those people that has a bad consequence.

iPS cells at UAB:Collins displayed images of thecutting-edge cardiac tissue chipdeveloped by a UAB team led by Palaniappan Sethu, Ph.D., an associate professor in the Department of Biomedical Engineering and the Division of Cardiovascular Disease. The work allows the development of cardiomyocytes that can be used to study heart failure and other conditions, Collins said.

Join in:UABs biomedical engineering department, one of the leading recipients of NIH funding nationally, is a joint department of the School of Engineering and School of Medicine. Learn more about UABsundergraduate and graduate programs in biomedical engineering, and potential careers, here.

Learn more:See howthis novel bioprinterdeveloped by UAB biomedical researchers is speeding up tissue engineering in this story from UAB News.

We have kind of ignored the fact that we have all these microbes living on us and in us until fairly recently, Collins said. But now it is clear that we are not an organism we are a superorganism formed with the trillions of microbes present in and on our bodies, he said. This microbiome plays a significant role not just in skin and intestinal diseases but much more broadly.

Microbiome at UAB:Collins explained that work led by Casey Morrow, Ph.D., and Casey Weaver, M.D., co-directors of theMicrobiome/Gnotobiotics Shared Facility, has revealed intriguing information abouthow antibiotics affect the gut microbiome. Their approach has potential implications for understanding, preserving and improving health, Collins said.

Join in:Several ongoing clinical trials at UAB are studying the microbiome, including a studymodifying diet to improve gut microbiotaand an investigation of the microbiomes ofpostmenopausal women looking for outcomes and response to estrogen therapy.

Learn more:This UAB News storyexplains the UAB researchthat Collins highlighted.

Another deadly influenza outbreak is likely in the future, Collins said. What we need is not an influenza vaccine that you have to redesign every year, but something that would actually block influenza viruses, he said. Is that even possible? It just might be.

Influenza research at UAB:Were probably at least a decade away from a universal influenza vaccine. But work ongoing at UAB in the NIH-fundedAntiviral Drug Discovery and Development Center(AD3C), led by Distinguished Professor Richard Whitley, M.D., is focused on such an influenza breakthrough.

Join in:For now, the most important thing you can do to stop the flu is to get a flu vaccination. Employees can schedule afree flu vaccination here.

Learn more:Why get the flu shot? What is it like? How can you disinfect your home after the flu? Get all the information atthis comprehensive sitefrom UAB News.

The NIH has a role to play in tackling the crisis of opioid addiction and deaths, Collins said. The NIHs Helping to End Addiction Long-term (HEAL) initiative is an all-hands-on-deck effort, he said, involving almost every NIH institute and center, with the goal of uncovering new targets for preventing addiction and improving pain treatment by developing non-addictive pain medicines.

Addiction prevention at UAB:A big part of this initiative involves education to help professionals and the public understand what to do, Collins said. The NIH Centers of Excellence in Pain Education (CoEPE), including one at UAB, are hubs for the development, evaluation and distribution of pain-management curriculum resources to enhance pain education for health care professionals.

Join in:Find out how to tell if you or a loved one has a substance or alcohol use problem, connect with classes and resources or schedule an individualized assessment and treatment through theUAB Medicine Addiction Recovery Program.

Learn more:Discover some of the many ways that UAB faculty and staff aremaking an impact on the opioid crisisin this story from UAB News.

We are all pretty darn jazzed about whats happened in the past few years in terms of developing a new modality for treating cancer we had surgery, we had radiation, we had chemotherapy, but now weve got immunotherapy, Collins said.

Educating immune system cells to go after cancer in therapies such as CAR-T cell therapy is the hottest science in cancer, he said. I would argue this is a really exciting moment where the oncologists and the immunologists together are doing amazing things.

Immunotherapy at UAB:I had to say something about immunology since Im at UAB given that Max Cooper, whojust got the Lasker Awardfor [his] B and T cell discoveries, was here, Collins said. This is a place I would hope where lots of interesting ideas are going to continue to emerge.

Join in:The ONeal Comprehensive Cancer Center at UAB is participating in a number of clinical trials of immunotherapies.Search the latest trials at the Cancer Centerhere.

Learn more:Luciano Costa, M.D., Ph.D., medical director of clinical trials at the ONeal Cancer Center, discusses the promise ofCAR-T cell therapy in this UAB MedCast podcast.

Assistant Professor Ben Larimer, Ph.D., is pursuing a new kind of PET imaging test that could give clinicians afast, accurate picture of whether immunotherapy is workingfor a patient in this UAB Reporter article.

The All of Us Research Program from NIH aims to enroll a million Americans to move away from the one-size-fits-all approach to medicine and really understand individual differences, Collins said. The program, which launched in 2018 and is already one-third of the way to its enrollment goal, has a prevention rather than a disease treatment approach; it is collecting information on environmental exposures, health practices, diet, exercise and more, in addition to genetics, from those participants.

All of Us at UAB:UAB has been doing a fantastic job of enrolling participants, Collins noted. In fact, the Southern Network of the All of Us Research Program, led by UAB, has consistently been at the top in terms of nationwide enrollment, as School of Medicine Dean Selwyn Vickers, M.D., noted in introducing Collins.

Join in:Sign up forAll of Usat UAB today.

Learn more:UABs success in enrolling participants has led to anew pilot study aimed at increasing participant retention rates.

Rare Disease Day, on Feb. 29, brought together hundreds of rare disease research advocates at the NIH, Collins said. NIH needs to play a special role because many diseases are so rare that pharmaceutical companies will not focus on them, he said. We need to find answers that are scalable, so you dont have to come up with a strategy for all 6,500 rare diseases.

Rare diseases at UAB: The Undiagnosed Diseases Network, which includes aUAB siteled by Chief Genomics Officer Bruce Korf, M.D., Ph.D., is a national network that brings together experts in a wide range of conditions to help patients, Collins said.

Participants in theAlabama Genomic Health Initiative, also led by Korf, donate a small blood sample that is tested for the presence of specific genetic variants. Individuals with indications of genetic disease receive whole-genome sequencing. Collins noted that lessons from the AGHI helped guide development of the All of Us Research Program.

Collins also credited UABs Tim Townes, Ph.D., professor emeritus in the Department of Biochemistry and Molecular Genetics, for developing the most significantly accurate model of sickle cell disease in a mouse which has been a great service to the [research] community. UAB is now participating in anexciting clinical trial of a gene-editing technique to treat sickle cellalong with other new targeted therapies for the devastating blood disease.

Join in:In addition to UABs Undiagnosed Diseases Program (which requires a physician referral) and the AGHI, patients and providers can contact theUAB Precision Medicine Institute, led by Director Matt Might, Ph.D. The institute develops precisely targeted treatments based on a patients unique genetic makeup.

Learn more:Discover how UAB experts solved medical puzzles for patients by uncovering anever-before-described mutationandcracking a vomiting mysteryin these UAB News stories.

We know that science, like everything else, is more productive when teams are diverse than if they are all looking the same, Collins said. My number one priority as NIH director is to be sure we are doing everything we can to nurture and encourage the best and brightest to join this effort.

Research diversity at UAB:TheNeuroscience Roadmap Scholars Programat UAB, supported by an NIH R25 grant, is designed to enhance engagement and retention of under-represented graduate trainees in the neuroscience workforce. This is one of several UAB initiatives to increased under-represented groups and celebrate diversity. These include several programs from theMinority Health and Health Disparities Research Centerthat support minority students from the undergraduate level to postdocs; thePartnership Research Summer Training Program, which provides undergraduates and especially minority students with the opportunity to work in UAB cancer research labs; theDeans Excellence Award in Diversityin the School of Medicine; and the newly announcedUnderrepresented in Medicine Senior Scholarship Programfor fourth-year medical students.

Join in:The Roadmap program engages career coaches and peer-to-peer mentors to support scholars. To volunteer your expertise, contact Madison Bamman atmdbamman@uab.eduorvisit the program site.

Learn more:Farah Lubin, Ph.D., associate professor in the Department of Neurobiology and co-director of the Roadmap Scholars Program,shares the words and deeds that can save science careersin this Reporter story. In another story, Upender Manne, Ph.D., professor in the Department of Pathology and a senior scientist in the ONeal Comprehensive Cancer Center, explains how students in the Partnership Research Summer Training Program gethooked on cancer research.

In answer to a students question, Collins also shared his advice to young scientists. One suggestion: Every investigator needs to be pretty comfortable with some of the computational approaches to science, Collins said. Big data is here artificial intelligence, machine-learning. We can all get into that space. But its going to take some training, and it will be really helpful to have those skills.

Join in:UAB launched aMaster of Science in Data Scienceprogram in fall 2018.

Learn more:Discover how UAB researchers areusing machine-learning in their labsand toimprove cancer treatment. Those looking for a free introduction cantake advantage of the Data Science Clubfrom UAB IT Research Computing.

Read this article:
Looking to the future with Dr. Francis Collins - UAB News

Read More...

The vaccine hunters racing to save the world from the coronavirus pandemic – Telegraph.co.uk

March 14th, 2020 7:41 pm

In a laboratory in the depths of Imperial College London, all eyes are on a group of mice scurrying about their daily business. The rodents were injected a few weeks ago with a prototype vaccine which it is hoped will achieve what the world has so far singularly failed to do so far - stop the coronavirus Covid-19.

Progress, says Professor Robin Shattock of Imperials department of infectious disease, looks good. His team first started developingthe vaccine in mid-January and are working at record pace, taking just 14 days to get from the genetic sequencing of the virus to generating the trial vaccine in the laboratory. It relies upon a cutting-edge technique which injects new genetic code into the muscle, instructing it to make a protein found on the surface of coronavirus triggering a protective immune response. Should the mice trial prove a success then Prof Shattock hopes to be experimenting on humans in the summer and have a vaccine ready next year perhaps even the first in the world.

The laboratories at Imperial are part of the global fightback against Covid-19. At Oxford Universitys Jenner Institute, researchers are producing a vaccine seed stock, 1,000 doses of which will be manufactured in Italy for use in clinical trials. At present around 35 pharmaceutical companies are similarly working to develop a Covid-19 vaccine.

It is competitive in that people always like to be first but its a friendly competition, Prof Shattock explains. More a race against the virus than each other.

The problem is the virus is winning, coursing across the globe with a speed and severity that has shocked seasoned virologists. At a press conference on Friday afternoon, Dr Michael Ryan, head of the World Health Organisation emergencies programme, warned of a "major funding gap" for potential vaccines. Even if one does appear early next year, that would be scant defence against the months of unprecedented global devastation we are warned could lie ahead.the WHO's Dr Mike Ryan said that there is a major funding gap for potential vaccines against the virus.Even if a vaccine appears early next year, that would be scant defence against the months of unprecedented global devastation we are warned could lie ahead.

Another concern is Covid-19 has already evolved into two major lineages - dubbed L and S types. The older S-type appears to be milder and less infectious, while the L-type which emerged later, spreads quickly and currently accounts for around 70 per cent of cases. Health experts fear the virus could hit Britain in multiple waves meaning new vaccines might not work against mutated strains.

Accordingly this is a war now being waged on multiple fronts. Alongside vaccine development, researchers are focusing on antivirals to treat patients (of which currently there are none) either by hoping to create new antivirals in record time or dust off old drugs developed for previous outbreaks. At the same time scientists are working to develop better rapid diagnostics in order to more efficiently test large-scale populations for the virus something that has been hailed in South Korea for preventing its further spread.

In China alone, about 300 clinical trials are attempting to treat patients with standard antiviral therapies, while in the west attempts are being made to repurpose old treatments for Ebola, malaria and HIV to see if they can impact against Covid-19.

Many see a drug called remdesivir, originally developed to treat Ebola and production of which is currently being ramped up by the US pharmaceutical firm Gilead, as a frontrunner and one of the very few antivirals that has a reasonable prospect of helping patients in the near-term.

Should these old drugs fail then the scientific community will be required to think more creatively and it is here where a 39-year-old US tech genius called Jacob Glanville steps in. Born in Guatemala to US hippy ex-pat parents, Glanville is already something of an outlier in a field that is dominated by the pharmaceutical giants. But he is currently being backed by the US government to embark on super-accelerated engineering of antibodies produced during the SARS outbreak of 2002 to see if they might apply to the latest member of the same family of coronavirus.

It is a process that Glanville, chief executive of Distributed Bio, describes as taking five billion pieces of spaghetti and throwing them all against a wall to see what sticks.

Glanville appears in a recent Netflix series, Pandemic, which focused on a separate branch of his pioneering work to develop universal influenza vaccines. He is described as the David to the influenzas Goliath andwith Covid-19 he faces a similarly outsized challenge. Should his attempt to discover an antibody which reacts against Covid-19 prove a success then he says it is conceivable that a drug could be ready by September.

Even that would be too late for many. By next month, he is predicting 40,000 cases of Covid-19 in his home state of California overwhelming intensive care wards.

There is an enemy here and that is the virus, he says. We all want to protect our families.

Scientists across the world are indebted to their Chinese counterparts who on January 10 openly published the genetic sequencing of Covid-19. Organisations such as Cepi, set up in response to the lack of scientific progress during the Ebola crisis, are funding the rapid research of vaccines while governments are also pouring money into development.

At the University of Toronto, Sachdev Sidhu, a professor of molecular genetics, is leading a team part-funded by the Canadian federal government to develop successful antivirals. His work involves a pioneering technique he has developed to test millions of molecules stored in a library to assess whether one contains the crucial protease inhibitor for Covid-19 (which would help neutralise the virus).

He describes the rapid global progress that has been made so far as a triumph of science with the work that took a decade to understand the HIV virus being done in a month.

While he works on exploiting its Achilles heel, he says it is best to block out the human impact of Covid-19. You cant get emotional. That doesnt help. Our job is to figure out what it is, how it works, and shut it down.

Dunfermline-born researcher Kate Broderick is senior vice president of research and development at the US firm Inovio and admits she has averaged about two hours sleep each night since the virus first emerged.

As a scientist and also a mum Im extremely worried, says the 42-year-old. In my wildest nightmares I couldnt have predicted two months ago, one month ago, or even a week ago, that we would be in the situation were in today.

The day the Chinese authorities released the full genetic sequence of Covid-19, her company (which had previously worked on vaccines for the likes of Ebola, Sika, MERS and Lassa fever) designed a vaccine in just three hours and immediately started manufacturing small batches to test in the laboratory.

Inovio plans to begin testing the vaccine on humans in the US next month with parallel trials running in China and South Korea and will then move into phase two (of three) clinical trials experimenting on a wider group of people. She declines to put a timeline on when a vaccine might be ready but admits it will require at the very least tens of millions dollars in funding. Her team has been given a $9 million grant from the Coalition for Epidemic Preparedness Innovations, an initiative backed by Bill Gates, but far more investment is needed to make any vaccine widely available.

The crippling costs involved are where previous vaccines have faltered but with Covid-19 already proving to be like no virus the world has ever seen, precedent currently is being left by the wayside.

This virus is absolutely remarkable to me, she says, commenting on the speed and scale of the contagion. And I do think people should be taking this extremely seriously.

Back on the streets of London, thousands of volunteers are currently being assessed for their suitability for clinical trials of vaccine or antivirals for Covid-19. Hvivo (a subsidiary of the company Open Orphan) which has developed a rapid testing model has in recent days received 10,000 applications of those wishing to be injected with a close relative of Covid-19 to help discover an effective treatment.

Andrew Catchpole, a virologist and chief scientist at the firm, admits the offer of 3500 per person to spend two weeks in quarantine will be the prime motivation for some. But he detects in the surge in interest a wider appetite to pull together and be a force for societal good.

This is areal human emergency, he says. And a lot of people genuinely want to do their bit.

Follow this link:
The vaccine hunters racing to save the world from the coronavirus pandemic - Telegraph.co.uk

Read More...

COVID-19: What Can the World Learn From Italy? – Medscape

March 14th, 2020 7:41 pm

The first case of COVID-19 appeared in Italy on January 30th. A couple of Chinese tourists coming from Wuhan via Beijing were admitted to Spallanzani Hospital in Rome, highly specialised in infectious diseases.

The same day, the Minister of Health Roberto Speranza announced an air traffic embargo for flights coming to Italy from any Chinese city, including the autonomous regions of Hong Kong and Macau, in an attempt to block the spread of the infection.

In the days following the hospitalisation of the Chinese couple in Rome, a few new cases were detected in a group of Italians who were repatriated from the Wuhan region. Experts started to sigh in relief as all cases came from abroad and no local contagion seemed to show up.

Then, quite abruptly, on February 20th at midnight, the Councillor for Welfare in Lombardy, Giulio Gallera, announced that Mattia, a 38-year-old Italian from the small city of Codogno, in Lombardy, was hospitalised for a severe case of atypical pneumonia and tested positive for coronavirus. He had not travelled to China nor had any contact with people coming from Asia. He was tested only because a young anaesthesiologist, faced with the worsening condition of the patient, broke protocol and asked for permission to test a patient with no apparent risk factors. Codogno was the focus of a local outbreak of the disease: new cases were identified in the following days and the whole area was put under strict quarantine for 2 weeks. But it was too late.

As of March 12th, Italy has 15,113 official cases, 1016 deaths and 1258 recovered patients. The whole country is on lockdown. Cities like Milan and Bergamo, in Lombardy, are facing an exponential growth of hospitalised people with COVID-19. Schools, universities, and most shops are closed (all except the ones selling basic goods like food, drugs, electronics, and warehouses) and the National Health System is trying to cope with the flood of patients needing ventilation support. Roberto Cosentini, head of the Emergency Department at Pope John XXIII Hospital in Bergamo, one of the most affected cities, has been living in the hospital for the last 3 weeks: "It's like a wave," he says. "We have now around 60-80 new COVID-19 patients per day coming to the emergency. Most of them are in severe conditions and they arrive all together between 4 and 6 pm. We learnt that the respiratory distress worsens at the end of the afternoon and we now know that we will have to deal with most of the severe cases showing up one after another in a short time, every day." But Italy learnt from the Chinese experience: Italian experts looked at Wuhan's management of the crisis and Foreign Minister Luigi Di Maio asked his Chinese counterpart Wang Yi for assistance with supplies. Other countries in Europe are looking at Italy in order to prepare for SARS-CoV-2,the virus which causes COVID-19.

"There is a huge debate about the way we test for the SARS-CoV-2 virus," explains Giovanni Maga, director of the Institute of Molecular Genetics of the Italian National Research Council in Pavia, in Lombardy. "Many countries test only people with symptoms. At the beginning of the crisis, we decided to test everyone who was in contact with a person infected with the virus and this is what WHO also recommends. But in the long run it became impossible and now we test only symptomatic people with severe impairment."

However, this makes the analysis of the epidemic trends quite challenging. "If you test everybody, you will find more positive cases, with mild symptoms," says Maga. The strategy for testing might heavily influence the visible part of the epidemic: "According to many epidemiologists, other countries could be in the same situation as Italy was a few weeks ago," continues Maga. "But since they do not check asymptomatic people, they just don't know it." The choice of testing strategies is a crucial one for preparedness. "There are pros and cons for any choice, but what is important is to try to be as consistent as possible on the criteria since the beginning of the outbreak," he says.

The COVID-19 outbreak is a stress test for health services. Italy's Health Service, which provides universal coverage for the whole population, is national, but the organisation is distributed to regional health authorities.

When the crisis became evident, the Government regained control of crucial decisions, such as the coordination of intensive care unit availability. Antonio Pesenti, the coordinator of the ICU network in Lombardy and head of the Crisis Unit explains how Italy is trying to cope with the situation. "Since the first days of the outbreak we established a protocol to transfer patients needing ICU for non-COVID-19 diseases to the regions in Central and Southern Italy using the Civil Protection CROSS system. We prefer not to transfer COVID-19 patients because they require special isolation." Italy has around 6000 beds for intensive care, which the government plans to increase to 9000 in the coming weeks, partly by repurposing and refitting operating rooms used for elective surgeries. According to Pesenti, the projected demand of ICU beds is up to 10 times the current availability: "The number of hospitalised patients expected by March 26th, in 2 weeks, is 18,000 just in Lombardy. Between 2700 and 3200 will require intensive care."

To face such a tsunami, Italy is learning from China. Intermediate care units will be opened both in the hospitals and in other areas, such as exhibition pavilions in the Bergamo and Milan Fair. They will be equipped with ventilators coming from China and with special helmets to facilitate non-invasive ventilation support that seems to be very useful for patients who can manage without invasive ventilation. "We need such tools because 33%of the people in intensive care are between 50 and 64 years old: they are fit people who do not have pre-existing conditions. If we put them in invasive ventilation, they occupy an intensive care unit for 2-3 weeks," says Pesenti. "Any alternative is useful to relieve ICUs."

Doctors also had to deal with ethical issues. The Italian College of Anaesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) published guidelines for triage when there's a shortage of ventilatorsto help with decision making in a critical situation. The authors chose "the most widely shared criteria regarding distributive justice and the appropriate allocation of limited health resources" to draw their recommendations. "Informed by the principle of maximising benefits for the largest number, the allocation criteria need to guarantee that those patients with the highest chance of therapeutic success will retain access to intensive care," the document says.

Epidemiological curves are the new weather forecast for citizens in quarantine. And policy makers rely on them to decide new policies for containment. "The available predictive models are based on data we got from China," explains Paolo Vineis, an Italian epidemiologist based at Imperial College in London, who is consulting for the scientific committee supporting the Italian Government in the decision-making process. "They mainly use the SIR model, that consists of three compartments: S for the number of susceptible, I for the number of infectious, and R for the number recovered (or immune) individuals. Any of those components can change during the epidemic, because of the local development. That's why data collection is extremely important for modelling." Italy had to face a challenge due to the regional nature of its health system: different regions used to collect data in different ways, using different templates. Regions like Lombardy, that were overwhelmed by the epidemic, had trouble feeding the databases with all the details, like comorbidities. "Epidemiological analysis needs to be centralised and properly supported to help the decision makers" says Vineis.

At first glance, the death rate from COVID-19 in Italy appears to be much higher than it was in China, but according to experts, this is likely to be due to a combination of several factors, ranging from the testing strategy to the advanced age and comorbidities of most patients. "The average age of deceased patients is over 80 years, but when one looks at the age-stratified data the lethality is very similar to China," explains Giovanni Rezza, epidemiologist and director of the Department of Infectious Diseases at the Higher Institute of Health in Rome, who sits on the scientific committee advising the Italian Government. Based on the analysis of medical records, the first 100 deceased patients had an average of 2.5 concurrent diseases. Still, in the Italian system they are accounted for when calculating the lethality of COVID-19. Another confounding factor is the testing strategy, which was concentrated on people with serious symptoms, worth being hospitalised. Those who had mild symptoms were recommended to stay at home, but were not systematically tested for SARS-CoV-2. "This has likely kept the denominator very low," explains Rezza.

Italian doctors followed the suggestions from China on the use of antiviral drugs that were already tested during the SARS epidemic, but are also working actively for new clinical trials. A phase III clinical trial with remdesivir, an investigational antiviral drug being developed by Gilead Sciences to treat Ebola, is being conducted on patients recruited in the main hospitals like Spallanzani Hospital in Rome, Pavia Polyclinic, Padua and Parma University hospitals and Sacco Hospital in Milan.

The drug is not yet approved for any indication globally but is provided for compassionate use. The US Food and Drug Administration (FDA) granted investigational new drug authorisation to study it in February 2020. The same hospitals will be involved in the trial using the antiviral combination lopinavir/ritonavir as COVID-19 treatment. Paolo Ascierto, from Fondazione Pascale Cancer Institute in Naples, announced on March 10th to have observed good results on two very critical patients receiving tocilizumab, a monoclonal antibody used in rheumatoid arthritis acting on IL6 cytokine and on the spike proteins of the virus. The drug is also used to reduce severe side effects in chemotherapies. After this anecdotal report, a proper clinical trial is being planned.

General practitioners have been hit hard, acting as a first line to identify patients with symptoms suggesting COVID-19. And they are paying a high price for the lack of training, appropriate tools and a proper plan. Filippo Anelli, president of the National Federation of the Orders of Doctors and Dentists (FNOMCeO) sent a letter to Prime Minister Giuseppe Conte asking permission to stop all outpatient health activities. "By March 11th, 50 doctors were infected by the virus and three of them died," he wrote. General practitioners face a shortage of protective tools like gloves, masks and disposable scrubs. And even when they have them, they are not trained to properly manage potentially infected clothes and tools, said Claudio Cricelli, president of the Italian Society of General Practice (SIMG).

Since the end of February, the hospitals in Northern Italy have been reorganised. Most of them have special areas for COVID-19 patients. In Milan, some hospitals are working as 'hubs' to collect patients with the same disease. Most of the outpatient clinics have been closed and non-urgent visits are postponed, to make resources available for the most severe cases. This was a good strategy to increase the availability in hospitalwards but a very challenging and stressful burden on general practice. Protocols for patients with flu-like symptoms have been established by the Health Authorities. The first evaluation is done by telephone or e-mail. In case of symptoms suggesting a possible COVID-19 infection, the patient is invited to stay home, isolated from the rest of the family. The GP monitors the evolution of the symptoms while avoiding as much direct contact as possible with these patients. In case of respiratory distress, a special hotline number has been set up to dispatch a team that can transfer the patient to the hospital. "This is the only way to guarantee a proper care of the patients with other diseases," says Cricelli.

A lockdown like the one Italy is experiencing, together with continuous news coverage on the epidemic risks, are not without mental health risks. On February 26th, the Lancet published a paper by Samantha Brooks and colleagues from King's College in London, reviewing studies on the psychological effects of quarantine and how to reduce it. "Most reviewed studies reported negative psychological effects including post-traumatic stress symptoms, confusion, and anger.

Stressors included longer quarantine duration, infection fears, frustration, boredom, inadequate supplies, inadequate information, financial loss, and stigma," the review said. "Some researchers have suggested long-lasting effects. In situations where quarantine is deemed necessary, officials should quarantine individuals for no longer than required, provide clear rationale for quarantine and information about protocols, and ensure sufficient supplies are provided. Appeals to altruism by reminding the public about the benefits of quarantine to wider society can be favourable." Enrico Zanalda, president of the Italian Society of Psychiatry (SIP) confirms: "Patients with depression and OCD tend to relapse," he says. "And the general level of anxiety is very high." Children and adolescents are particularly at risk of post-traumatic stress disorder, according to the review. "A proper planning for psychiatric support and for the diagnosis of PTSD is necessary."

When the lockdown was extended to the whole country, the association of medical oncologists (AIOM, Associazione Italiana di Oncologia Medica) published a statement inviting specialists to reschedule all 'non-urgent' activities, such as cancer screenings and follow-up visits for successfully-treated patients, and in some cases adjuvant therapy.

"The rationale is to make sure that the oncology wards, especially in general hospitals that are also treating COVID-19-positive patients, can respect all the safety procedures, including social distancing, for cancer patients who are being treated or may need to start a new treatment," explains vice-president of AIOM Saverio Cinieri, who is co-director of Milan's European Institute of Oncology (IEO). "This also reduces the social interactions of immunocompromised persons who are at higher risk both of infection and of developing more serious symptoms." AIOM recommended contacting patients via phone or e-mail, to verify which patients may need to be visited, and is developing an app for video consultations.

Daniela Ovadia is a writer for Agenzia Zoe.

Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020 Feb 26. pii: S0140-6736(20)30460-8. doi: 10.1016/S0140-6736(20)30460-8. [Epub ahead of print]

Adapted from Univadis from Medscape.

Continue reading here:
COVID-19: What Can the World Learn From Italy? - Medscape

Read More...

U of T researchers hunt for antivirals to treat COVID-19 patients – News@UofT

March 14th, 2020 7:41 pm

Researchers from the University of Torontos Donnelly Centre for Cellular and Biomolecular Research are working on developingantivirals that can combat thenovel coronavirus outbreak.

Led bySachdev Sidhu, a professor of molecular genetics, the team will apply their protein engineering technology to identify promising therapeutics.

We have diverse expertise on our team from across U of T and the University of Manitoba, which is renowned for its virology research, and we have already demonstrated that we can engineer proteins that inhibit MERS, a related coronavirus, says Sidhu, who, in addition to the Donnelly Centre holds cross appointments in the Faculty of Medicine and at the Institute of Biomaterials and Biomedical Engineering. We will now expand on this work to design therapeutics for COVID-19.

The team recently received almost $900,000 over two years from the federal government through a rapid funding competition announced on Feb. 10 to address the COVID-19 outbreak.

Sidhu is collaborating withRoman Melnyk, a senior scientist at the Hospital for Sick Children and assistant professor of biochemistry at U of T, andBrian Mark, a structural virologist and professor at the University of Manitoba. In a 2016 proof-of-principle study withMarjolein Kikkert, a virologist at Leiden University in the Netherlands, they applied a protein engineering pipeline developed by Sidhus team to create proteins that inhibit a related coronavirus that caused the Middle East Respiratory Syndrome (MERS) outbreak in 2012.

Wei Zhang, then a post-doctoral researcher in Sidhus lab and now an assistant professor at the University of Guelph,received a national innovation award for this research.

The researchers now plan to use the same strategy to battle the coronavirus behind the COVID-19global health crisis, which the World Health Organization today declared a pandemic.

Since the outbreak began in China in late 2019, the virus has spread to every continentexcept Antarctica, with more than 120,000 confirmed cases and more than 4,000 deaths, according to the latest figures. And while researchers around the world are racing to develop a vaccine, that is only a part of the solution, Sidhu says.

Even if a vaccine becomes available, not everyone is going to get vaccinated, says Sidhu. We see that with the flu the vaccination rates are far from 100 per cent. Should the virus become endemic and end up circulating in the population like the flu, medicines that stop the virus from replicating in an already infected person will be as important as vaccines, which prevent infection, according to Sidhu.

Jacky Chung, a research associate in the Sidhu lab, will spearhead the project by first engineering proteins that can inhibit the virus. The team will then search for small molecules that behave in the same way since they are easier to develop into therapeutics than proteins.

It's important to get the therapeutic inside the cells, which is where the virus replicates, says Chung. And small molecules can get into cells much more readily than proteins, which are much larger.

At the heart of the approach lies a protein called ubiquitin, named for being present in all plant and animal cells. Ubiquitin is an essential part of the cellular machinery that the virus hijacks for its own benefit. Upon infection, the virus releases proteins that interfere with human ubiquitin and allow it to bypass the hosts defence system and spread in the body.

To block the virus, the researchers will create synthetic ubiquitin variants (UbV) that thwart rather than aid its ability to replicate. By analyzing the molecular structures of different UbVs bound to the viral protein, they will gain clues into the kinds of small molecules that are most likely to be effective against the virus.

Sidhu says that, within two years, they should have candidate molecules that could be developed into therapeutics. We know there are literally armies of medicinal chemists and various companies that could then optimize the molecule into a drug that can be given to humans, says Sidhu who was previously at pharmaceutical giant Genentech and has founded six startups since joining the university.

Read more here:
U of T researchers hunt for antivirals to treat COVID-19 patients - News@UofT

Read More...

OPINION EXCHANGE | The testing that can help us put the coronavirus genie back in the bottle – Minneapolis Star Tribune

March 14th, 2020 7:41 pm

The genie is out of the coronavirus bottle and has officially arrived in Minnesota.

Although this particular genie is not easily seen based on clinical symptoms, fortunately, science has provided us with genie glasses. If you believe in that kind of thing you know science.

From a testing standpoint, viruses have always been hard to detect. Theyre difficult to grow in a culture, like we often do with bacteria, and checking for antibodies against a specific virus is often imprecise, particularly early in an infection, when the body hasnt had enough time to produce antibodies.

Then came reverse transcription-polymerase chain reaction (RT-PCR) testing, a lab technique that allows us to identify fragments of genetic material (RNA in the case of coronavirus) in a body fluid sample. Like giving a search-and-rescue dog a sniff of the victims clothing, a specific RT-PCR test has to be developed for each specific viral or bacteria: It has to be told what its supposed to be looking for. (Visit tinyurl.com/molecular-assays for more information.)

RT-PCR testing isnt exactly new, but like so many other things in modern life, technological advances have made it much more accessible and affordable. In scientific terms, its a damn good test. It rarely misses a virus thats there, and it rarely mistakes another virus (or something else) for the virus it was seeking. It wont mistake influenza or strep throat for coronavirus. RT-PCR testing isnt perfect, but its the best weve ever had.

Ideally, we would have made a lot of RT-PCR genie glasses before the genie actually arrived on our shores. The delay wasnt because we couldnt figure out the gene sequence of this new coronavirus. In a tribute to the stunning sophistication of modern genetics, scientists in China released the viruss mug shot its entire genome sequence on Jan. 10, a month after they became aware of the infection (or so we are told, China being China).

An aside here for freaky cool genome science: Because RNA viruses mutate at a somewhat predictable rate, scientists can use mutations to estimate the age of a virus, like counting growth rings on a tree stump. A young virus will have few if any extra mutations. Scientists believe the COVID-19 virus was born no earlier than Oct. 30, 2019, and no later than Nov. 29th (tinyurl.com/coronvirus-genome).

This genome map provides the template for developing both vaccines and RT-PCR testing. When Germany flew 126 of its citizens home from Hubei province on Feb. 1, they PCR-tested each of them. Two of the 126 tested positive, and they were not among the 11 people with symptoms.

In medicine, we are trained to avoid testing in situations where the likelihood of finding anything is low. Routine testing for rare or low-likelihood diseases, or in healthy people, just wastes a lot of money and generates more testing for those inevitable cases where the test returns falsely positive. It rarely saves lives. Men do get breast cancer, but not at a rate that justifies routine mammograms.

All that is different with the COVID-19 virus.

At the beginning of the outbreak, when the virus was thought to be isolated to a single province in China, travel history screening was an incredibly cheap and powerful test. But as the virus continues on its worldwide tour, travel history will become an increasingly nondiscriminating test (example: Have you or a close contact traveled to any one of the following 30-and-counting states?). And thanks to widespread RT-PCR testing in other countries, we now know that our other test signs and symptoms of an upper respiratory infection has been a crude one from the beginning. It appears that a majority of those infected have either no symptoms or minor symptoms and yet remain capable of passing the virus to others. Never mind that we are still in the midst of our winter cold and flu season, where COVID-19 impostors abound.

So now that we know travel history and signs/symptoms are no more than beer-goggle-quality tests, its time to break out the genie glasses: RT-PCR. If the airline industry alone stands to lose $100 billion, it could offer the Centers for Disease Control and state and private labs $20 billion to rev up RT-PCR production, and still save itself $80 billion.

I asked Joanne Bartkus, director of the Minnesota Department of Healths Public Health Laboratory, exactly how does a RT-PCR lab rev up capacity? Is it more machines, more reagents (substances used in chemical reactions), more staff?

Yes to all of those things, she replied as she went on to explain the COVID-19 virus testing process.

Somewhat surprisingly, the RT-PCR test itself is the simplest part of the process: The samples are placed in a machine called a thermal cycler, and in 2.5 fully automated hours, the data is ready to be interpreted. The rate-limiting, most-tedious part of the process is getting the specimens ready for the cycler.

As test kits arrive from around the state, each sample must be accessioned: Information such as patient identifiers, location and ordering physician must be logged into the computer, and the sample must be tagged with a bar code. It might sound mundane, but imagine the implications of attributing a particular test result to the wrong patient. This is serious stuff.

Then comes the process of extracting the viral RNA out of the immunological fog of war found in any snot sample. In the beginning, the RNA extraction process certified by the CDC was labor-intensive.

It really limited the number of samples we could turn around in a day, and thats one of the reasons that initial testing was limited to individuals with known risk factors, Barkus told me. But as we move toward community surveillance, well need higher throughput extraction methods, and who could ever argue with higher-throughput extraction methods? Good news: On the day I spoke with Barkus, the CDC had just greenlighted a technical change that will allow 96 tests to be done in a platform that previously handled 24.

So things are heating up at MDH labs, and elsewhere, too, as the Mayo Clinic and private labs like Quest Diagnostics and LabCorp have all recently rolled out their own RT-PCR testing. Under normal circumstances, every new RT-PCR would need to be tested and approved by the FDA, but under emergency conditions like COVID-19, the FDA can loosen the reins and allow labs to internally validate their new test and get the FDA seal of approval later.

All of that, and the prospect of broader testing, is welcome news. Then well have some real data to guide our containment strategy, rather than hunches and case reports, or the difficult, labor-intensive, gumshoe detective work by public health workers.

And then well have a much better chance of putting this genie back in the bottle.

Craig Bowron is a physician and writer in the Twin Cities. On Twitter: @billcarlosbills.

Read more from the original source:
OPINION EXCHANGE | The testing that can help us put the coronavirus genie back in the bottle - Minneapolis Star Tribune

Read More...

The Role of Zinc: It’s More Important than You Think – UMass Lowell

March 14th, 2020 7:41 pm

Theres a lot that scientists know about the benefits of zinc. The essential nutrient boosts the immune system, heals wounds and supports brain development in children. We even need zinc to smell and taste. Dive a little deeper, however, and the real mysteries of zinc emerge.

One of them how zinc is distributed to tissues and cells is the root of Prof. Shannon Kellehers research, which aims to reveal the role that zinc plays in the development of inflammatory bowel disease and food allergies.

Zinc is critical for intestinal health, but we have little information on what it actually does in the intestine, says Kelleher, who is based in UMass Lowells Biomedical and Nutritional Sciences Departmentin the Zuckerberg College of Health Sciences. Our goal is to understand how zinc affects intestinal function, the gut microbiome and the risk for intestinal disease.

We asked her to explain.

Q. What do we know about zinc and its effect on intestinal health?

A. We know that the right amount of zinc is critical to intestinal health. If we consume too much or too little zinc, the intestinal barrier falls apart. An over- or underabundance of zinc can cause shifts in the gut microbiome, and cause diarrhea and inflammation.

The only way that people can consume too much zinc is through supplements. If you get zinc only through foods in your diet, then you really cant consume toxic amounts. However, if you only rely on your diet, then you may not be consuming enough. So finding the right balance is important.

Q. Is zinc deficiency a big problem?

A. One study from the National Institutes of Health shows that 35 to 45 percent of adults over 60 years old had lower-than-average zinc intakes. Scientists believe that about 7 to 10 percent of the U.S. population is severely lacking in the nutrient. Women of reproductive age are most likely moderately zinc-deficient due to menstruation and not eating the right foods. Symptoms of too little zinc include dry and itchy skin, loss of hair, reduced ability to taste food and a compromised immune system that leads to more colds.

Q. How much zinc should we be consuming?

A. The recommended daily allowances for zinc are 11 mg for men and 9 mg for women. Foods high in zinc include red meat, oysters, poultry, fish and some fortified breakfast cereals. But since excess zinc is also not healthy, dont overdo it with supplements.

Q. Why is it important to find out how zinc travels through our bodies and cells?

A. If we knew how zinc gets into our cells, where it goes in our cells and what it does, then we could use this information to develop new therapies to fight a variety of diseases. These could include new drugs, delivery systems or personalized dietary recommendations.

Q. What else could your research results be used for?

A. Our research could also inform personalized nutrition. I teach an undergraduate course about an emerging field called nutrigenetics. We are now able to sequence your DNA and, based on your genetic blueprint, assess your risk for nutritional disorders and develop personalized diets that match your genetics. It helps to understand why individuals who eat similar diets can have different health outcomes. Your genetics play a crucial role in how you respond to what you eat.

Q. How does your work differ from nutritional science?

A. Nutritional science is often thought of as studies that look at how diet and foods affect human health and the risk for disease. The type of research we do is referred to as molecular nutrition. My research dives a little deeper to understand how specific nutrients in this case, zinc affect cellular and molecular processes that then cause the positive or negative effects we see in the body.

Read more from the original source:
The Role of Zinc: It's More Important than You Think - UMass Lowell

Read More...

University researchers hunt for antivirals to treat COVID-19 patients – Mirage News

March 14th, 2020 7:41 pm

Researchers from the University of Torontos Donnelly Centre for Cellular and Biomolecular Research are working on developing antivirals that can combat the novel coronavirus outbreak.

Led by Sachdev Sidhu, a professor of molecular genetics, the team will apply their protein engineering technology to identify promising therapeutics.

We have diverse expertise on our team from across U of T and the University of Manitoba, which is renowned for its virology research, and we have already demonstrated that we can engineer proteins that inhibit MERS, a related coronavirus, says Sidhu, who, in addition to the Donnelly Centre holds cross appointments in the Faculty of Medicine and at the Institute of Biomaterials and Biomedical Engineering. We will now expand on this work to design therapeutics for COVID-19.

The team recently received almost $900,000 over two years from the federal government through a rapid funding competition announced on Feb. 10 to address the COVID-19 outbreak.

Sidhu is collaborating with Roman Melnyk, a senior scientist at the Hospital for Sick Children and assistant professor of biochemistry at U of T, and Brian Mark, a structural virologist and professor at the University of Manitoba. In a 2016 proof-of-principle study with Marjolein Kikkert, a virologist at Leiden University in the Netherlands, they applied a protein engineering pipeline developed by Sidhus team to create proteins that inhibit a related coronavirus that caused the Middle East Respiratory Syndrome (MERS) outbreak in 2012.

Wei Zhang, then a post-doctoral researcher in Sidhus lab and now an assistant professor at the University of Guelph, received a national innovation award for this research.

The researchers now plan to use the same strategy to battle the coronavirus behind the COVID-19 global health crisis, which the World Health Organization today declared a pandemic.

Since the outbreak began in China in late 2019, the virus has spread to every continent except Antarctica, with more than 120,000 confirmed cases and more than 4,000 deaths, according to the latest figures. And while researchers around the world are racing to develop a vaccine, that is only a part of the solution, Sidhu says.

Even if a vaccine becomes available, not everyone is going to get vaccinated, says Sidhu. We see that with the flu the vaccination rates are far from 100 per cent. Should the virus become endemic and end up circulating in the population like the flu, medicines that stop the virus from replicating in an already infected person will be as important as vaccines, which prevent infection, according to Sidhu.

Jacky Chung, a research associate in the Sidhu lab, will spearhead the project by first engineering proteins that can inhibit the virus. The team will then search for small molecules that behave in the same way since they are easier to develop into therapeutics than proteins.

Its important to get the therapeutic inside the cells, which is where the virus replicates, says Chung. And small molecules can get into cells much more readily than proteins, which are much larger.

At the heart of the approach lies a protein called ubiquitin, named for being present in all plant and animal cells. Ubiquitin is an essential part of the cellular machinery that the virus hijacks for its own benefit. Upon infection, the virus releases proteins that interfere with human ubiquitin and allow it to bypass the hosts defence system and spread in the body.

To block the virus, the researchers will create synthetic ubiquitin variants (UbV) that thwart rather than aid its ability to replicate. By analyzing the molecular structures of different UbVs bound to the viral protein, they will gain clues into the kinds of small molecules that are most likely to be effective against the virus.

Sidhu says that, within two years, they should have candidate molecules that could be developed into therapeutics. We know there are literally armies of medicinal chemists and various companies that could then optimize the molecule into a drug that can be given to humans, says Sidhu who was previously at pharmaceutical giant Genentech and has founded six startups since joining the university.

View original post here:
University researchers hunt for antivirals to treat COVID-19 patients - Mirage News

Read More...

The risks of using gene drives to get rid of ‘pesky species’ – Genetic Literacy Project

March 14th, 2020 7:41 pm

The mammals of New Zealand have long posed a threat to native species. The Predator Free 2050program is an effort to rid the island of these invaders including using the tools of CRISPR-based genome editing to create a gene drive to jumpstart extinctions.

Its a very bad idea.

In the 1993 film Jurassic Park, mathematician Ian Malcolmlistens to arrogant dinosaur daddy John Hammond describe the islands supposedly all-female populations of the giant reptiles:

John, the kind of control youre attempting simply is its not possible. If there is one thing the history of evolution has taught us its that life will not be contained. Life breaks free, it expands to new territories and crashes through barriers, painfully, maybe even dangerously, but, there it is Im simply saying that life, uh finds a way.

The wise Dr. Malcolm may prove prescient when it comes to using gene drive technology to get rid of pesky species.

Today reptiles, albeit smaller ones than dinosaurs, are among the threatened natives of New Zealand. Prior to the arrival of people, only bats and marine species represented class Mammalia, except for a few archaic types a few million years ago. Then the Mori people introduced Polynesian rats and dogs in about 1250 CE, and Europeans five centuries later contributed mice, pigs, more rats (ship stowaways), possums, weasels, stoats, and ferrets. Native birds, reptiles, invertebrates, snails, insects, and even the forest canopies began to lose out in the competition for natural resources and to predation.

The New Zealand government painted the newcomers as pests, interlopers, invaders. Introduced predators: the bad guys, states one pamphlet.

In a simpler and perhaps more violent time, pests might have been shot, drowned, or poisoned. But a 2003 paper fromAustin Burt, a selfish gene proponent from Imperial College, London, proposed the concept of a gene drive.

A gene drive harnesses one of the ways that cells repair DNA, called homing, that snips out one copy of a gene and replaces it with a copy of whatever corresponding gene variant (allele) is on the paired chromosome. It would be like cutting out a word in this sentence and replacing it with a copy of the word below it. If done to a gene that affects fertility in a fertilized ovum aka the germline the intervention can lead, within a few generations, to mass sterility and a plummeting population a gene drive towards extinction.

A gene drive skews Mendelian inheritance. Instead of one of a pair of genes coming from the father and one from the mother, both copies are from one parent. In the language of genetics, the intervention can turn a heterozygote (2 different copies of a gene) into a homozygote (2 identical copies). Nature does this in several ways, but the tools of CRISPR-Cas9, first described in 2012,offer a faster route to a gene drive, and can target several genes at once.

Visions of vanquishing the mosquitoes that carry the malaria parasite or zika virus dampened initial scrutiny of gene drives. In 2016, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a 200+ page reportthat discussed reasons to proceed with caution, but endorsed continued laboratory experimentation as well as limited field trials of gene drives.

In 2017, a short paper in Science responded to the NASEM report with Guiding principles for the sponsors and supporters of gene drive research. Ill return to the new recommendations after a trip down biotech memory lane what distinguishes this blog from the clonal regurgitations of aggregated science news.

I was in graduate school in 1976 when recombinant DNA technology was under heated debate. My mentor dubbed the rising public fear of genetics and biotech the triple-headed purple monster mindset.

In February 1975, a whos who of molecular biologists had convened at Asilomar, on Californias Monterey peninsula, to explore the implications of combining genes of two species, starting with insertion of a bacterial gene into a cancer-causing virus.

The 150 scientists discussed fail-safe measures to control recombinant organisms. The Asilomar conference begat guidelines for physical containment via specialized hoods and airflow systems and biological containment to weaken organisms so that they couldnt survive outside the lab.

Despite initial concerns, recombinant DNA technology turned out to be safer than expected, and it spread to industry fast and in diverse ways. A handful of important drugs, starting with human insulin, became safer and more abundant thanks to recombinant DNA techniques. In the agricultural arena, weve been eating GMO foods for decades, although the containment hasnt exactly worked, as the example of canolagrowing along the roadways of North Dakota illustrates.

In 1985geneticists met again to assess the safety, feasibility, and value of another huge project: sequencing the human genome. I doubt any of them could have foreseen a time when we would carry our genome sequences on our smartphones.

Back then, researchers packed a room at the Cold Spring Harbor Laboratory on New Yorks Long Island. At first those against outnumbered those for 5:1, ticking off their fears: shifting research from inquiry-based experimentation to data dumps, comparing the sequencing effort to climbing Mt. Everest just because its there, and diverting funds to fight HIV/AIDs. Finally, the National Academy of Sciences jumped in to debate both sides, and in 1988, Congress authorized the National Institutes of Health (NIH) and the Department of Energy to start sequencing. Foreshadowing of gene drives?

On the reproductive front, the first test-tube baby, Louise Joy Brown, was discussed as if she were a space alien until her ordinariness became apparent, and today more than 5 million folkshave been born beginning with in vitro fertilization. Similarly, one of the first families to speak to the media about their use of preimplantation genetic diagnosis (PGD) to select an embryo who would one day provide stem cells to save his sister was vilified PGD is now a common adjunctto IVF to select the healthiest embryos.

But a gene drive doesnt provide information, drugs, improved cabbages, or babies. It has the potential to tilt the biosphere.

When the inventors of a new biotechnology pull a 180 on applications of their brainchild, its time to take notice. Thats what Kevin Esvelt from MIT and Neil Gemmell from the University of Otago, Dunedin, New Zealand, did in their Perspective in the November 16, 2017 issue of PLOS Biology,Conservation demands safe gene drive. They shout out a warning.

Back in 2014, Esvelt and his colleagues suggested using self-propagating CRISPR-based drive systems for conservation.They also discussed variations on the theme, including a daisy drive systemthat sets up a series of interventions, like a series of locks on a bank vault, and the trojan femaletechnique that sneaks male infertility mutations into mitochondrial DNA.

Second thoughts about deploying gene drives were perhaps already lurking in the minds of people familiar with the nature of DNA, as Jurassic Parks mathematician intuited. DNA changes! Thats why its the genetic materialand why the idea that we arent still evolving is absurd.

A gene swapped into a rat or a possums genome to squelch fertility can change. Such spontaneous mutation happens because of the nature of the DNA molecule. Each of the 4 types of DNA bases exists, when unlinked, fleetingly, in a slightly alternate form. If a DNA replication fork should happen down the old double helix and catch a clinging base in its rare form, a base pair can be replaced with a different one creating a new allele. Its simply the chemistry of life.

A gene drive also assumes that one allele is predominant in a population, and that isnt necessarily the case. What if the harnessed repair mechanism lassos another variant of that gene, a rarer one? Different outcome.

The inherent changeability of DNA alerted the scientists at Asilomar and Cold Spring Harbor. We can never predict all risks, about anything, and surprises have consequences. Who would have thought wed all have to haul off our boots when checking in at the airport thanks to a lone shoe bomber?

DNA also flits from cell to cell, aboard elements called transposons or, more colorfully, jumping genes. Thats how bacteria share sets of antibiotic resistance genes. What if a CRISPR gene drive harpoons something other than its intended target? Goodbye beloved kiwi birds rather than the weasels that eat their eggs? What if a targeted species hitches a ride to other islands and continents before it eliminates the local population and extinguishes itself? Drs. Esvelt and Gemmell write.

The bottom line: gene drives may create the equivalent of the very thing they are being deployed to fight: invasive species. Write Drs. Esvelt and Gemmell of their former approval of gene drives for conservation, We now believe that inclusion was a mistake: such drive systems lack control mechanisms and are consequently highly invasive.

And so also in November of 2017, Dr. Esvelt, with Charleston Noble, Ben Adlam, George Church, and Martin Nowak from Harvard, published Current CRISPR gene drive systems are likely to be highly invasive in wild populations in bioRxiv. Their paper warns against even limited field tests because of mitigating factors, including scenarios as yet unimagined. They did a mathematical analysis to counter recent reports that downplayed the potential ecological danger of a gene drive by claiming that natural resistances will emerge to block the spread to untargeted wild populations. Sound familiar? Contrary to the National Academy report on gene drive, our results suggest that standard drive systems should not be developed nor field-tested in regions harboring the host organism, they conclude.

The guiding principles for the sponsors and supporters of gene drive research published in todays Science, from Claudia Emerson, Stephanie James, Katherine Littler, and Filippo Randazzo, are dj vu all over again for those of us who recall Asilomar circa 1975. Perhaps the principles are attempting to prevent the public outcry at town hall meetings and destruction of some GM crops (most notablyice minus bacteria on plants)that accompanied the entry and acceptance of recombinant organisms.

According to the principles, gene drive experiments should

have goals of social value and the public good take biosafety measures, comply with regulations, and conduct ecological risk assessment have transparency and accountability, with sharing of data engage the public

Dr. Emerson and her colleagues make a good case for the need to find new ways to limit the spread of vector-borne infectious diseases like malaria and zika. Lets hope that gene drive technology goes the successful way of recombinant DNA technology and not the way of GMO escapees in agriculture or in the hands of bioterrorists.

Lets listen to Dr. Malcolm.

[Editors note: Kevin Esvelt of MIT commented on this article on PLOS Blogs. He wrote:

Respectfully, this somewhat mischaracterizes our point.

We think it unwise to build gene drive systems capable of spreading indefinitely beyond the target population.

Because standard self-propagating gene drive systems can spread indefinitely, we think they should only be developed and used for a handful of applications such as malaria eradication, for which the target population includes every Anopheles gambiae s.l. mosquito in Africa.

In contrast, we feel that self-propagating gene drive should not be used for invasive species control because there is always a native population that could be affected.

Instead, we should focus on developing locally-confined drive systems that cannot spread indefinitely. Local drive systems could enable each community to make decisions about its own environment without necessarily affecting people far away. There are several forms that have been modeled or are under development, including Trojan female, killer-rescue, daisy drive, and threshold drive, and hopefully still better ones will be invented.

A final note: there is essentially no risk that transposons, a natural and nearly ubiquitous form of gene drive, will cause a CRISPR-based drive system to spread in another species. The reason is that CRISPR is highly specific and the target DNA sequences would not be present in the genome, so the system would not function exactly the same way that laboratory genome editing fails when there is a strain-specific mutation in the CRISPR-targeted sequence.

Life usually does find a way eventually; the question is how long it will take. We have a remarkable opportunity to address many serious ecological problems using natures own language. With care, humility, and collective scrutiny as obtained through open research and broadly inclusive societal discussions we have a chance to do so wisely. Sometimes, that means walking away from an exciting idea.]

Ricki Lewis is the GLPs senior contributing writer focusing on gene therapy and gene editing. She has a PhD in genetics and is a genetic counselor, science writer and author of The Forever Fix: Gene Therapy and the Boy Who Saved It, the only popular book about gene therapy. BIO. Follow her at her website or Twitter @rickilewis

A version of this article previously appeared on the GLP on December 7, 2017and was originally published on PLOS Blogs website as An Argument Against Gene Drives to Extinguish New Zealand Mammals: Life Finds a Way.

Link:
The risks of using gene drives to get rid of 'pesky species' - Genetic Literacy Project

Read More...

Promising Clinical Activity for RT Plus ICIs in Locally Advanced Head and Neck Cancers – Cancer Therapy Advisor

March 13th, 2020 9:47 am

Promising results were observed in a small, single-arm, phase 2 studyevaluating the efficacy and safety of the programmed cell death-1 (PD-1)inhibitor, pembrolizumab, plus radiation therapy (RT) in patients with locallyadvanced head and neck cancers who were ineligible to receive cisplatin-basedchemoradiation therapy. These findings were presented during the 2020Multidisciplinary Head and Neck Cancers Symposium in Scottsdale, Arizona.

Cisplatin-based chemoradiation therapyis considered a standard of care for the treatment of locally advanced squamouscell carcinoma of the head and neck (LA-HNSCC), with cisplatin acting as both achemotherapeutic agent and a sensitizer to ionizing radiation. However, it isnot uncommon for patients to have contraindications to the receipt of cisplatintherapy, thereby necessitating selection of another radiosensitizer forconcomitant use with RT.

The choice of pembrolizumab as asubstitute for cisplatin in the setting of LA-HNSCC was based, in part, onprevious studies showing that radiation elicitsand promotes tumor-directed immune-stimulation, which may potentiate antiPD-1therapy, the study authors commented.

None of the 29 adult patients enrolled in this study (ClinicalTrials.gov Identifier: NCT02609503) had undergone prior curative treatment for LA-HNSCC, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 was a study inclusion criterion. Pembrolizumab was administered concurrently with RT every 3 weeks for 3 cycles followed by 3 cycles of pembrolizumab. The primary study endpoint was progression-free survival (PFS), with overall survival (OS) and safety included as secondary study endpoints.

Twenty patients hadcancers of the tongue or tonsil, with a variety of other sites of disease,including supraglottic larynx and hypopharynx, present in the remaining patients.Nonmetastatic stage III or IV disease was present in approximately three-quartersof study patients. Reasons for ineligibility to receive cisplatin includedotopathology (69.0%), nephropathy (20.7%), and neuropathy (6.9%).

One-yearrates of PFS and OS for the overall study population were 76% and 86%,respectively. Furthermore, at a median follow-up of 21 months, the median PFShad not been reached and exceeded the hypothesized median PFS of 16 months,leading study authors to conclude that this approach deserves evaluation in arandomized trial.

Whilerespective 1-year PFS and OS rates were 88% and 94% for patients with p16/humanpapilloma virus (HPV)-positive cancers of the oropharynx, the correspondingrates were 58% and 75% for those with other type of LA-HNSCC.

Although the presence of programmed celldeath-ligand 1 (PD-L1)positive disease was not found to be associated withlikelihood of disease progression, the relative percentages of specific B-cellpopulations, such as a higher percentage of baseline naive B-cells and a lowerpercentage of marginal zone B cells, were associated with an increased risk ofprogressive disease.

Toxicitiesfrequently associated with administration of RT were observed, although grade 3or grade 4 lymphopenia was observed in over half of the study patients.

In their concluding remarks, the study authors stated that concurrent pembrolizumab and radiotherapy has demonstrated promising PFS and OS in LA-HNSCC, regardless of p16 status or anatomic location, with a favorable toxicity profile.

Disclosure: Some of the authors of theabstract disclosed financial relationships with pharmaceutical companies,medical device companies, and/or health-related companies. For a full list ofdisclosures, please refer to the abstract.

Reference

Weiss J, Vincent B, Deal A, et al. Progression-free survival, overall survival and immunophenotyping outcomes for patients with stage III-IV head and neck cancer and cisplatin contraindication treated immunophenotyping outcomes for patients with stage III-IV head and neck cancer and cisplatin contraindication treated with definitive radiotherapy plus pembrolizumab. Presented at: Multidisciplinary Head and Neck Cancers Symposium; February 27-29, 2020; Scottsdale, AZ. Abstract LBA1.

See original here:
Promising Clinical Activity for RT Plus ICIs in Locally Advanced Head and Neck Cancers - Cancer Therapy Advisor

Read More...

Medicine is getting to grips with individuality – The Economist

March 13th, 2020 9:46 am

Mar 12th 2020

NEENA NIZAR is 42 years old, a professor of business studies and just 122cm tall. The ends of her bones are soft and pliable: on an x-ray they look frayed, like old paintbrushes. During her childhood and adolescence in Dubai she was operated on 30 times. The source of her problem remained a mystery. In 2010, after three decades of wondering, she finally received a diagnosis: Jansens Metaphyseal Chondrodysplasia, a condition first recognised in the 1930s. Her problems stem from a broken copy of just one of her 20,000 genes.

Dr Nizar is in some ways very unusual. Fewer than one in 200m people have the mutation to the PTH1R gene that causes Jansens disease. In other ways she is like everyone else. Although few people have a defect as debilitating, everyones health, and ill-health, is tied to the contents of their genomes. All genomes contain arrangements of genes that make psychological disorders, cancers, dementias or circulatory diseases either more of a problem or less of one. Everyone has genes that make them better or worse at metabolising drugs, more or less likely to benefit from specific forms of exercise, better able to digest some foods than others.

The same arrangement will never be seen twice. Though for identical twins the differences are the height of subtlety, each of the 7.5bn human genomes sharing the planet is unique. That irreducible diversity represents a challenge to many of the 20th centurys greatest medical advances, which were based on a one-size-fits-all approach. Personalising medicine is an enticing opportunity for improvement.

Good doctors have always treated their patients as individuals. In the 20th century blood tests, X-rays, body scans and other diagnostic tools made the specifics of each patients particular problems ever more visible. A spectacular reduction in the cost of reading, or sequencing, the DNA bases that make up human genetic information is adding a new level of individuality. It is now possible to inspect genetic differences with an ease previously unimaginable, and thus to know something about propensities to disease well before any symptoms show up.

Nobody knows exactly how many human genomes have been fully sequenced, and different sequencing procedures read the genome to different degreesthere are quick skims and painstaking philological studies. But the number is in the millions (see chart). By the 2030s genome sequencing is likely to be as routine in some places as taking a pin-prick of blood from a babys heel is todayit may even be part of the same procedure. Genome science is becoming a matter of practical medicine. New therapies that make it possible to adjust or edit this genetic inheritance are coming to market.

This flood of data is allowing medicine to become more precise and more personalin many ways, the p-words are two sides of the same coin. Previously recognised genetic diseases, such as Jansens, have been traced to specific genes and can be connected to defects in the proteins they create (almost all genes describe proteins, and proteins do almost all the bodys chemical work). Most of these diseases are rare, in that they typically affect no more than one person in 2,000 in the general population. But with over 6,000 such rare diseases now recognised, this means they are common in the aggregate. In Britain one in 17 people can expect to suffer from a rare disease at some point.

Studies of genetic diseases are not just a worthwhile end in themselves. Understanding what goes wrong when a specific protein is out of whack can reveal basic information about the bodys workings that may be helpful for treating other ailments. And the growing understanding of how large sets of genes may contribute to disease is making it possible to pick out the patients most at risk from common diseases like diabetes, heart conditions and cancer. That will help doctors personalise their interventions. In theory, the rise in access to personal genetic information allows individuals to better calculate these risks and to take pre-emptive action. In practice, so far, few people seem to do so.

Genomics is not the only source of new personal-health data. Just as all genomes are unique, so are the lives that all those genome-carriers lead. The increase in other forms of data about individuals, whether in other molecular information from medical tests, electronic health records, or digital data recorded by cheap, ubiquitous sensors, makes what goes on in those lives ever easier to capture. The rise of artificial intelligence and cloud computing is making it possible to analyse this torrent of data.

Almost 4bn people carry smartphones that can monitor physical activity. It is estimated that by 2022, 1bn people may be wearing a device such as a smart watch that can monitor their heart rate. The data-driven giants and startups of Silicon Valley are eager to help. Consumers no longer need to go to a doctor for a genome scan or to engage with a wide range of opinion about what ails them, or will ail them. The pharmaceutical companies used to dominating medicine are working hard to keep up. So are doctors, hospitals and health systems.

These possibilities are not without their risks, drawbacks and potential for disappointment. The ability to pinpoint what has gone wrong in a genome does not make it easy to fix. Moreover, as technology helps people monitor themselves in more ways, the number of the worried well will swell and unnecessary care will grow. Many could be done real harm by an algorithmic mirage.

Beyond this, the move fast and break things attitude common in tech companies sits uneasily with first, do no harm. And the untrammelled, unsupervised and unaccountable means of data accrual seen in other industries which have undergone digital transformations sits uneasily with concerns over medical privacy.

The very nature of medicine, though, means that the future will not just be a matter of business goals, research cultures, technological prowess, wise practice and well-crafted regulations. It will also be subject to the driving interests of particular individuals in ways never seen before. The development of gene-based medical research in Britain was deeply affected by the short, difficult life of Ivan Cameron, whose father, David Cameron, did much to build up genomics when he was prime minister. Many of those working in this field are impelled by personal loss.

And then there are those whose interests stem from the way in which their own genes shape their lives. People like Dr Nizar, who is now crafting a new research agenda for Jansens disease. There may only be 30 people in the world who suffer from it. But two of them are her children, and they are in ceaseless pain. Science knows why; medicine cannot yet help. We believe in miracles, she says. She is also working to make one happen.

This article appeared in the Technology Quarterly section of the print edition under the headline "Populations of one"

Excerpt from:
Medicine is getting to grips with individuality - The Economist

Read More...

Page 634«..1020..633634635636..640650..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick