header logo image


Page 58«..1020..57585960..7080..»

BioSyent Announces Extension of RepaGyn® and Proktis-M® Agreement

April 16th, 2024 2:43 am

MISSISSAUGA, Ontario, April 15, 2024 (GLOBE NEWSWIRE) -- BioSyent Inc. (“BioSyent”, “the Company”, TSX Venture: RX) is pleased to announce that its wholly-owned subsidiary, BioSyent Pharma Inc. (“BioSyent Pharma”), has extended its Exclusive License and Distribution Agreement with its European partner for the RepaGyn® and Proktis-M® products, extending BioSyent Pharma’s exclusive Canadian rights to these products until 2032.

See more here:
BioSyent Announces Extension of RepaGyn® and Proktis-M® Agreement

Read More...

Aileron Therapeutics Reports Fourth Quarter and Full Year 2023 Financial Results and Provides Business Update

April 16th, 2024 2:43 am

Topline results from Phase 1b study of LTI-03, a novel Caveolin-1-related peptide in development for the treatment of idiopathic pulmonary fibrosis, expected to be reported in the third quarter of 2024

See the article here:
Aileron Therapeutics Reports Fourth Quarter and Full Year 2023 Financial Results and Provides Business Update

Read More...

TLX101-CDx (Pixclara™) Granted FDA Fast Track Designation

April 16th, 2024 2:43 am

MELBOURNE, Australia, April 16, 2024 (GLOBE NEWSWIRE) -- Telix Pharmaceuticals Limited (ASX: TLX, Telix, the Company) today announces that the United States (U.S.) Food and Drug Administration (FDA) has granted Fast Track designation1 for the Company’s investigational glioma imaging product, TLX101-CDx (Pixclara™2, 18F-floretyrosine or 18F-FET).

Excerpt from:
TLX101-CDx (Pixclara™) Granted FDA Fast Track Designation

Read More...

argenx Data Highlight Evidence that VYVGART and VYVGART Hytrulo Drive Transformative Outcomes for Patients with Debilitating Autoimmune Disease

April 16th, 2024 2:43 am

ADHERE data show VYVGART® Hytrulo has potential to be first advancement for CIDP patients in 30 years

More here:
argenx Data Highlight Evidence that VYVGART and VYVGART Hytrulo Drive Transformative Outcomes for Patients with Debilitating Autoimmune Disease

Read More...

Vivoryon Therapeutics N.V. to Report Full Year 2023 Financial Results and Operational Progress on April 24, 2024

April 16th, 2024 2:43 am

Vivoryon Therapeutics N.V. to Report Full Year 2023 Financial Results and Operational Progress on April 24, 2024

Here is the original post:
Vivoryon Therapeutics N.V. to Report Full Year 2023 Financial Results and Operational Progress on April 24, 2024

Read More...

Faron Confirms Plans for the Coming Months Under New Leadership

April 16th, 2024 2:43 am

TURKU, Finland and BOSTON, April 16, 2024 (GLOBE NEWSWIRE) -- Faron Pharmaceuticals Ltd. (“Faron” or the “Company”) (AIM: FARN, First North: FARON), a clinical-stage biopharmaceutical company pursuing a CLEVER approach to reprogramming myeloid cells to activate anti-tumor immunity in hematological and solid tumor microenvironments, today announces ongoing plans and activities for the coming months following the recent announcement of the proposed appointment of Dr. Juho Jalkanen as Chief Executive Officer, effective 1 May 2024.

Read the original post:
Faron Confirms Plans for the Coming Months Under New Leadership

Read More...

Nxera Pharma Notes Successful Development Progress of Partnered Schizophrenia Candidate NBI-1117568

April 16th, 2024 2:43 am

Tokyo, Japan and Cambridge, UK, 16 April 2024 – Nxera Pharma Co., Ltd. (“Nxera” or “the Company; TSE 4565) – formerly known as Sosei Group or Sosei Heptares – has been notified by its partner Neurocrine Biosciences Inc. (“Neurocrine”; Nasdaq: NBIX) that NBI-1117568, an oral selective muscarinic M4 receptor agonist being advanced in Phase 2 clinical trials by Neurocrine for the treatment of schizophrenia and other neuropsychiatric disorders, has successfully completed a long-term preclinical toxicity program that meets US FDA requirements to allow for safe, chronic (i.e. long-term) dosing in future clinical trials. The achievement of this important safety development milestone triggers a $15 million payment to Nxera from Neurocrine.

Read the original here:
Nxera Pharma Notes Successful Development Progress of Partnered Schizophrenia Candidate NBI-1117568

Read More...

Putting Stem Cell-Based Therapies in Context | National Institutes of …

April 8th, 2024 2:50 am

November 16, 2022

Karen M. Wai, MD, Theodore Leng, MD, MS, and Jeffrey Goldberg, MD, PhD, Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA

In recent years, the potential of stem cell-based therapies to treat a wide range of medical conditions has given hope to patients in search of novel treatments or cures. At the same time, thousands of rogue clinics have sprung up across the U.S and around the world, offering stem cell-based therapies before being tested for safety and efficacy. When communicating to the public about stem cell-based therapies, it is important to put any treatment claims in context.

Stem cell-based therapies include any treatment that uses human stem cells. These cellshave the potential to develop into many different types of cells in the body. They offer a theoretically unlimited source of repair cells and/or tissues. (For more about stem cells, seehttps://stemcells.nih.gov.)

Over the past three decades, the Food and Drug Administration (FDA) has approved several stem cell-based products. These include bone marrow transplants, which have been transformational for many cancer patients, and therapies for blood and immune system disorders.1 Other approved treatments include dental uses for gum and tissue growth and in skin for burns. Since the early 2000s, stem cell-based therapies have been explored in many eye diseases, including age-related macular degeneration and glaucoma.2 Stem cell-based therapies are also being explored for neurodegenerative diseases such as stroke and Alzheimers disease, and for countless other conditions.

Over time, we expect that breakthroughs will continue with stem cell-based therapies for many conditions. However, at this time, rogue clinics, driven by profits, are taking advantage of patients desperate for cures and are claiming dramatic results, often exaggerated in sensational media testimonials. The clinics may mimic legitimate practices. They may extract a patients own stem cells, concentrate or modify the cells, and then re-inject them. Some manufacturers offer stem cell-based derived products, such as biologic eye drops made with placenta extract or amniotic fluid to treat dry eye. Clinics may provide misleading information and advertise their practice as running clinical trials. However, these clinics almost always work without FDA regulatory approval and outside of legitimate clinical trial approaches.

These unproven, unregulated stem cell treatments carry significant risk. The risks range from administration site reactions to dangerous adverse events. For example, injected cells can multiply into inappropriate cell types or even dangerous tumors. A 2017 report described one Florida clinic that blinded patients with stem cell eye injections.3

The Pew Charitable Trusts gathered 360 reports of adverse events related to unapproved stem cell therapies, including 20 cases that caused death.4 Further, adverse events are likely underreported because these products are not FDA approved or regulated. Many unproven stem cell-based therapies cost thousands of dollars to patients and are not covered by insurance. Further, even if patients avoid adverse events from these therapies, they may suffer consequences from delaying evidence-based treatments.

The FDA has made substantial progress toward regulation of stem cell-based therapies. In 2017, it released guidance under the 21st Century Cures Act that clarifies which stem-cell based therapies fall under FDA regulation. It also better defined how the agency will act against unsafe or unregulated products.5 As of May 2021, the FDA has more strongly enforced compliance for clinics that continue to market unproven treatments.6

Despite this increased regulation, rogue clinics are still relatively commonplace. A 2021 study estimated that there are over 2,500 U.S. clinics selling unproven stem cell treatments.7Patients at these clinics are often led to believe that treatments are either approved by the FDA, registered with the FDA, or do not require FDA approval. It is important to recognize that there are limits to the FDAs expanded reach, especially when it is targeting hundreds of clinics at once. Our clinic at Stanford recently cared for a patient who had received stem cell injections behind his eyes, where he developed tumors that ultimately ruined vision in both eyes.

Progress in stem cell science is rapidly translating to the clinic, but it is not yet the miracle answer we envision. With time, stem cell-based therapies will likely expand treatment options. People considering a stem-cell based therapy should find out if a treatment is FDA-approved or being studied under an FDA-approved clinical investigation plan. This is called an Investigational New Drug Application. Importantly, being registered with ClinicalTrials.gov does not mean that a therapy or clinical study has been authorized or reviewed by the FDA. For more information about stem cell therapies, visit http://www.closerlookatstemcells.org, a resource from the International Society for Stem Cell Research.

As we look hopefully to the future, we need greater awareness of the current limitations of stem cell therapy and the dangers posed by unregulated stem cell clinics. Strong FDA regulation and oversight are important for ensuring that stem cell-based therapies are safe and effective for patients. Accurate communication to the public, careful advocacy by physicians, and education of patients all continue to be crucial.

References:

1 U.S. Food and Drug Administration, Approved Cellular and Gene Therapy Products, Sept. 9, 2022,https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products.

2 Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, Ali RR, Young M, Xie Y, Temple S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell. 2018 Sep 6;23(3):453. doi: 10.1016/j.stem.2018.08.014. Erratum for: Cell Stem Cell. 2018 Jun 1;22(6):834-849. PMID: 30193132.

3 Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrott MB, Rosenfeld PJ, Flynn HW Jr, Goldberg JL. Vision Loss after Intravitreal Injection of Autologous "Stem Cells" for AMD. N Engl J Med. 2017 Mar 16;376(11):1047-1053. doi: 10.1056/NEJMoa1609583. PMID: 28296617; PMCID: PMC5551890.

4 The Pew Charitable Trusts, Harms Linked to Unapproved Stem Cell Interventions Highlight Need for Greater FDA Enforcement, June 1, 2021,https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2021/06/harms-linked-to-unapproved-stem-cell-interventions-highlight-need-for-greater-fda-enforcement.

5 U.S. Food and Drug Administration, FDA announces comprehensive regenerative medicine policy framework, Feb. 2, 2022,https://www.fda.gov/news-events/press-announcements/fda-announces-comprehensive-regenerative-medicine-policy-framework.

6 U.S. Food and Drug Administration, FDA Extends Enforcement Discretion Policy for Certain Regenerative Medicine Products, July 7, 2020,https://www.fda.gov/news-events/press-announcements/fda-extends-enforcement-discretion-policy-certain-regenerative-medicine-products.

7Turner L. The American stem cell sell in 2021: U.S. businesses selling unlicensed and unproven stem cell interventions. Cell Stem Cell. 2021 Nov 4;28(11):1891-1895. doi: 10.1016/j.stem.2021.10.008. PMID: 34739831.

See the original post:
Putting Stem Cell-Based Therapies in Context | National Institutes of ...

Read More...

Diverse ways regenerative medicine is advancing health care

March 29th, 2024 2:40 am

Biotherapeutics

January 13, 2021

Regenerative medicine has contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinic's Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.

"The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision," says Andre Terzic, M.D., Ph.D., director of Mayo Clinic's Center for Regenerative Medicine. "To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the body's ability to repair and restore health of an organ and importantly of the patient as a whole."

The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.

Practice advancement

A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.

"The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies," says Dr. Terzic.

New discoveries at Mayo Clinic that may shape future practice include:

The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely to respond to stem cell therapy for heart failure.

Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.

Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.

The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.

Examples of how that new regulatory environment is accelerating discoveries into regenerative care at Mayo Clinic are:

With FDA permission, Mayo Clinic performs surgery before birth to correct a congenital defect known as spina bifida. Spina bifida is a condition in which the spinal cord does not close properly. Fetal surgery at Mayo Clinic to repair the spinal cord not only closed the spine, but also restored brain structure. Clinical experience to date, published in Mayo Clinic Proceedings, concluded that fetal surgery to treat spina bifida is effective at early healing of neurological structures. Mayo continues to evaluate this regenerative procedure.

Mayo Clinic has FDA permission for investigational new drug use in regenerative surgery aimed at restoring damaged knee cartilage in a single surgical procedure. Bits of a patient's cartilage are recycled and mixed with donor mesenchymal stem cells. Mesenchymal stem cells are adult stem cells derived from sources such as fat tissue or bone marrow. Much like filling potholes in a street, the cellular mixture repairs holes within the cartilage. Mayo Clinic is treating patients with this surgery and hopes to make it available to patients more broadly within the coming year.

Mayo Clinic promotes responsible adoption of validated procedures. An example of this ongoing effort is a regenerative procedure that augments standard surgery for cancer.

Mayo Clinic orthopedic oncologists are teaming with plastic surgeons to restore muscle strength after some cancer surgeries, particularly surgery to remove soft tissue sarcoma. Advancements in microsurgery are making it possible to transfer large muscle to close a surgical wound where it functions like the muscle lost to cancer. This so-called "oncoregenerative" surgery combines free muscle transfers with pain management and lymphatic reconstruction, while preventing damaged nerves and lymph nodes that can cause pain and swelling.

Regenerative medicine know-how is advancing immunotherapy options for cancer patients, including chimeric antigen receptor-T cell therapy (CAR-T cell therapy). CAR-T cell therapy seeks to unleash the power of the immune system by genetically modifying cells, equipping them to go on search-and-destroy missions to kill cancer. These engineered cells act like a living drug, continually working within the body to cure disease.

"On-demand regenerative immunity is being built against blood cancers and is advancing how hemato-oncologists treat lymphomas and leukemias. We hope that regenerative sciences will discover and perfect ways to expand this treatment approach to solid cancers, as well," says Dr. Terzic.

Biomanufacturing and supply chain readiness

Mayo Clinic is on the cusp of validating new advanced biomanufacturing facilities where it will engineer the latest cellular, acellular and gene therapies needed for regenerative care. In doing so, Mayo is establishing its in-house supply chain, ensuring quality, and potentially saving time and resources.

Center for Regenerative Medicine has increased supply chain readiness in 2020 in these ways:

Supported by active research and development programs, Mayo Clinic is poised to test acellular healing products known as exosomes in the first clinical trials. Exosomes are extracellular vesicles that are like a delivery service moving cargo from one cell to another, with instructions for healing. It's an example of the emerging field of nanomedicine. Nanodrugs are very small structures that contain enveloped proteins and genetic materials that can be targeted to exact tissues in need of repair.

"Over the past five years, we discovered the healing potential of exosomes, established the science, and ultimately figured out how to manufacture them so that they would meet strict quality standards. Now we are ready to take the important step of introducing them in human safety trials," says Atta Behfar, M.D., Ph.D., deputy director of translation for Mayo Clinic's Center for Regenerative Medicine. "I think the evolution into nanomedicine as a regenerative tool is major milestone. Compared to more traditional living alternatives, these biological messages can be easier to store, ship, analyze and even manufacture."

Exosomes are an example of how Mayo Clinic is manufacturing new healing products that, unlike living stem cells, can be stored at room temperature on-site for immediate use in a hospital or clinic

"Technologies that can be stored at room temperature on the shelf provide the ability to introduce regenerative medicine into new areas of practice such as heart attack and stroke, where therapies need to be delivered on an emergent basis," says Dr. Behfar. "As we move forward, this type of accessibility may help to facilitate adoption of biologics-based therapies and continue to broaden our ability to offer innovative cures to patients in need."

New 3D printing capabilities at Mayo Clinic in Arizona are providing options to improve laryngeal or vocal fold function. For example, 3D printing is providing new ways to close the gap between vocal folds for people with glottic insufficiency a common but difficult-to-treat condition that causes problems with speaking, breathing and swallowing. A 3D implant is printed to fit the exact patient-specific dimensions of the vocal folds and implanted into the voicebox, where it improves voice, swallowing and breathing.

Mayo Clinic in Florida launched the CAR-T Translational Research program that aims to expand regenerative immunotherapy products beyond blood cancers, potentially to neurological and autoimmune disorders. Clinical-grade biotherapies can be manufactured on-site, which potentially will lower the cost and increase patient access to regenerative immunotherapies such as CAR-T cell therapy.

Workforce proficiency

Educating future physicians, scientists and the broader health care workforce to provide the latest, most innovative regenerative medicine technologies is a key objective of the Center for Regenerative Medicine. That strategic priority is reflected in the regenerative curricula that are integrated across each of the five schools of Mayo Clinic College of Medicine and Science.

"We are educating regenerative medicine practitioners who are grounded in scientific knowledge to responsibly translate the latest innovations into patient solutions. They are becoming a trusted source of regenerative care," says Dr. Terzic.

Advancements in training the future workforce in regenerative medicine and science include:

Mayo Clinic graduated the first students in the doctoral research training program known as the Regenerative Sciences Training Program. Established in 2017, this program combines laboratory research with training that covers the complete spectrum of discovery to translation topics.

Mayo Clinic launched one of the first-ever doctoral tracks in regenerative sciences in Mayo Clinic Graduate School of Biomedical Sciences. The curriculum will embrace a training paradigm that includes fundamental cellular and molecular science principles, and transdisciplinary education in regulatory issues, quality control, entrepreneurial pathways, data science, medical sciences, ethics and emerging technologies. Applications opened in the fall, and the first students will be admitted in fall 2021.

In recognition of the scholarly identify of regenerative medicine, Mayo Clinic elevated regenerative medicine to a field of academic rank. Implementing academic ranks paves the way for attracting a new community of dedicated physicians, scientists and engineers focused on advancing regenerative medicine.

"Regenerative medicine touches all medical, surgical, radiology and laboratory medicine specialties across Mayo Clinic. Establishing this new academic rank is like opening a new chapter in medicine. It is a key differentiator for Mayo Clinic," says Dr. Terzic.

Advancements to watch for in 2021

The opening of two major manufacturing facilities in Rochester and Jacksonville, Florida, will propel Mayo Clinic to a new realm of biomanufacturing and supply chain management of therapeutics for rare and complex medical conditions. The two facilities are cornerstones of a coordinated biomanufacturing strategy that positions Mayo Clinic to deliver first-in-the-world therapeutics produced on-site for use in research and practice. Together with industry partners, Mayo will accelerate these new regenerative products toward the market to benefit Mayo Clinic patients and others around the world.

Here are some specific examples of things to watch for:

The Center for Regenerative Medicine's advanced biomanufacturing facility is nearing completion at One Discovery Square in Rochester. The new facility is equipped with current Good Manufacturing Practices capable of producing clinical-grade regenerative therapies that are easily accessible for clinical trials and patient care. Biomanufacturing will focus on tissue engineering, cellular, acellular and gene therapy products.

Construction is complete on the Center for Regenerative Medicine's advanced biomanufacturing facility in the new Discovery and Innovation Building at Mayo Clinic in Florida. When fully operational, it will deploy current Good Manufacturing Practices facilities where new patient-ready immunotherapies can be manufactured under strict sterile quality control measures that meet FDA guidelines. That could eventually increase patient access to CAR-T cell therapy and other regenerative immunotherapies through clinical trials. On site manufacturing will reduce cost and broaden the access for this curative technology to Mayo patients suffering from lymphoma.

Mayo Clinic will conduct first-in-human safety and dosing studies of exosomes noncellular structures that deliver healing to damaged cells and tissues. After discovering, scaling and manufacturing exosomes, Mayo will evaluate them in the first human trials for wound healing and tissue repair after a heart attack.

Mayo Clinic is on track to launch one of the first-ever living donor cartilage banks. Mayo Clinic orthopedics and sports medicine surgeons, in collaboration with the Center for Regenerative Medicine, have validated methods to collect and store living cartilage tissue that would otherwise be discarded after knee replacement surgery. The donor cartilage bank will dramatically reduce wait times for this valuable tissue used to repair knee damage in younger patients with cartilage and bone damage in their knee.

Regenerative procedures may trigger healing of diseased tissues in some patients, but those therapies may not work for others. One of the key riddles regenerative medicine research seeks to crack is how to target patients who are most likely to benefit from restorative therapies.

"With the assimilation of data sets, we hope to decode the attributes that define regenerative responsiveness. That is the holy grail of regenerative medicine right now," says Dr. Terzic.

As 2020 wraps up and 2021 begins, Mayo Clinic seeks to further its understanding of regenerative medicine, and make new approved therapies accessible and affordable for all patients, particularly those with unmet needs and those in underserved communities.

Dr. Terzic is the Michael S. and Mary Sue Shannon Director, Mayo Clinic Center for Regenerative Medicine, and Marriott Family Professor in Cardiovascular Diseases Research.

####

Go here to see the original:
Diverse ways regenerative medicine is advancing health care

Read More...

Science Saturday: A year of new directions and advancements for …

March 29th, 2024 2:40 am

Biotherapeutics

January 29, 2022

2021 has been a year of significant innovation across the field of regenerative medicine at Mayo Clinic. Important advancements in preclinical research, as well as new regenerative treatments for patients, further are solidifying Mayo Clinics reputation as a world-class leader in regenerative medicine.

Regenerative medicine is still a relatively new field of practice, representing a paradigm shift from the traditional focus of health care of fighting disease to rebuilding health. Mayo Clinic's Center for Regenerative Medicine is leveraging its unique expertise, resources and capabilities to create the worlds most advanced and innovative ecosystem for the development, manufacture and delivery of novel regenerative biotherapeutics.

New directions in biomanufacturing

Mayo Clinic is focused on a newly refreshed strategy in regenerative medicine this year one that emphasizes an enhanced capability for biomanufacturing, with technology platforms supporting the development of new therapeutics known as biologics. Biologics are a new type of "drug" derived from living organisms that have the potential for targeted healing with fewer side effects. Many of these next-generation therapeutics can be scaled and mass produced for patients at Mayo Clinic and around the world. The Center for Regenerative Medicine is leading Mayos enterprise biomanufacturing strategy in close collaboration with Research, Practice and Education leaders and key stakeholders, including theCancer Center,Center for Individualized Medicine,Department of Laboratory Medicine and Pathology,Mayo Clinic Ventures, Mayo ClinicPlatform,Center for Digital Healthand Mayo ClinicInternational.

In August, Mayo welcomed Julie Allickson, Ph.D., as the Michael S. and Mary Sue Shannon Family Director of Mayo Clinic's Center for Regenerative Medicine and the Otto Bremer Trust director of Biomanufacturing and Product Development in the Center for Regenerative Medicine, and she will lead the execution of Mayos biomanufacturing strategy. Dr. Allickson joined Mayo Clinic from the Institute for Regenerative Medicine at Wake Forest School of Medicine in North Carolina.

"This is an exciting time in regenerative medicine, a new era with great promise for the impact that these new therapies and procedures can have for patients," says Dr. Allickson. "I am looking forward to working collaboratively with colleagues across the enterprise to position Mayo Clinic as the global leader in scientific discovery and clinical practice advancement in regenerative medicine."

Significant investments in biomanufacturing facilities continued this year with the buildout of current Good Manufacturing Practices facilities on all three Mayo campuses.These facilities meet strict quality controls and regulatory guidelines that are required for manufacturing new biologics. The long-term goal is to have these new types of healing solutions on-site where they can be used immediately for patients with unmet needs. Mayo will focus on biomanufacturing across seven prioritized technology platforms:

Research that advances the practice

From helping establish common terminology for regenerative medicine to discovering new ways of manufacturing cardiopoietic stem cells with heart healing potential for select patients with advanced heart failure, Mayo Clinic physicians and scientists have made significant advancements in the discovery-translation-application continuum in regenerative medicine. Examples include:

Difficult-to-treat, chronic wounds healed with normal scar-free skin in preclinical models after treatment with an acellular product discovered at Mayo Clinic. Derived from platelets, the purified exosomal product, known as PEP, was used to deliver healing messages into cells of animal models of ischemic wounds. In a groundbreaking study published in Theranostics, the Mayo Clinic research team documented restoration of skin integrity, hair follicles, sweat glands, skin oils and normal hydration.

A Mayo Clinic collaborative study documented a remote-controlled bronchoscope functioned like a GPS system, tracking hard-to-find lung masses and accurately biopsying them. This multisite research, published in Annals of Thoracic Surgery, lays the foundation for precisely finding early stage cancer when it is most treatable, and targeting it with regenerative biotherapeutics needed to stimulate healing.

"In the past, we didn't have a reliable way of reaching these nodules in the lungs from within the airway. This is a very small catheter that gets almost anywhere, and is able to access and biopsy lung nodules," says Janani Reisenauer, M.D., first author on the study and a Mayo Clinic thoracic surgeon. "It's very similar to driving a car and having your normal street view with the aid of the GPS in your car telling you in real-time where to turn right and left to arrive at your destination."

Mayo Clinic researchers biomanufactured chimeric antigen receptor-T cell therapy (CAR-T cell therapy) in a new way to track the cells' cancer fighting journey and predict toxic side effects. This Mayo Clinic breakthrough, published in Cancer Immunology Research, could make this immunotherapy easier for patients to tolerate. Perhaps more importantly, it could unravel the mystery of how to expand CAR-T cell therapy to more types of cancers.

"This new technology allows us to image CAR-T cells after they are given to patients and study their fate," says Saad Kenderian, M.B., Ch.B., a Mayo Clinic hematologist and researcher, and lead author. "This allows us to investigate strategies that could improve CAR-T cell trafficking and penetration into the tumor cells, and thus canimprove tumor killing."

Mayo Clinic is applying regenerative medicine to cosmetic services aimed at resetting the body's clock to a time of more youthful function and appearance. Regenerative procedures, such as platelet-rich plasma to rejuvenate aging skin and stimulate hair growth for people with alopecia or baldness, are offered on all three campuses. Many regenerative services go beyond cosmetics to facial reconstruction after disease, cancer or traumatic injury. For example, The Multidisciplinary Cosmetic Center at Mayo Clinic in Arizona pairs general and facial plastic surgery with dermatologists, gynecologists, vascular surgeons, urologists and aestheticists to deliver services grounded in scientific evidence and the latest regenerative technologies.

Training the emerging regenerative sciences workforce

A well-trained regenerative science workforce is needed to apply the newest discoveries to clinical care. Mayo Clinic has made significant strides this past year in educating future physicians, scientists and allied health staff in regenerative medicine.

Mayo Clinic achieved an important milestone when it admitted its first five students as inaugural scholars in the newly established Regenerative Sciences Track within the Ph.D. program in the Mayo Clinic Graduate School of Biomedical Sciences. The new doctoral program that began this fall fulfills Mayo's objective of providing first-of-its-kind education in the evolving field of regenerative science and medicine

Taught by regenerative science and medicine experts, the curriculum embraces a training paradigm that includes fundamental cellular and molecular science principles, and transdisciplinary education in regulatory issues, quality control, bio-business and entrepreneurial pathways, data science, medical sciences, ethics, and emerging technologies.

Throughout the four-day symposium, experts at Mayo Clinic and around the world shared regenerative medicine applications to aging, musculoskeletal conditions, lung diseases, organ transplantation and cancer. The symposium featured presentations on promising research, navigating regulatory pathways and seeking opportunities for commercialization.

Peter Marks, M.D., Ph.D.,director of the Food and Drug Administration (FDA) Center for Biologics Evaluation made a virtual presentation where he pledged FDA support for regenerative technologies that offer new solutions for unmet patient needs.

Another promising year in 2022

Mayo Clinic in Arizona is among the first to offer larynx transplantation and is currently evaluating patients for this landmark surgery. In addition, Center for Regenerative Medicine continues to support initiatives, such as expanding of CAR-T therapy and making organ transplantation more available and successful for patients.

New advanced biomanufacturing facilities will be operational in One Discovery Square in Rochester and in the Discovery & Innovation Building in Florida. Biomanufacturing expansion on the Phoenix campus will be strategically assessed as the buildout of Arizona "Bold. Forward" continues. The Center for Regenerative Medicine continues to spur innovation to rapidly advance novel regenerative therapies into the clinic to support Mayo Clinic's 2030 Vision to cure, connect and transform care.

###

Link:
Science Saturday: A year of new directions and advancements for ...

Read More...

Veterinary Medicine Overview – CareerExplorer

March 29th, 2024 2:39 am

ZoologySome four-year bachelors degree programs in zoology allow for specialization and others are more generalized. Core courses for most programs are general biology, chemistry, physics, and mathematics. The biology requirement is sometimes divided into courses in molecular and organismal biology. If specialization is permitted or required, options are marine biology, ecology, genetics, animal behaviour, or zoo and aquarium science. By taking certain elective courses students may be permitted to create a custom-made specialization in the subject.

Bachelors programs may offer both a Bachelor of Arts (BA) and a Bachelor of Science (BSc). The BSc is the preferred degree for those considering earning a masters and/or Ph.D.

Marine BiologyFour-year undergraduate degree programs in marine biology are comprised of required and elective courses. Mandatory coursework includes general biology, cell biology, ecology, and evolution. Electives, which allow students to concentrate on particular areas of interest, might include mammal biology, vertebrae zoology, tropical ecosystems, fish ecology, aquaculture, biotechnology, environmental biology, molecular biology, toxicology, and species-specific biology.

Some universities do not offer a major in marine biology. It is therefore quite common for individuals pursuing the field to major in general biology or zoology.

Animal SciencesA four-year Bachelors Degree in Animal Sciences is useful for managerial jobs in farm-related or ranch-related businesses, such as farming, ranching, agricultural inspection, farm credit institutions, or companies that make or sell feed, fertilizer, seed, and farm equipment. Further education is needed for advanced research topics such as genetics, animal reproduction, and biotechnology, among others.

Animal Behavioral SciencesA four-year Bachelors Degree in Animal Behavioral Sciences is being offered at more and more universities. This is an interdisciplinary major that combines psychology and biology. A growing number of animal behaviorists work in government laboratories or in private businesses. These jobs involve health-related research, such as a drug company conducting research on the behavioral effects of new drugs on animals or examining the links between animal behavior and disease.

Read the original post:
Veterinary Medicine Overview - CareerExplorer

Read More...

What does a veterinarian do? – CareerExplorer

March 29th, 2024 2:39 am

What is a Veterinarian?

A veterinarian specializes in the diagnosis, treatment, and prevention of illnesses and injuries in animals. Veterinarians provide medical care to a wide range of animals, including pets, livestock, zoo animals, and wildlife. They perform physical examinations, conduct diagnostic tests such as bloodwork and imaging, prescribe medications, administer vaccines, and perform surgical procedures to treat injuries or illnesses. Veterinarians also offer preventive care services, such as vaccinations, parasite control, and dental care, to help animals maintain optimal health and well-being.

In addition to clinical practice, veterinarians may also work in research, academia, public health, or regulatory agencies, contributing to advancements in veterinary medicine, animal welfare, and public health initiatives.

The workplace of a veterinarian can vary depending on their specialization and the nature of their practice. Many veterinarians work in clinical settings such as animal hospitals, veterinary clinics, or private practices, where they provide medical care to companion animals, livestock, or exotic pets. In these environments, veterinarians typically interact directly with clients and patients, performing physical examinations, diagnosing illnesses or injuries, prescribing medications, and conducting surgical procedures as needed. They may also collaborate with veterinary technicians, assistants, and other staff members to deliver comprehensive care and support services to animals and their owners.

Some veterinarians specialize in specific areas of veterinary medicine, such as equine medicine, exotic animal medicine, or public health, which may influence their workplace environment. Equine veterinarians, for example, may spend a significant amount of time traveling to farms, stables, or racetracks to provide medical care to horses. Exotic animal veterinarians may work in zoos, aquariums, or wildlife rehabilitation centers, caring for a diverse range of species in specialized facilities. Public health veterinarians may work for government agencies, research institutions, or international organizations, focusing on disease surveillance, food safety, or environmental health initiatives.

Link:
What does a veterinarian do? - CareerExplorer

Read More...

6 in 10 pet owners surveyed in the UK, Austria and Denmark believe their pets should have access to the same healthcare treatment options as humans -…

March 29th, 2024 2:39 am

6 in 10 pet owners surveyed in the UK, Austria and Denmark believe their pets should have access to the same healthcare treatment options as humans  Vet Candy

Read the original post:
6 in 10 pet owners surveyed in the UK, Austria and Denmark believe their pets should have access to the same healthcare treatment options as humans -...

Read More...

He took up running rather than take diabetes medication. It worked – South China Morning Post

March 18th, 2024 2:43 am

He took up running rather than take diabetes medication. It worked  South China Morning Post

See the original post here:
He took up running rather than take diabetes medication. It worked - South China Morning Post

Read More...

Overview of the Immune System – The Merck Manuals

March 18th, 2024 2:41 am

The immune system has many components:

Antigens Innate Immunity are any substance that the immune system can recognize and that can thus stimulate an immune response.

Cells are the smallest unit of a living organism, composed of a nucleus and cytoplasm surrounded by a membrane.

Chemotaxis is the process of by which a chemical substance attracts cells to a particular site.

Helper T cells are white blood cells that help B cells produce antibodies against foreign antigens, help killer T cells become active, and stimulate macrophages, enabling them to ingest infected or abnormal cells more efficiently.

Histocompatibility (literally, compatibility of tissue) is determined by human leukocyte antigens (self-identification molecules). Histocompatibility is used to determine whether a transplanted tissue or organ will be accepted by the recipient.

Human leukocyte antigens (HLA) are a group of identification molecules located on the surface of all cells in a combination that is almost unique for each person, thereby enabling the body to distinguish self from nonself. This group of identification molecules is also called the major histocompatibility complex.

An immune complex is an antibody attached to an antigen.

An immune response is the reaction of the immune system to an antigen.

Immunoglobulin is another name for antibody.

Interleukin is a type of messenger (cytokine) secreted by some white blood cells to affect other white blood cells.

Killer (cytotoxic) T cells are T cells that attach to infected cells and cancer cells and kill them.

Leukocyte is another name for a white blood cell, such as a monocyte, a neutrophil, an eosinophil, a basophil, or a lymphocyte (a B cell or T cell).

Major histocompatibility complex (MHC) is a synonym for human leukocyte antigens.

Mast cells are cells in tissues that release histamine and other substances involved in inflammatory and allergic reactions.

A molecule is a group of atoms chemically combined to form a unique substance.

Natural killer cells are a type of white blood cell that can recognize and kill abnormal cells, such as certain infected cells and cancer cells, without having to first learn that the cells are abnormal.

Phagocytes are a type of cell that ingests and kills or destroys invading microorganisms, other cells, and cell fragments. Phagocytes include neutrophils and macrophages.

Phagocytosis is the process of a cell engulfing and ingesting an invading microorganism, another cell, or a cell fragment.

A receptor is a molecule on a cells surface or inside the cell that can identify specific molecules, which fit precisely in itas a key fits in its lock.

Regulatory (suppressor) T cells are white blood cells that help end an immune response.

See original here:
Overview of the Immune System - The Merck Manuals

Read More...

Clene Announces Peer-Reviewed Publication Characterizing the Protein Corona of the Investigational Neurodegenerative Disease Drug, CNM-Au8®

March 18th, 2024 2:40 am

SALT LAKE CITY, March 15, 2024 (GLOBE NEWSWIRE) -- Clene Inc. (Nasdaq: CLNN) (along with its subsidiaries, “Clene”) and its wholly owned subsidiary Clene Nanomedicine Inc., a clinical-stage biopharmaceutical company focused on improving mitochondrial health and protecting neuronal function to treat neurodegenerative diseases, including (ALS) and multiple sclerosis (MS), today reported the publication of “Protein Corona Composition of Gold Nanocatalysts” in the journal ACS Pharmacology & Translational Science, a journal of the American Chemical Society that publishes innovative and impactful research with translational relevance across a broad spectrum of biological sciences.

The rest is here:
Clene Announces Peer-Reviewed Publication Characterizing the Protein Corona of the Investigational Neurodegenerative Disease Drug, CNM-Au8®

Read More...

New Positive Data Presented on Briquilimab Conditioning in Patients with Fanconi Anemia

March 18th, 2024 2:40 am

REDWOOD CITY, Calif., March 15, 2024 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. (Nasdaq: JSPR) (Jasper), a biotechnology company focused on development of briquilimab, a novel antibody therapy targeting c-Kit (CD117) to address mast cell driven diseases such as chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), announced additional positive Phase 1b/2a data on briquilimab as a conditioning agent in the treatment of Fanconi Anemia (FA).

View post:
New Positive Data Presented on Briquilimab Conditioning in Patients with Fanconi Anemia

Read More...

Nuvectis Pharma to Present at the 36th Annual Roth Conference

March 18th, 2024 2:40 am

FORT LEE, NJ, March 15, 2024 (GLOBE NEWSWIRE) -- Nuvectis Pharma, Inc. (“Nuvectis”, “Company”), a biopharmaceutical company focused on the development of innovative precision medicines for the treatment of serious conditions of unmet medical need in oncology, today announced that Ron Bentsur, Chairman and Chief Executive Officer, will present at the 36th Annual Roth Conference.

Excerpt from:
Nuvectis Pharma to Present at the 36th Annual Roth Conference

Read More...

Avenue Therapeutics Receives Positive Listing Determination from Nasdaq

March 18th, 2024 2:40 am

MIAMI, March 15, 2024 (GLOBE NEWSWIRE) -- Avenue Therapeutics, Inc. (Nasdaq: ATXI) (“Avenue” or the “Company”), a specialty pharmaceutical company focused on the development and commercialization of therapies for the treatment of neurologic diseases, today announced that by decision dated March 11, 2024, the Nasdaq Hearings Panel granted the Company’s request for an extension to evidence compliance with all applicable criteria for continued listing on The Nasdaq Capital Market, including the $1.00 bid price and $2.5 million stockholders’ equity requirements, through May 20, 2024. The Company is considering all available options that may enable it to timely evidence compliance with the continued listing criteria and maintain its listing on Nasdaq; however, there can be no assurance that the Company will be able to do so.

See the article here:
Avenue Therapeutics Receives Positive Listing Determination from Nasdaq

Read More...

Genmab Announces Initiation of Share Buy-Back Program

March 18th, 2024 2:40 am

Company Announcement

See the original post here:
Genmab Announces Initiation of Share Buy-Back Program

Read More...

Page 58«..1020..57585960..7080..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick