header logo image


Page 470«..1020..469470471472..480490..»

Diabetic Neuropathy Drugs Market Growth By Manufacturers, Type And Application, Forecast To 2026 – 3rd Watch News

July 6th, 2020 2:46 am

New Jersey, United States,- Market Research Intellect sheds light on the market scope, potential, and performance perspective of the Global Diabetic Neuropathy Drugs Market by carrying out an extensive market analysis. Pivotal market aspects like market trends, the shift in customer preferences, fluctuating consumption, cost volatility, the product range available in the market, growth rate, drivers and constraints, financial standing, and challenges existing in the market are comprehensively evaluated to deduce their impact on the growth of the market in the coming years. The report also gives an industry-wide competitive analysis, highlighting the different market segments, individual market share of leading players, and the contemporary market scenario and the most vital elements to study while assessing the global Diabetic Neuropathy Drugs market.

The research study includes the latest updates about the COVID-19 impact on the Diabetic Neuropathy Drugs sector. The outbreak has broadly influenced the global economic landscape. The report contains a complete breakdown of the current situation in the ever-evolving business sector and estimates the aftereffects of the outbreak on the overall economy.

Leading Diabetic Neuropathy Drugs manufacturers/companies operating at both regional and global levels:

To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=175788&utm_source=3WN&utm_medium=888

The Diabetic Neuropathy Drugs market report provides successfully marked contemplated policy changes, favorable circumstances, industry news, developments, and trends. This information can help readers fortify their market position. It packs various parts of information gathered from secondary sources, including press releases, web, magazines, and journals as numbers, tables, pie-charts, and graphs. The information is verified and validated through primary interviews and questionnaires. The data on growth and trends focuses on new technologies, market capacities, raw materials, CAPEX cycle, and the dynamic structure of the Diabetic Neuropathy Drugs market.

This study analyzes the growth of Diabetic Neuropathy Drugs based on the present, past and futuristic data and will render complete information about the Diabetic Neuropathy Drugs industry to the market-leading industry players that will guide the direction of the Diabetic Neuropathy Drugs market through the forecast period. All of these players are analyzed in detail so as to get details concerning their recent announcements and partnerships, product/services, and investment strategies, among others.

Sales Forecast:

The report contains historical revenue and volume that backing information about the market capacity, and it helps to evaluate conjecture numbers for key areas in the Diabetic Neuropathy Drugs market. Additionally, it includes a share of each segment of the Diabetic Neuropathy Drugs market, giving methodical information about types and applications of the market.

Reasons for Buying Diabetic Neuropathy Drugs Market Report

This report gives a forward-looking prospect of various factors driving or restraining market growth.

It renders an in-depth analysis for changing competitive dynamics.

It presents a detailed analysis of changing competition dynamics and puts you ahead of competitors.

It gives a six-year forecast evaluated on the basis of how the market is predicted to grow.

It assists in making informed business decisions by performing a pin-point analysis of market segments and by having complete insights of the Diabetic Neuropathy Drugs market.

This report helps the readers understand key product segments and their future.

Have Any Query? Ask Our Expert @ https://www.marketresearchintellect.com/need-customization/?rid=175788&utm_source=3WN&utm_medium=888

In the end, the Diabetic Neuropathy Drugs market is analyzed for revenue, sales, price, and gross margin. These points are examined for companies, types, applications, and regions.

To summarize, the global Diabetic Neuropathy Drugs market report studies the contemporary market to forecast the growth prospects, challenges, opportunities, risks, threats, and the trends observed in the market that can either propel or curtail the growth rate of the industry. The market factors impacting the global sector also include provincial trade policies, international trade disputes, entry barriers, and other regulatory restrictions.

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage, and more. These reports deliver an in-depth study of the market with industry analysis, the market value for regions and countries, and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Our Trending Reports

Sales Tax Software Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Sensors Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

U.S. Pest Control Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Battery Monitoring System Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Returnable Packaging Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read the original post:
Diabetic Neuropathy Drugs Market Growth By Manufacturers, Type And Application, Forecast To 2026 - 3rd Watch News

Read More...

Chemotherapy Induced Peripheral Neuropathy Treatment Market 2026 Expected to reach Highest CAGR including major key players Achelios Therapeutics Inc,…

July 6th, 2020 2:46 am

Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Chemotherapy Induced Peripheral Neuropathy TreatmentMarket which would mention How the Covid-19 is Affecting the Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Key Regions and Proposal for Chemotherapy Induced Peripheral Neuropathy Treatment Market Players to battle Covid-19 Impact.

Theglobal Chemotherapy Induced Peripheral Neuropathy Treatment market has been remarkable momentum in the recent years. The Chemotherapy Induced Peripheral Neuropathy TreatmentMarket report is one of the most comprehensive and important data about business strategies, qualitative and quantitative analysis of Global Market. It offers detailed research and analysis of key aspects of the Chemotherapy Induced Peripheral Neuropathy Treatment market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the Chemotherapy Induced Peripheral Neuropathy Treatment market.

Top Leading players covered in the Chemotherapy Induced Peripheral Neuropathy Treatment market report: Achelios Therapeutics Inc, Advinus Therapeutics Ltd, Apollo Endosurgery Inc, Aptinyx Inc, Asahi Kasei Pharma Corp, Can-Fite BioPharma Ltd, Celgene Corp, DermaXon LLC, Eisai, Immune Pharmaceuticals Inc, INSYS Therapeutics Inc, Kineta Inc, KPI Therapeutics Inc, Krenitsky Pharmaceuticals Inc, MAKScientific LLC, Metys Pharmaceuticals AG, Midatech Pharma US Inc, Mundipharma International Ltd, Nemus Bioscience Inc, Neurocentrx Pharma Ltd, Panacea Pharmaceuticals Inc, PeriphaGen Inc, PharmatrophiX Inc, PledPharma AB, Sova Pharmaceuticals Inc, Virobay Inc, WEX Pharmaceuticals Inc and More

Get PDF Sample Report With Impact of COVID-19 on Chemotherapy Induced Peripheral Neuropathy Treatment [emailprotected] https://www.marketinforeports.com/Market-Reports/Request-Sample/98997

The Chemotherapy Induced Peripheral Neuropathy Treatment market report specifically highlights the market share, regional outlook, company profiles, product portfolio, a record of the recent developments, strategic analysis, Achelios Therapeutics Inc, Advinus Therapeutics Ltd, Apollo Endosurgery Inc, Aptinyx Inc, Asahi Kasei Pharma Corp, Can-Fite BioPharma Ltd, Celgene Corp, DermaXon LLC, Eisai, Immune Pharmaceuticals Inc, INSYS Therapeutics Inc, Kineta Inc, KPI Therapeutics Inc, Krenitsky Pharmaceuticals Inc, MAKScientific LLC, Metys Pharmaceuticals AG, Midatech Pharma US Inc, Mundipharma International Ltd, Nemus Bioscience Inc, Neurocentrx Pharma Ltd, Panacea Pharmaceuticals Inc, PeriphaGen Inc, PharmatrophiX Inc, PledPharma AB, Sova Pharmaceuticals Inc, Virobay Inc, WEX Pharmaceuticals Inc in the market, sales, distribution chain, manufacturing, production, new market entrants as well as existing market players, advertising, brand value, popular products, demand and supply, and other important factors related to the market to help the new entrants understand the market scenario better. the global Chemotherapy Induced Peripheral Neuropathy Treatment market will showcase a steady CAGR in the forecast year 2020 to 2026.

On the basis of product, this report displays the production, revenue, price, market share and growth rate of each type, primarily split into:APX-3330BR-297CannabidiolDimiracetamOthersOn the basis on the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share and growth rate of Chemotherapy Induced Peripheral Neuropathy Treatment for each application, including:ClinicHospitalOthers

Our Complimentary Sample Chemotherapy Induced Peripheral Neuropathy Treatment market Report Accommodate a Brief Introduction of the research report, TOC, List of Tables and Figures, Competitive Landscape and Geographic Segmentation, Innovation and Future Developments Based on Research Methodology.

Inquire and Get Up to 30% DiscountBy Clicking Here!https://www.marketinforeports.com/Market-Reports/Request_discount/98997

Regions Covered in the Global Chemotherapy Induced Peripheral Neuropathy Treatment Market: The Middle East and Africa (GCC Countries and Egypt) North America (the United States, Mexico, and Canada) South America (Brazil etc.) Europe (Turkey, Germany, Russia UK, Italy, France, etc.) Asia-Pacific (Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Years Considered to Estimate the Chemotherapy Induced Peripheral Neuropathy Treatment Market Size:History Year: 2015-2019Base Year: 2019Estimated Year: 2020Forecast Year: 2020-2026

Highlights of the Report: Accurate market size and CAGR forecasts for the period 2019-2026 Identification and in-depth assessment of growth opportunities in key segments and regions Detailed company profiling of top players of the global Chemotherapy Induced Peripheral Neuropathy Treatment market Exhaustive research on innovation and other trends of the global Chemotherapy Induced Peripheral Neuropathy Treatment market Reliable industry value chain and supply chain analysis Comprehensive analysis of important growth drivers, restraints, challenges, and growth prospects

For More Information:https://www.marketinforeports.com/Market-Reports/98997/Chemotherapy-Induced-Peripheral-Neuropathy-Treatment-market

Customization of the Report:Market Info Reports provides customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

Get Customization of the [emailprotected]:https://www.marketinforeports.com/Market-Reports/Request-Customization/98997/Chemotherapy-Induced-Peripheral-Neuropathy-Treatment-market

Contact Us:Mr. Marcus KelCall: +1 415 658 9988 (International)+91 84 839 65921 (IND)Email: [emailprotected]Website: http://www.marketinforeports.com

Read more from the original source:
Chemotherapy Induced Peripheral Neuropathy Treatment Market 2026 Expected to reach Highest CAGR including major key players Achelios Therapeutics Inc,...

Read More...

Calpain-2 as a therapeutic target in repeated concussioninduced neuropathy and behavioral impairment – Science Advances

July 6th, 2020 2:46 am

Abstract

Repeated concussion represents a serious health problem as it can result in various brain pathologies, ranging from minor focal tissue injury to severe chronic traumatic encephalopathy. The calcium-dependent protease, calpain, participates in the development of neurodegeneration following concussion, but there is no information regarding the relative contribution of calpain-1 and calpain-2, the major calpain isoforms in the brain. We used a mouse model of repeated concussions, which reproduces most of the behavioral and neuropathological features of the human condition, to address this issue. Deletion of calpain-2 or treatment with a selective calpain-2 inhibitor for 2 weeks prevented most of these neuropathological features. Changes in TAR DNA binding protein 43 (TDP-43) subcellular localization similar to those found in human amyotrophic lateral sclerosis and frontotemporal dementia were also prevented by deletion of calpain-2 or treatment with calpain-2 inhibitor. Our results indicate that a selective calpain-2 inhibitor represents a therapeutic approach for concussion.

Traumatic brain injury (TBI) is a serious public health problem in the United States. In 2013 alone, an estimated 2.8 million TBI cases presented for treatment, and it is likely that many more cases were never reported (www.cdc.gov/traumaticbraininjury/get_the_facts.html). The cause of injury varies greatly and includes motor vehicle accidents, falls, sport injuries, and gunshot wounds, to name a few. The severity of TBI is generally classified as mild (1), also called concussion, moderate, and severe, which is often associated with a prolonged period of unconsciousness after the injury. TBI induces immediate and prolonged neuropathological consequences, including axonal damage (2) and neuronal death (3). In recent years, repeated mild TBI (rmTBI) has received a lot of attention after it was found that many athletes subjected to repeated concussions exhibit a chronic degenerative disease referred to as chronic traumatic encephalopathy (CTE) (4). CTE is characterized by massive accumulation of hyperphosphorylated tau, gliosis, and neurodegeneration (5).

Numerous reviews have discussed the role of calpain in neurodegeneration (6, 7) in general and more specifically, in stroke (8, 9) and TBI (10, 11). Consequently, numerous studies have evaluated the use of calpain inhibitors to reduce neurodegeneration in both stroke and TBI (12, 13, 14). While some studies have reported some positive effects of calpain inhibitors in TBI (15), other studies have not confirmed these results. In particular, overexpression of the endogenous calpain inhibitor, calpastatin, was reported to reduce the formation of spectrin breakdown product (SBDP) (9), resulting from calpain-mediated truncation of spectrin, a widely used biomarker of calpain activation and potentially of neurodegeneration (16), but had no effect on neurodegeneration (17). Recent studies concluded that two calpain inhibitors, SNJ-1945 and MDL-28170, which are blood-brain barrier and cell permeable, did not have sufficient efficacy or a practical therapeutic window in a widely used TBI model, referred to as the controlled cortical impact (CCI) model (15, 18). While those nonisoform-selective calpain inhibitors were shown to inhibit overall calpain activation (without distinguishing which calpain isoform was targeted) following TBI, they failed to provide neuroprotection.

Diffuse axonal degeneration has been shown to be responsible for many of the long-term functional consequences of mTBI (1, 19). Calpain activation has been repeatedly shown to be involved in diffuse axonal injury, as calpain-mediated proteolysis of spectrin has been observed 1 to 2 hours after injury. Blood levels of the calpain-mediated N-terminal fragment of spectrin were found to be elevated shortly after injury and predicted the long-term consequences of the injury in patients with mTBI, including professional hockey players experiencing concussions (20, 21). While all the evidence strongly supports a role for calpain in mTBI, there is little information regarding which of the calpain isoforms is responsible for producing the neuropathological consequences of mTBI or rmTBI. We previously proposed that calpain-1 activation was neuroprotective, while calpain-2 activation was neurodegenerative and provided evidence for such opposite functions of these two calpain isoforms in the CCI mouse model of TBI (22). Here, we report that calpain-2 conditional knockout (C2CKO) mice are remarkably protected against the pathological consequences of rmTBI. Moreover, semichronic treatment of wild-type (WT) mice with a selective calpain-2 inhibitor results in a similar level of protection in the rmTBI mouse model. In this model, the amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) marker, TDP-43, exhibits changes in subcellular localization similar to those found in these patients, and these changes are also prevented by either genetic deletion or pharmaceutical inhibition of calpain-2. These results strongly suggest that a selective calpain-2 inhibitor could be a useful therapeutic treatment to prevent the long-term consequences of repeated concussions.

We generated C2CKO mice by crossing loxPcalpain-2 mice (obtained from the Riken Institute, Japan) with CamKII-Cre mice (the Jackson laboratory) to produce mice with selective calpain-2 deletion in excitatory neurons from the forebrain. These mice exhibit widespread deletion of calpain-2 in the majority of neurons in the cortex and almost complete elimination of calpain-2 in hippocampus (Fig. 1A and fig. S1A). We previously reported that N-methyl-d-aspartate (NMDA)mediated neurotoxicity in acute hippocampal slices prepared from juvenile mice was exacerbated in calpain-1 KO mice but reduced in the presence of a calpain-2 inhibitor (23). To further corroborate the role of calpain-2 in NMDA-mediated neurotoxicity, we tested the effects of NMDA treatment of hippocampal slices from 2-week-old WT or from C2CKO mice on neuronal injury. As previously reported, NMDA treatment resulted in a significant increase in lactate dehydrogenase (LDH) release in the incubation medium, a well-recognized marker of neurotoxicity (Fig. 1B). The effect was significantly reduced in the slices from C2CKO mice, thereby confirming the role of calpain-2 activation in NMDA-mediated neurotoxicity. NMDA receptormediated neurotoxicity has been extensively studied in TBI models (24). We compared the extent of brain lesion in WT and C2CKO mice in the CCI model of TBI. Lesion volume was significantly reduced in the brain of C2CKO mice as compared to WT mice (fig. S1, B and C). These results further support the role of calpain-2 activation in NMDA receptormediated neurotoxicity in vivo.

(A) Calpain-2 deletion in cortex and hippocampus in C2CKO mice. loxP-Calpain-2 mice were crossed with CamKII-Cre mice to generate mice with calpain-2 deletion in excitatory neurons of the forebrain. Note the very large decrease in calpain-2 immunoreactivity in cortex and field CA1 of hippocampus and the absence of changes in calpain-1 staining. Scale bar, 50 m. (B) Reduced NMDA-mediated toxicity in acute hippocampal slices from C2CKO mice. Hippocampal slices were prepared from 3-week-old WT or C2CKO mice. They were incubated with NMDA (100 M) for 2.5 hours, and lactate dehydrogenase (LDH) release in the medium was assayed. Results represent means SEM of four experiments. **P < 0.01. Two-way analysis of variance (ANOVA) followed by Bonferronis test. (C and F) Changes in spectrin and TDP-43 in ipsilateral cortex (C) and hippocampus (F) at various times after the last concussion in WT and C2CKO mice. WT and C2CKO mice were subjected to 10 days of repeated concussions. They were sacrificed 1, 3, and 7 days after the last day of treatment, and levels of the SBDP generated by calpain activation and full-length TDP-43 were determined by Western blot analysis. (D, E, and G) Quantification of the Western blot data for ipsilateral cortex [(D) and (E)] and ipsilateral hippocampus (G). Results represent means SEM of four experiments. *P < 0.05, **P < 0.01 compared to WT basal. Two-way ANOVA followed by Bonferronis test. Ctl, control.

We previously reported that calpain-2 played a significant role in the CCI model of TBI in mice (22). To analyze the potential role of calpain-2 in rmTBI, we used the repetitive concussion model developed by Petraglia and colleagues (25, 26). In this model, awake mice are subjected to four daily hits on the head for 10 consecutive days (see Materials and Methods). We first determined the time course of calpain activation in the brain in this model. Animals were sacrificed at various times after the last impact, and levels of the SBDP generated by calpain activation in cortex and hippocampus were determined (Fig. 1, C to F). In WT mice, SBDP levels in the cortex ipsilateral from the impact were elevated 24 hours and 3 days after the last impact. They were still slightly elevated 7 days after the last impact. Similar results were found in ipsilateral hippocampus. In contrast, there was no increase in SBDP levels at any time in cortex or hippocampus from C2CKO mice. We also analyzed the time course of the exposure of the phosphatase-activated domain (PAD) of tau, which appears early in tauopathy (fig. S1, D to G) (27, 28). In control animals, the changes in PAD-tau were quite similar to those found in SBDP in both cortex and hippocampus, with small variation in statistical significance. In contrast, there were no changes in phosphoPAD-tau in cortex and hippocampus from C2CKO mice after rmTBI.

Previous studies using the same model of repeated concussions have shown that mice exhibited a number of behavioral impairments, including cognitive impairment, as well as many pathological changes, such as activation of astrocytes and microglia in various brain regions and axonal degeneration mostly localized to the corpus callosum and the optic tract (24). At 1 and 3 months after the last concussion, WT mice exhibited depressed behavior after the last concussion, as evidenced in the tail suspension test in which mice subjected to repeated concussions became immobile much faster than the sham mice (Fig. 2, A and B); in contrast, C2CKO mice did not exhibit any of these behavioral alterations. We also tested the loxP-calpain-2 mice (control for C2CKO) and found that they behave very similarly to the WT mice. At 1 and 3 months after repeated concussions, WT mice exhibited increased risk-taking behavior in the elevated plus maze, as evidenced by increased time spent in the open arms and increased number of entries in open arms (Fig. 2, C to F). This behavioral alteration was completely absent in C2CKO mice. Again, control mice behave similarly to WT mice. Last, we tested mice for cognitive impairment at 1 and 3 months after repeated concussions, using hippocampus-dependent fear conditioning. While WT and control mice exhibited significant impairment in learning and memory, C2CKO mice did not exhibit any significant deficits (Fig. 2, G and H). We also analyzed changes in motor function immediately and for 2 weeks after the last concussion using the beam-walking test, which has previously been used to detect the effects of concussion on speed and balance. Repeated concussions produced a relatively mild impairment, as evidenced by increase in both the time to cross the beam and the number of foot slips at 1 hour, 1 day, and 4 days after the last concussion. WT mice recovered 7 days later (fig. S2, A and B). While C2CKO mice performed a little better than WT, the differences were not statistically significant.

(A and B) Changes in tail suspension task at 1 (A) and 3 (B) months after repeated concussions. Groups of sham and rmTBI WT, C2CKO, and control mice were suspended by the tail for 5 min. The time during which the animals remained immobile was recorded. n = 9 for WT and C2CKO groups, and n = 8 for control groups. Results are means SEM. *P < 0.05. One-way ANOVA followed by Bonferronis test. (C to F) Changes in plus-elevated maze at 1 [(C) and (D)] and 3 [(E) and (F)] months after repeated concussions. Groups of sham and rmTBI WT, C2CKO, and control mice were placed in an elevated plus maze, and the time spent in open arms [(C) and (E)] and number of entries in open arms [(D) and (F)] were recorded. n = 9 for WT and C2CKO groups, and n = 8 for control groups. Results are means SEM. *P < 0.05. One-way ANOVA followed by Bonferronis test. (G and H) Performance in fear conditioning test at 1 (G) and 3 (H) months after repeated concussions. Groups of sham and rmTBI WT, C2CKO, and control mice were trained in the context test of the fear conditioning task. They were tested the following day, and the percent freezing time over 5-min test was recorded. n = 8 for WT and C2CKO groups, and n = 7 for control groups. Results are means SEM. *P < 0.05. One-way ANOVA followed by Bonferronis test.

A major pathological hallmark of repeated concussions is brain inflammation reflected by activation of both astrocytes and microglia (1). We analyzed astrocyte and microglia activation in the brain at 3 months following repeated concussions. We used immunohistochemistry (IHC) to label glial fibrillary acidic protein (GFAP)positive astrocytes (Fig. 3A and fig. S3) and Iba-1positive microglia (Fig. 3C and fig. S4) and quantitatively determined the numbers of reactive astrocytes and activated microglia, as described in Materials and Methods. The numbers of reactive astrocytes and activated microglia were significantly increased in hippocampus and cortex of WT and control mice (Fig. 3, B and D, and figs. S3 and S4). In contrast, C2CKO mice did not exhibit any significant increase in number of reactive astrocytes or activated microglia.

Groups of sham and rmTBI WT, C2CKO, and control mice were sacrificed 3 months after repeated concussions. (A) Changes in astrocyte activation in field CA1 of hippocampus. Brains were fixed and processed for IHC with GFAP antibodies. Scale bar, 100 m. (B) Quantification was performed, as described in Materials and Methods. n = 8 for WT and C2CKO groups, and n = 7 for control groups. ***P < 0.001 and ****P < 0.0001. One-way ANOVA followed by Bonferronis test. Data represent means SEM. (C) Changes in microglia activation in field CA1 of hippocampus. Brains were fixed and processed for IHC with iba-1 antibodies. Scale bar, 100 m. (D) Quantification was performed, as described in Materials and Methods. n = 8 for WT and C2CKO groups, and n = 7 for control groups. *P < 0.05 and ****P < 0.0001. One-way ANOVA followed by Bonferronis test. Data represent means SEM. (E) Changes in axonal degeneration in the optic tract. Brains were fixed and processed for Gallyas staining. Scale bar, 100 m. (F) Quantification was performed, as described in Materials and Methods. n = 6. **P < 0.01. One-way ANOVA followed by Bonferroni test. Data represent means SEM.

Another hallmark of repeated concussions is axonal degeneration in various neuronal tracts (1). We used Gallyas staining to visualize axonal degeneration 3 months after repeated concussions (Fig. 3, E and F). Axonal degeneration was prominent in the optic tract in WT and control mice subjected to repeated concussions. No significant axonal degeneration was observed in C2CKO mice after repeated concussions. Image analysis was used to quantify the results and confirmed the significant axonal degeneration following repeated concussions in WT and control mice and its absence in C2CKO mice. Neuronal loss has also been observed in some models of repeated concussions (29). We therefore determined the number of neurons in various brain structures following repeated concussions in WT mice. Under our experimental conditions, we did not detect a significant decrease in the number of NeuN-positive cells in various brain regions 3 months following repeated concussions in WT mice (fig. S5, A to C).

As mentioned above, one of the hallmarks of CTE is a massive increase in tau hyperphosphorylation at various residues in various brain regions. We had previously observed tau hyperphosphorylation in the CCI mouse model of TBI and proposed the hypothesis that this effect was triggered at least, in part, by calpain-2mediated cleavage of the tyrosine phosphatase, PTPN13, and the resulting activation of c-Abl (22). In the present study, massive increase in tau phosphorylation at threonine 231 was present in cortex, corpus callosum, and optic tract 3 months after rmTBI in WT and control mice (Fig. 4, A to F). On the other hand, no significant changes in tau phosphorylation were detected in C2CKO mice. TDP-43 is an RNA/DNA binding protein, which accumulates in neurons in ALS and FTLD (30). One of the hypotheses for its accumulation in these diseases is that TDP-43 is partially cleaved by calpain, preventing its nuclear transport and inducing its cytosol accumulation and aggregation (31). We therefore determined changes in cortical levels of TDP-43 following rmTBI in WT and C2CKO mice at 1, 3, and 7 days after repeated concussions (Fig. 1, C and E). TDP-43 levels were significantly decreased at these three time points in WT mice but were unchanged in C2CKO mice. In cortex, phosphoTDP-43 (p-TDP-43), the pathological form of TDP-43, exhibited changes in subcellular localization, with accumulation in the cytoplasm and decreased expression in the nucleus, where it is found under control conditions (Fig. 4, G and H), which were very similar to what has been reported in human patients with ALS or FTLD (30). These changes in p-TDP-43 localization were completely absent in C2CKO mice (Fig. 4, G and H).

Groups of sham and rmTBI WT, C2CKO, and control mice were sacrificed 3 months after repeated concussions. (A, C, and E) Changes in tau phosphorylation in cortex, corpus callosum, and optic tract. Brains were fixed and processed for IHC with phospho-tau (p-tau) Thr231 antibodies. Scale bars, 20 m. (B, D, and F) Quantification of images similar to those shown. n = 6 for WT sham; n = 7 for C2CKO sham, control sham, and control rmTBI; n = 8 for WT rmTBI and C2CKO rmTBI. *P < 0.05, **P < 0.01, and ***P < 0.001. One-way ANOVA followed by Bonferronis test. Data represent means SEM. (G) Changes in phosphoTDP-43 (p-TDP-43) subcellular localization in cortex. Brains were fixed and processed for IHC with a p-TDP-43 Ser409/Ser410 antibody. Scale bar, 20 m. (H) Quantification of the p-TDP-43 intensity ratio of nuclei to cytoplasm. n = 4. ***P < 0.001 and ****P < 0.0001. One-way ANOVA followed by Bonferronis test. Data represent means SEM.

We previously identified a relatively selective calpain-2 inhibitor, C2I (32), which provides a significant degree of protection against pathological changes in the CCI mouse model of TBI, when injected intraperitoneally after TBI (22). For the present study, in which repeated concussions were administered over a period of 10 days, we selected to deliver C2I through subcutaneously implanted Alzet minipumps. We first verified that this mode of delivery was effective to inhibit calpain-2mediated neurodegeneration in cortex in the CCI model (fig. S5, D and E). The pumps were then implanted the day before the start of the concussions and were withdrawn after 2 weeks. Animals were tested for motor impairment immediately at the end of the repeated concussions and for cognitive impairment 1 month later. They were then sacrificed, and the same pathological markers used previously were analyzed. Animals treated with C2I were significantly protected against the depression symptom (fig. S6A), the risk-taking behavior (fig. S6, B and C), and cognitive impairment, assessed with novel object location (fig. S6D) and hippocampus-dependent fear conditioning (fig. S6E). These results were quite similar to those observed in the C2CKO mice, although the animals were tested 1 month after the last concussion. We also analyzed changes in motor function immediately and for 2 weeks following the last concussion using the beam-walking test (fig. S2, C and D). The results in animals treated with C2I were very similar to those we observed in C2CKO mice; and although C2I-treated animals performed slightly better than vehicle-treated animals, the differences were not statistically significant. Astrogliosis, microglial activation, and axonal degeneration were analyzed 1 month after the last concussion (Fig. 5). Animals treated with C2I did not exhibit significant astroglial (Fig. 5, A and B) and microglial (Fig. 5, C and D) activation in field CA1; they also did not show astroglial or microglial activation in CA3, dentate gyrus, or cortex (figs. S7 and S8). Axonal degeneration 1 month after concussion was observed in the optic tract (Fig. 5, E and F) in vehicle-treated animals but was not significantly changed in animals treated with C2I. We also observed axonal degeneration in cortex and in corpus callosum 1 month after the last concussion in vehicle-treated animals, and this effect was much reduced by C2I treatment (fig. S9). One month after the last concussion increased tau phosphorylation was observed in various brain regions in vehicle-treated animals, including cortex (Fig. 6, A and B), corpus callosum (Fig. 6, C and D), and optic tract (Fig. 6, E and F). These changes in tau phosphorylation were absent in animals treated with C2I. Changes in p-TDP-43 subcellular localization were also observed 1 month after the last concussion in cortex, with p-TDP-43 being almost exclusively translocated from the nucleus to the cytoplasm (fig. S10, A and B). TDP-43 subcellular localization was not significantly altered in C2I-treated mice. Last, levels of p-TDP-43 were significantly increased after rmTBI in the optic tract (fig. S10, C and D), suggesting abnormal processing of p-TDP-43 in the axons of retinal ganglion cells. Levels of p-TDP-43 in the optic tract were not significantly increased after rmTBI in C2I-treated mice.

WT mice were implanted with Alzet minipumps delivering vehicle [veh; 400 mg/ml; (2-hydroxypropyl)--cyclodextrin] or C2I (0.3 mg kg1 day1) 1 day before 10 days of repeated concussions. Pumps were withdrawn 4 days after the last day of concussion, and the animals were sacrificed 4 weeks later. (A) Changes in astrocyte activation in field CA1 of hippocampus. Brains were fixed and processed for IHC with GFAP antibodies. Scale bar, 100 m. (B) Quantification of images similar to those shown. n = 8 for veh sham and veh rmTBI, n = 7 for C2I sham, n = 9 for C2I rmTBI. **P < 0.01. One-way ANOVA followed by Bonferronis test. Data represent means SEM. (C) Changes in microglia activation in field CA1 of hippocampus. Brains were fixed and processed for IHC with iba-1 antibodies. Scale bar, 100 m. (D) Quantification of images similar to those shown. n = 8 for veh sham and veh rmTBI; n = 7 for C2I sham; and n = 9 for C2I rmTBI. *P < 0.05. One-way ANOVA followed by Bonferronis test. Data represent means SEM. (E) Changes in axonal degeneration in the optic tract. Brains were fixed and processed for Gallyas staining. Scale bar, 100 m. (F) Quantification of images similar to those shown. n = 6. **P < 0.01. One-way ANOVA followed by Bonferronis test. Data represent means SEM.

WT mice were implanted with Alzet minipumps delivering vehicle [400 mg/ml; (2-hydroxypropyl)--cyclodextrin] or C2I (0.3 mg kg1 day1) 1 day before 10 days of repeated concussions. Pumps were withdrawn 4 days after the last day of concussion, and the animals were sacrificed 4 weeks later. (A, C, and E) Changes in tau phosphorylation in cortex, corpus callosum, and optic tract. Brains were fixed and processed for IHC with p-tau Thr231 antibodies. Scale bars, 20 m. (B, D, and F) Quantification of images similar to those shown. n = 8 for veh sham and veh rmTBI; n = 7 for C2I sham; and n = 9 for C2I rmTBI. *P < 0.05, **P < 0.01, and ***P < 0.001. One-way ANOVA followed by Bonferronis test. Data represent means SEM.

Our results demonstrate that calpain-2 activation plays a critical role in the development of neuropathology following repeated concussions. Thus, both the functional impairment and the pathological manifestations of brain damage, including inflammation, axonal degeneration, and tau and TDP-43 abnormalities, were absent in mice with genetic calpain-2 deletion or treatment with a relatively selective calpain-2 inhibitor. One of the difficulties to identify novel therapeutic treatments for neurological diseases has been the lack of reproducibility in the animal models used in various laboratories. It is therefore reassuring that our results in the mouse model of repeated mild concussions are in excellent agreement with the findings reported by Petraglia et al. (25, 26) and others (1). Thus, we observed early impairment in motor function, which rapidly recovered, and changes in depression symptoms and risk-taking behavior similar to those previously reported. While previous studies have used the Morris water maze to analyze changes in cognitive behavior, we used fear conditioning as an index of cognition and also observed changes in performance in this paradigm, confirming that rmTBI results in impaired cognition. We observed widespread astroglia and microglia activation at 1 and 3 months after the last concussion. We identified reactive astrocytes on the basis of their larger size and number of processes (33) and quantified their numbers in various brain regions. Our results demonstrated increased numbers of reactive astrocytes at 1 and 3 months after repeated concussions. In contrast, there was no increase in the numbers of reactive astrocytes in C2CKO mice or after treatment with the selective calpain-2 inhibitor. Similarly, we identified reactive microglia on the basis of larger and irregular soma (34) and quantified their numbers in various brain regions after repeated concussions. Our results indicated that there was a significant increase in the numbers of reactive microglia after repeated concussions in WT and control mice but no increase following down-regulation of calpain-2 or pharmacological inhibition. Increased tau phosphorylation was present in various brain regions, as previously reported in various models of mTBI (35). Axonal degeneration was present in corpus callosum and optic tract, in good agreement with previous reports (26). While some neuronal degeneration has been reported in some model of repeated concussions (29), we did not observe any significant neuronal loss 3 months after repeated concussions in WT mice. It is conceivable that Wallerian degeneration could take place and that neuronal loss could develop more slowly in the model we used. We also confirmed that, in this model, alterations in TDP-43, which had been previously reported in ALS and frontotemporal dementia (30), were also present in cortex. Thus, TDP-43 levels in cortex were decreased up to 7 days after repeated concussions in WT but not in C2CKO. In addition, TDP-43 exhibited changes in subcellular localization from the nucleus in control animals to the cytoplasm 3 months after repeated concussions. This change in subcellular localization has been previously discussed in relationship to calpain-mediated cleavage, leading to aggregation in the cytoplasm and contributing to the neurodegeneration observed in these disorders (35). Our findings strongly suggest that following rmTBI, TDP-43 could also be cleaved by calpain-2 and localized to the cytoplasm where aggregated TDP-43 could contribute to neurodegenerative changes. Several studies have shown that TBI can lead to CTE and ALS (3), although the potential mechanisms underlying the development of either CTE or ALS following TBI or repeated concussions are not well understood (36).

Although calpain has been repeatedly proposed to play a significant role in TBI (10, 11), there are only few data regarding the respective roles of calpain-1 and calpain-2, two of the major calpain isoforms, in TBI or concussion. We previously reported that, while calpain-1 was rapidly and transiently activated in a mouse model of TBI, calpain-2 activation was delayed and prolonged (22). Comparing the changes in SBDP in cortex and hippocampus between WT and C2CKO mice, our results indicate that in the rmTBI model, calpain-2 is activated 24 hours after the last concussion and remains activated for up to 1 week in both cortex and hippocampus. This time course of calpain-2 activation is quite similar to what we observed in the more severe TBI model we previously used. In the TBI model, we also observed that levels of calpain-2 activation were closely related to the extent of degenerating cells. In the less severe model of repeated concussions, there was no clear evidence of degenerating cells, as previously reported, suggesting that the extent of calpain-2 activation might not be sufficient to trigger cell death.

While the extent of calpain-2 activation might not have been sufficient to trigger significant cell death, it was sufficient to trigger a whole host of neurodegenerative events, including activation of astrocytes and microglia and axonal degeneration in several tracts, such as in the corpus callosum and the optic tract, since all these events were lacking in calpain-2 KO mice. These results are somewhat different from what we observed in the TBI model. In this model, we did observe massive astroglial activation 7 days after TBI in the cortex surrounding the lesion, and this was not blocked by a daily injection with a selective calpain-2 inhibitor (22). In the present study, continuous administration of the same calpain-2 inhibitor prevented glial reaction and axonal degeneration observed at 1 month after the last concussion. Reasons for this difference are currently not clear. It could be that genetic calpain-2 deletion or continuous administration of the calpain-2 inhibitor provides better calpain-2 inhibition than the daily intraperitoneal injections. It could also be related to the differences in time points selected in the two studies, since we analyzed glial activation at 1 month after concussion and not 1 week. In any event, glial activation is generally considered to have a dual effect in neurodegeneration, depending on the types of glial cells activated (37). In our studies, we did not attempt to distinguish between different subtypes of astrocytes or microglia, but it is quite remarkable that calpain-2 deletion completely eliminated both astrocyte and microglia activation. As previously mentioned, TBI and rmTBI have been shown to be associated with increased tau phosphorylation at various sites. We previously reported an increased tau phosphorylation at residue Tyr245 in the CCI model of TBI, and this effect was significantly reduced following treatment with C2I (38). In the present study, we also found that calpain-2 deletion in excitatory neurons from the forebrain completely prevented rmTBI-induced increased in tau phosphorylation. We previously proposed that calpain-2mediated truncation of the tyrosine phosphatase, PTPN13, represents a link between calpain-2 and tau phosphorylation, as one of the targets of PTPN13 is c-Abl, which can phosphorylate tau at Tyr245. However, there are other pathways that could be regulated by calpain, including glycogen synthase kinase (39), which can also result in tau phosphorylation at various residues.

We used a relatively selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (C2I), to further confirm the role of calpain-2 in rmTBI-mediated behavioral impairments and neuropathology. Because of the duration of the repeated concussions and the prolonged activation of calpain-2 in this model, we selected to continuously deliver C2I through subcutaneously implanted minipumps, which significantly prevented calpain-2 activation in the brain following trauma. Treatment of WT mice with C2I reproduced all the beneficial effects of calpain-2 deletion at the behavioral and neuropathological levels. Thus, C2I-treated mice did not exhibit the depression symptom or the risk-taking behavior of the vehicle-treated mice. They also did not exhibit the cognitive impairment in the fear conditioning task. Activation of astrocytes and microglia was also almost completely prevented in the different brain regions tested. Likewise, increased tau phosphorylation and changes in subcellular localization of TDP-43 were almost completely blocked by C2I treatment.

Our results establish that calpain-2 activation is a critical step, leading to a wide range of neuropathological changes and behavioral alterations following repeated concussions. They also demonstrate that treatment with a selective calpain-2 inhibitor represents a novel potential therapeutic approach to prevent brain damage and behavioral modifications following repeated concussions. In the present experiments, we started treatment with the selective calpain-2 inhibitor the day before the first concussion episode, and our results suggest the possibility of using a similar approach for individuals at risk for CTE, such as athletes in sport contact and military personnel. Future experiments will be directed at determining the effects of posttreatment with the inhibitor to further establish the possibility of using this treatment in human participants exposed to concussion. Considering that a blood biomarker based on calpain activation has been proposed to be a predictive diagnostic tool for human concussion, and that tau PET has recently been shown to be a useful tool to investigate neurodegeneration after TBI in human participants (40), our results further warrant pursuing the development of a selective calpain-2 inhibitor for the treatment of concussions.

The objective of this study is to examine the role of calpain-2 in the pathology of repetitive mTBI. For this, we performed rmTBI or sham procedure on three groups of mice. The first group consisted of 16 WT mice and 16 C2CKO mice. Mice were euthanized at 1, 3, and 7 days after rmTBI (four mice for each time point) or 1 day after sham procedure. Brain tissue was collected to analyze markers for calpain activation, SBDP, and for early pathological tau, PAD-tau. The second group of mice consisted of WT mice, C2CKO mice, and calpain-2 loxP mice (control for calpain-2 CKO). There were ~18 mice for each genotype (half for rmTBI and half for sham). Beam-walking tests were performed from 0 to 14 days after rmTBI. Elevated plus maze, tail suspension, and fear conditioning tests were performed at 1 and 3 months after rmTBI. The third group of mice consisted of WT mice treated with C2I or vehicle. There were ~18 mice for C2I and ~18 mice for vehicle. Beam-walking tests were performed from 0 to 14 days after rmTBI. Elevated plus maze, tail suspension, novel object, and fear conditioning tests were sequentially performed at 1 month after rmTBI. For the second and third group, mice were euthanized after behavioral tests and IHC was performed on brain sections to examine several pathological markers such as GFAP, iba-1, phospho-tau (p-tau), and p-TDP-43. Silver staining was also performed to examine neurodegeneration. In rare cases, mice showing abnormalities such as signs of pain, motor impairment, and seizures during rmTBI procedure were immediately removed from the study. Specifically, one mouse was removed from the WT rmTBI group, two mice were removed from the control rmTBI group, one mouse was removed from the vehicle rmTBI group, while no mouse was removed from the C2CKO rmTBI or C2I rmTBI group. For all behavioral and IHC studies, experiments and data analysis were done by two persons in a blind fashion.

Animal experiments were conducted in accordance with the principles and procedures of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All protocols were approved by the local Institutional Animal Care and Use Committee.

We used C57Bl/6 (WT), CamKII-Cre+/ CAPN2loxP/loxP (calpain-2 CKO), and CAPN2loxP/loxP (loxPcalpain-2) mice, referred to as control. All mice are on a C57Bl/6 background.

Primary antibodies for Western blot: SBDP (1:20; MAB1622, EMD Millipore) and PAD-tau (1:20; MABN417, EMD Millipore). Primary antibodies for IHC: calpain-1 (1:200; LS-B4768, LSBio), calpain-2 (1:300; LS-C337641, LSBio), GFAP (1:1000; AB5804, Abcam), iba-1 (1:400; AB5076, Abcam), p-tau Thr231 (1:200; MN1040, Thermo Fisher Scientific), p-TDP-43 409/410 (1:400; 22309-1-AP, Proteintech), and NeuN (1:200; ab104224, Abcam). Secondary antibodies for IHC: Alexa Fluor 594 goat anti-rabbit immunoglobulin G (IgG) (1:400; A11037, Thermo Fisher Scientific), Alexa Fluor 594 goat anti-mouse IgG (1:400; A11005, Thermo Fisher Scientific), and Alexa Fluor 594 donkey anti-goat IgG (1:400; A11058, Thermo Fisher Scientific).

NMDA toxicity in acute hippocampal slices from postnatal days 14 to 16 WT or C2CKO mice was analyzed, as previously described (23). Mice at postnatal days 14 to 16 were anesthetized with halothane and decapitated. Brains were quickly removed and transferred to oxygenated, ice-cold cutting medium: 124 mM NaCl, 26 mM NaHCO3, 10 mM glucose, 3 mM KCl, 1.25 mM KH2PO4, 5 mM MgSO4, and 3.4 mM CaCl2. Hippocampal transversal slices (400 m thick) were prepared using a McIlwain-type tissue chopper and transferred to a recovery chamber with a modified artificial cerebrospinal fluid medium, containing: 124 mM NaCl, 2.5 mM KCl, 2.5 mM CaCl2, 1.5 mM MgSO4, 1.25 mM NaH2PO4, 24 mM NaHCO3, 10 mM d-glucose, and saturated with 95% O2/5% CO2 for 1 hour at 37C. Slices were then treated with NMDA (100 M) for 3 hours. At the end of treatment, 50 l of medium solution was transferred to a 96-well plate, and the LDH reaction was performed using the Pierce LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific) following the manufacturers instruction. To determine LDH activity, the absorbance at 680 nm (background signal) was subtracted from the absorbance at 490 nm. LDH activity was normalized to protein concentration, and results are shown as fold of controls.

The rmTBI model was established in mice following the protocol described in a previous publication (25), with minor changes. Briefly, mice were restrained in a plastic restraint cone (89066-338, VWR International) without anesthesia and placed on a foam bed. The mouse head was not immobilized. This setting better mimics the human concussive injury, which often happens under awake conditions and the head undergoes acceleration and deceleration. A stainless steel helmet (6 mm diameter) (Millenium Machinery, Rochester, NY) was placed on the right hemisphere between the lambda and bregma. A 1.0-mm-thick double-sided gel tape (Scotch) was stick to the underside of the helmet. A pneumatically controlled impactor device (AMS-201, Amscien) was modified to deliver mild closed-head impacts. The impactor tip was replaced with a rubber round tip (6 mm diameter) to reduce the incidence of skull fracture. The impact depth was 5 mm. The impact speed was 3.5 m/s. The duration of impact was 100 ms. The impact angle was 20 from the vertical plane. After impact, mice were removed from the restraint bag and returned to their cage. Mice showing abnormalities, such as signs of pain, motor impairment, or seizures, were rarely seen and were removed from the study. Animals received four head impacts per day with a 2-hour interval between impacts for 10 days. Sham groups underwent the same procedure as the rmTBI groups. They were placed into the restraint cone on the same foam bed. However, no impacts were given.

Osmotic pumps (Model 2002, ALZET; release rate, 0.5 l/hour) were filled with 200 l of C2I (0.625 g/l) in (2-hydroxypropyl)--cyclodextrin (400 mg/ml) or with 200 l of (2-hydroxypropyl)--cyclodextrin (400 mg/ml) as vehicle. Pumps were implanted subcutaneously in mice 1 day before rmTBI and removed 4 days after the last episode of rmTBI (total of 15 days). Approximately, 0.3 mg/kg of C2I was released per day. This dose is the same as the daily dose used for intraperitoneal injections of C2I in a mouse model of TBI (22).

At indicated time points after rmTBI, ipsilateral cortical and hippocampal tissues were collected from WT and C2CKO mice. Tissues were homogenized in lysis buffer (87787, Thermo Fisher Scientific), containing protease and phosphatase inhibitor cocktails (78446, Thermo Fisher Scientific), and protein concentration was measured with the bicinchoninic acid (BCA) assay (23225, Thermo Fisher Scientific). Western blot was done using the Wes system (ProteinSimple): 1.2 g of total protein of samples was loaded to each lane and 12 to 230 kDa separation modules were used. For the detection of PAD-tau, samples were run under nonreducing conditions. Peak areas of the bands were measured by Compass software (ProteinSimple).

At 1 or 3 months after rmTBI, mice were anesthetized and intracardially perfused with 0.1 M phosphate buffer (pH 7.4) and then with freshly prepared 4% paraformaldehyde in 0.1 M phosphate buffer. Brains were removed and immersed in 4% paraformaldehyde at 4C for 1 day for postfixation and then in 15 and 30% sucrose at 4C for 1 day each for cryoprotection. Coronal frozen sections (20 m thick) at bregma 1.58 to 2.30 in each brain were collected. Two sections (at 160-m interval) per animal were evaluated for each specific immunohistochemical analysis. Sections were first blocked in 0.1 M phosphate-buffered saline (PBS) containing 5% goat or donkey serum and 0.3% Triton X-100 (blocking solution) for 1 hour and then incubated with primary antibody prepared in blocking solution overnight at 4C. Sections were washed three times in PBS and incubated in Alexa Fluor secondary antibody prepared in blocking solution (1:400) for 2 hours at room temperature. After three washes, sections were mounted with mounting medium containing 4,6-diamidino-2-phenylindole (Vector Laboratories). Sections were visualized under confocal microscopy (ZEISS LSM 880). Imaging parameters were constant within each specific antigen analysis. For the quantification of reactive astrocytes, 332 m by 332 m areas from indicated brain regions were analyzed in each GFAP-labeled section. Image threshold was adjusted to highlight astrocytes processes. Astrocytes with 4 processes visible 30 m from the soma were considered as reactive astrocytes and were manually counted in each image. For the quantification of reactive microglia, 332 m by 332 m areas from indicated brain regions of each iba-1labeled section were analyzed. Image threshold was adjusted to highlight microglia soma. Microglia with soma size 28 m2 and circularity 0.6 were considered as reactive microglia and were counted using the Analyze Particles function of ImageJ. For the quantification of p-tau signals, 135 m by 135 m areas from indicated brain regions of each section were analyzed. The thresholded area of each image was measured using ImageJ. For the quantification of p-TDP-43 translocation, 135 m by 135 m areas from indicated brain regions of each section were analyzed. The ratio of the intensity in nuclei to the intensity in cytoplasm was calculated using an ImageJ macro named Intensity Ratio Nuclei Cytoplasm Tool. For the quantification of NeuN-positive cells, 664 m by 249 m areas in the lateral geniculate nucleus and parietal cortex and 166 m by 58 m areas in hippocampal CA1, CA3, and dentate gyrus (DG) were analyzed. Image threshold was adjusted, and NeuN-positive nuclei were counted using the Analyze Particles function of ImageJ. Image acquisition and quantification were done by two persons in a blind fashion.

Coronal frozen sections (40 m thick) at bregma 2.30 in each brain were collected. Gallyas silver staining was performed using the FD NeuroSilver Kit II (FD NeuroTechnologies). Areas (444 m by 321 m) at indicated brain regions of each section were imaged under a light microscope (Zeiss Axiophot). The thresholded area of each image was measured using ImageJ. Image acquisition and quantification were done by two persons in a blind fashion.

TUNEL (terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labeling) staining was performed in a set of coronal frozen sections (20 m thick) at bregma 0.50, 0.58, and 1.58 mm using the ApopTag in situ apoptosis detection kit (S7165, Millipore). Sections were visualized under confocal microscopy (LSM 880, Zeiss). All TUNEL-positive nuclei surrounding the lesion area in the sections were counted using the analyze particles function in ImageJ. Total number of TUNEL-positive nuclei in a set of sections of each brain was summed. Image acquisition and quantification were done by two persons in a blind fashion.

The beam apparatus consists of a 1-m wooden round beam with a diameter of 2 cm, resting 50 cm above the tabletop on two poles. A black box is placed at the end of the beam as the finish point. Nesting material from home cages is placed in the black box to attract the mouse to the finish point. A lamp (with 60-W light bulb) is used to shine light above the start point and serves as an aversive stimulus. Each mouse is placed on a brightly lit platform and is allowed to transverse the round beam. A nylon hammock is stretched below the beam, about 7.5 cm above the tabletop, to cushion any falls. On training day, mice are allowed to cross the beam, with gentle guiding or prodding as needed, until they cross readily. The timer is started by the nose of the mouse entering the start point and stopped when the animal reaches the safe box. Mice rest for 10 min in their home cages between training sessions. Mice are trained three times. The beams and box are cleaned of mouse droppings and wiped with towels soaked with 70% ethanol and then water before the next mouse is placed on the apparatus. On testing day, mice are placed on the beam, and numbers of back paw slips and latency to cross are scored. Mice are tested three times with 10-min interval for resting. Results for the three tests are averaged to provide individual values for each mouse on that day. The experiments were performed and results analyzed by a blind observer.

Elevated plus maze for mice was performed following the protocol described in a previous publication (41). Briefly, the maze is painted black and consists of two open arms without walls and two closed arms with 15-cm-high walls. Each arm is 30 cm long and 5 cm wide. The maze is elevated 40 cm off of the floor. Mice were transferred to the behavioral testing room in their home cage 1 hour before the test. At the beginning of the test, mouse was placed at the center of the plus maze, facing an open arm opposite to the location of the operator. The movement of the mouse was recorded by a camera at the top of the maze for 5 min. The mouse was then returned to its home cage. The maze was cleaned with disinfectant and dried with paper towels before testing the next mouse. Video was later analyzed manually. Open-arm time, closed-arm time, open-arm entries, and closed-arm entries were counted. An arm entry was counted when all four paws of the mouse were in that arm. Behavioral test and video analysis were done by two persons in a blind fashion.

The tail suspension test was performed following the protocol described in a previous publication (42). Briefly, the tail suspension box was made of wood and painted white. It is 55 cm high, 60 cm wide, and 11.5 cm deep. It has four compartments to test four mice at a time. A suspension bar (1 cm high, 1 cm wide, and 60 cm long) was positioned on the top of the box. Mice were transferred to the behavioral testing room in their home cage 1 hour before the test. A 17-cm-long tape was attached to the end of the mouse tail. The mice were suspended in each compartment by placing the free end of the tape on the suspension bar. The movement of the mice was recorded for 6 min by a camera in front of the tail suspension box. The mice were then returned to their home cage, and the tape was gently removed from the tail. The box was wiped with disinfectant before the next round of test. Video was later analyzed by another observer. The time that each mouse spends as mobile was measured, following the criteria described in (39). The immobility time was then calculated as total time minus mobility time. Behavioral test and video analysis were done by two persons in a blind fashion.

For fear conditioning, we used the same protocol we used in our previous studies (22). On training day, mice were placed in the fear conditioning chamber (H1011M-TC, Coulbourn Instruments) located in the center of a sound-attenuating cubicle (Coulbourn Instruments). After a 2-min exploration period, one tonefoot shock pairings separated by 1-min intervals were delivered. The 85-dB, 2-kHz tone lasted for 30 s, and the foot shock was 0.75 mA and lasted for 2 s. Foot shock coterminated with the tone. Mice remained in the training chamber for another 30 s before being returned to their home cages. Context test was performed 1 day after training. On day 3, animals were subjected to a cue/tone test. The same conditioning chamber was modified by changing its metal grid floor to a plastic sheet, white metal walls to plastic walls gridded with red tapes, and odor from ethanol to acetic acid. Mice were placed in the altered chamber for 5 min to measure freezing level in the altered context; and after this 5-min period, a tone (85 dB, 2 kHz) was delivered for 1 min to measure freezing to tone. Mice behavior was recorded with the FreezeFrame software and analyzed with FreezeView software (Coulbourn Instruments). Motionless bouts lasting 1 s were considered as freezing. The percentage of time animal froze was calculated, and the group means with SEM and accumulative distribution of percentage freeze were analyzed.

Novel object location tests were performed, as previously described (43). Before training, mice habituated to the experimental apparatus for 5 min in the absence of objects. During habituation, animals were allowed to explore an empty arena. Twenty-four hours after habituation, animals were exposed to the familiar arena, with two identical objects added and allowed to explore for 10 min. During the retention test, mice were allowed to explore the experimental apparatus for 6 min. Exploration was scored when a mouses head was oriented toward the object within a distance of 1 cm or when the nose was touching the object. The relative exploration time was recorded and expressed as a discrimination index [DI = (tnovel tfamiliar)/(tnovel + tfamiliar) 100%]. Mean exploration times were then calculated, and the discrimination indexes between treatment groups were compared. Mice that explored both objects for 3 s in total during either training or testing were removed from further analysis. Mice that demonstrated an object preference during training (DI >20) were also removed.

E. B. Cagmat, J. D. Guingab-Cagmat, A. V. Vakulenko, R. L. Hayes, J. Anagli, Potential Use of Calpain Inhibitors as Brain Injury Therapy. in Brain Neurotrauma: Molecular, Neuropsychological and Rehabilitation Aspects, F. H. Kobeissy, Ed. (CRC Press/Taylor & Francis, 2015), Chapter 40.

Acknowledgments: Funding: This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through The Defense Medical Research and Development Program under Award no. W81XWH-19-1-0329. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Department of Defense. Grant no. BA170606. Optimization of a selective calpain-2 inhibitor for prolonged field care in traumatic brain injury. X.B. is supported, in part, by funds from the Daljit and Elaine Sarkaria Chair. Author contributions: Y.W., X.B., and M.B. designed the experiments, analyzed the data, and wrote the manuscript. Y.W., Y.L., A.N., A.S., D.Q., E.Y., and D.R. provided experimental data and analyzed data. Competing interests: M.B., X.B., and Y.W. are cofounders of NeurAegis, a startup company focusing on developing selective calpain-2 inhibitors for the treatment of acute neurodegeneration. M.B. is an inventor on a Provisional Patent New selective calpain-2 inhibitors for the treatment of neurodegeneration. The other authors declare no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

The rest is here:
Calpain-2 as a therapeutic target in repeated concussioninduced neuropathy and behavioral impairment - Science Advances

Read More...

Prospective randomized trial of interventions for vincristine-related neuropathic pain. – Physician’s Weekly

July 6th, 2020 2:46 am

To evaluate the efficacy of gabapentin at 20mg/kg per day in the treatment of vincristine-related neuropathic pain.Children aged 1-18years who developed vincristine-induced neuropathy on a St Jude frontline acute lymphoblastic leukemia trial were prospectively enrolled on a randomized, double-blind, placebo-controlled, phase II trial with two treatment arms: gabapentin plus opioid versus placebo plus opioid. Daily evaluations of morphine dose (mg/kg per day) and pain scores were conducted for up to 21days; the values of the two arms were compared to assess analgesic efficacy.Of 51 study participants, 49 were eligible for analyses. Twenty-five participants were treated with gabapentin, with a mean (SD) dose of 17.97 (2.76) mg/kg per day (median 18.26, range 6.82-21.37). The mean (SD) opioid doses taken, expressed as morphine equivalent daily (mg/kg per day), were 0.26 (0.43) in the gabapentin group (25 patients, 432days) and 0.15 (0.22) in the placebo group (24 patients, 411days; P=.15). Only the risk classification of acute lymphoblastic leukemia was significantly associated with the daily morphine dosage (P=.0178): patients in the lower risk arm received higher daily morphine dosages. Multivariate analyses revealed a significant difference between the groups average daily scores for the previous 24h and right now.In this population of children with vincristine-related neuropathic pain, opioid consumption and pain scores were higher in the gabapentin group than in the placebo group. Future randomized, double-blind, placebo-controlled studies should test gabapentin given longer or at a higher dose. 2020 Wiley Periodicals LLC.

PubMed

Excerpt from:
Prospective randomized trial of interventions for vincristine-related neuropathic pain. - Physician's Weekly

Read More...

The Two Types of Stem Cell Transplants for Cancer Treatment – DocWire News

July 5th, 2020 8:45 am

Patients with cancer often incur bone marrow damage, resulting in the destruction of stem cells. Stem cell transplants are used to replenish lost or damaged cells that have been affected by cancer and depending on where the stem cells come from these, the procedure may be a bone marrow transplant (BMT), peripheral blood stem cell transplant, or a cord blood transplant.

Typically, in a stem cell transplant, physicians administer high doses of chemotherapy, occasionally in conjunction with radiation therapy, to kill all cancer cells. This is known as myeloablative therapy.

Here are the two main types of transplants, as outline by the American Cancer Society:

In an autologous stem cell transplant, the patient serves as their own donor. Auto means self, therefore this procedure means harvesting your own stem cells from either your blood or bone marrow, then freezing them for preservation. Following high-dose chemo and radiation therapy, the frozen cells are thawed and returned to the (self) donor. Autologous transplants are sometimes used for testicular cancer and brain tumors, but are mainly utilized to treat leukemia, lymphoma, and multiple myeloma. For the latter, autologous stem cell procedures offers patients a chance for achieving sustained remission. One advantage of autologous stem cell transplant is that youre getting your own cells back. When you getyour own stem cells back, you dont have to worry about them (called the engrafted cells or the graft) being rejected by your body, says the American Cancer Society.

Despite the benefits, as with all procedures, there are risks involved, including graft failure which occurs when the transplanted stem cells dont go into bone marrow fail to properly produce blood cells. A possible disadvantage of an autologous transplant is that cancer cells might be collected along with the stem cells and then later put back into your body, the ACS says, adding that another disadvantage of a autologous stem cell transplants is that your immune system is the same as it was before your transplant. This means the cancer cells were able to escape attack from your immune system before, and may be able to do so again.

But how exactly do physicians prevent any residual cancer cells from being transplanted with healthy cells? In a process known as purging, stem cells are treated before being infused back into the patients blood. Although purging carries its benefits, a potential downside, according to the ACS, is that normal cells may be lost during this process, which in turn could lead to unsafe levels of white blood cells as your body takes longer to produce normal blood cells. Cancer centers will also sometimes use in vivopurging, which involves not treating the stem cells, and instead administering anti-cancer drugs to patients post-transplant. The ACS notes, however, that the need to remove cancer cells from transplanted stem cells or transplant patients and the best way to do it continues to be researched.

Whereas autologous procedures infuse stem cells from your own body, allogeneic stem cell transplants use cells from a donor with a very similar tissue type (in many cases a relative, usually a sibling). In cases where the ideal donor is not a relative, physicians may opt to perform a matched unrelated donor (MUD) transplant, which as the ACS notes, are usually riskier than those with a relative who is a good match.

Allogeneic transplants comprise of the same process as autologous stem cell transplants where stem cells are harvested, frozen, and subsequently thawed and put back following high-dose chemo and/or radiation therapy. In some cases, the procedures involve the infusion of blood extracted from the placenta and umbilical cord of a newborn because the cord contains a high number of stem cells that quickly multiple. By 2017, an estimated 700,000 units (batches) of cord blood had been donated for public use. And, even more have been collected for private use. In some studies, the risk of a cancer not going away or coming back after a cord blood transplant was less than after an unrelated donor transplant, writes the ACS.

A benefit of an allogeneic transplant is that donor stem cells create their own immune cells, which may eliminate any residual cancer cells that remain after high-dose treatment, which is known as the graft-versus-cancer effect. Moreover, because the donor stem cells are free of cancer, donors can be asked to donate stem cells or white blood cells multiple times.

As with autologous stem cell procedures, this donor dependent transplant also carries risk. The transplant, or graft, might be destroyed by the patients body before reaching the bone marrow. Allogeneic stem cell transplants also augment the risk of graft-versus-host-disease, where cells from the donor attack healthy cells in the recipients body. Furthermore, despite the healthy cells being tested before transplant, allogeneic procedures still carry a certain risk of infections because, as the ACS writes, your immune system is held in check (suppressed) by medicines calledimmunosuppressivedrugs. Such infections can cause serious problems and even death.

Because theres a plethora of human leukocyte antigen (HLA) combinations, which are inherited from both parents, finding an exact donor match can often be an arduous task. The search usually starts at siblings, and theres a 25% chance of a sibling being a perfect match. In the event that a sibling does not match, the search moves onto extended family (and parents) who are less likely to match.

The ACS writes: As unlikely as it seems, its possible to find a good match with a stranger. To help with this process, the team will use transplant registries, like those listed here. Registries serve as matchmakers between patients and volunteer donors. They can search for and access millions of possible donors and hundreds of thousands of cord blood units.

Read the rest here:
The Two Types of Stem Cell Transplants for Cancer Treatment - DocWire News

Read More...

COVID-19: UAE treats 2000 virus patients with novel stem cell therapy – Gulf News

July 5th, 2020 8:45 am

Following an initial trial, researchers concluded that UAECell19 reduced the duration of hospitalisation from 22 days to just six. Image Credit: iStock

Abu Dhab:The Abu Dhabi Stem Cell Centre (ADSCC) has now treated more than 2,000 patients suffering from COVID-19, with 1,200 already fully recovered from the effects of the virus.

ADSCC announced today that it had succeeded in ramping up the number of treatments from 73 in the initial clinical trials. The large increase was a result of a major effort by staff at the centre to treat as many people as possible, following the UAE Governments decision to make it available free of charge to all moderate-to-high risk COVID-19 patients in the country.

The Governments decision came after the treatment, branded UAECell19, demonstrated efficacy and an impressive safety profile was reflected in the absence of significant changes in adverse events reported, absence of any unexpected serious reactions (such as anaphylaxis, allergic reactions or sudden death) and an absence of any lung complications as determined by radiological exams from inhalation of the nebulised product.

A team of doctors and researchers at ADSCC, led by Dr Yendry Ventura, announced in May that they had developed a new treatment for COVID-19 patients. UAECell19, an autologous stem cell-based therapy, appears to help the body fight the virus and makes the virus less harmful.

Quicker recovery

Following an initial trial, researchers were able to conclude that UAECell19 reduced the duration of hospitalisation from 22 days to just six, when compared to patients who had received standard treatment.

Further analyses revealed that patients treated with the stem cells were 3.1 times more likely to recover in less than seven days than those treated with standard therapy, and 67 per cent of the patients who received stem celltreatment owed this recovery to the new treatment.

ADSCC has since secured intellectual property rights protection for UAECell19, which opens the way for the treatment to be shared widely so more patients can benefit from it.

ADSCC said researchers are at various stages of investigative efforts to establish effectiveness (Phase 3 trial), optimal efficacy of dosageand efficacy to treat other respiratory diseases such asthma, COPDand cystic fibrosis.

Read more:
COVID-19: UAE treats 2000 virus patients with novel stem cell therapy - Gulf News

Read More...

Farrah Fawcett Glimpse into Life and Final Days of the Beloved ‘Charlie’s Angels’ Star – AmoMama

July 5th, 2020 8:45 am

Farrah Fawcett became an actress known for her beauty andcompassionate nature. As June 25 marked the 11th anniversary of her passing, we looked at memorable moments in her career - from that swimsuit poster to her role in "Charlie's Angels."

At the age of 62, Farrah Fawcett passed away on June 25, 2009, in Santa Monica, California. While her death came on the same day as Michael Jackson's passing, it brought her battle with cancer to a final close.

Her final days, Fawcett spent worried about her family -her son, Redmond, in particular. Fawcett shared Redmond with Ryan O'Neal with whom she had a complicated relationship, and his bumpy road down the wrong path heightened her protective instinct.

Fawcett's close friend Mela Murphy, who stayed by her side at St. John's Health Center until she died, recalled the actress's final moments to PEOPLE and said:

She was saying his name, Redmond.' That was the last thing she said.I told her Id take care of him, that Ill always be there for him."

The actress died a few hours later after what Jaclyn Smith, Fawcett's co-star in "Charlie's Angels," called a "relentless fight" against anal cancer.

Following her first cancer diagnosis in 2006, Fawcett founded The Farrah Fawcett Foundation in aid of HPV-related cancer research after she got declared cancer-free in February 2007.

But the status was short-lived, asa routine check-up three months later revealed a small malignant polyp. Fawcett went to Germany to undergo experimental stem-cell treatment, but sadly it didn't have the results they hoped on.

However, Fawcett remained steadfast in her battle against the disease, one her partner Ryan O'Neal knew about from first-hand experience.

O'Neal and Fawcett initially separated in 1997 after almost two decades together. But when doctors told O'Neal in 2001 that he had leukemia, they reconciled until she died in 2009.

During her acting career, Fawcett earned 10 award wins and 23 nominations, and it includes her role in "Charlie's Angels." Then there is that unforgettablered swimsuit Fawcett posedin during 1976.It sold12 million copies and becamethebest-selling poster of all time.

The poster launched Farrah Fawcett into stardom since she had only done small roles and television commercials up until that point.

Fawcett had even remained under the radar with roles in series such as "I Dream of Jeannie," "The Flying Nun," and a recurring role in "Harry O" when she decided to accept the poster deal.

See the original post:
Farrah Fawcett Glimpse into Life and Final Days of the Beloved 'Charlie's Angels' Star - AmoMama

Read More...

Why Fewer Kids Are Dying In Hot Cars — And Why Number May Spike – Patch.com

July 5th, 2020 8:45 am

The temperature reached 90 degrees in Harrah, Oklahoma, on a June day two years ago when 50-year-old Alanna Jean Orr went into the Kickapoo Casino in what turned out to be a gamble with the life of her 5-year-old grandson.

She'd left him locked in her car parked under the glaring sun and fed the slot machines for six hours. When she finally did return, the grandson, Maddox Ryan Durbin, was dead. His grandmother was soon the defendant in a federal felony murder case.

Orr pleaded guilty and was sentenced last month to 17 years in prison.

It sometimes happens that way that kids perish in steaming hot cars, where interior temperature can become deadly within 10 minutes because they're deliberately left alone while a parent or caregiver does something else.

But not most of the time.

Most of the time, parents accidentally kill their babies in a tragic collision of tightly packed schedules, changed routines and lack of sleep. Their parents simply forget they were in the back seat a phenomenon that, unfathomable as it may seem, is backed by real science.

Since 1998, 54 percent of the 853 pediatric hot car deaths were accidental, according to federal safety statistics. Another 25 percent of the kids who died managed to lock themselves in cars when their parents turned their backs. People who intentionally left children in cars, as Orr in Oklahoma did two years ago, represent 19 percent of cases.

But something different is happening this year, and it could be an "unintended consequence" of coronavirus stay-at-home orders, says Jan Null, a San Jose State University research meteorologist and adjunct professor.

That unintended consequence is relatively good news: Usually, this time of year, nearly 20 kids would have died from being left in hot cars.

This year, the number is six.

Null who keeps a running registry of pediatric vehicular heatstroke deaths on his website, noheatstroke.org, also has a warning: As more people return to work with disrupted schedules, that number could spike.

"It's hard to prove a negative," Null says, but the supposition among agencies and organizations working to stem hot car deaths is that people are staying home more and haven't made the abrupt routine changes that can lead to what's been described as "forgotten baby syndrome."

Six kids have died of vehicular heatstroke this year; last year at this time, three times as many kids had died in hot cars.

"Usually, there would be eight to 10 by June 15," says Janette Fennell, a Philadelphia woman who founded and heads Kids and Cars, an advocacy group leading the call for automakers to install smart technology to alert drivers of passengers left in vehicles.

An average of 39 kids a year die in hot cars but 2019 and 2018 were record years with 53 and 54 hot car deaths, respectively.

In three of the hot car deaths this year, including a double fatality in Oklahoma, children locked themselves in cars during play, a circumstance Null says warrants more focus by child safety advocates given the number who perish in that way in a typical year.

Null worries that could happen more during the pandemic as parents do their jobs from home, juggling their professional responsibilities with teaching at home during the regular school year and, now that kids are on summer break, trying to find child care. That increases the imperative to make sure cars are locked and key fobs are tucked safely out of kids' reach.

"Teach them cars are not playhouses," he says. "If a child is missing, check the pool first, but next check all the cars, including trunks and foot well areas, places they can die in a short time. If they're hiding in the back yard or a closet, they're in trouble, but they're not dead."

The other three hot car deaths in 2020 appear to involve children who were accidentally forgotten, according to news reports.

Their parents forgot them?

How is that possible?

In many cases, a parent completely loses awareness that the child is in the car, according to David Diamond, professor of psychology, molecular pharmacology and physiology at the University of South Florida, who has studied the hot car death phenomenon for 15 years.

His research shows parents can forget their kids are in the car as a result of competition among the brain's memory systems.

"Memory is a machine," Diamond told The Washington Post in its 2010 Pulitzer Prize-winning piece examining the phenomenon of hot car deaths, "and it is not flawless. Our conscious mind prioritizes things by importance, but on a cellular level, our memory does not. If you're capable of forgetting your cell phone, you are potentially capable of forgetting your child."

Parents across the socioeconomic spectrum forget their kids in the back seat, according to The Post report, which examined the cases of parents criminally charged in their children's deaths.

Read the full story on The Washington Post: Fatal Distraction: Forgetting A Child In The Back Seat Of A Car Is A Horrifying Mistake. Is It A Crime?

"The quality of prior parental care seems to be irrelevant," Diamond told The Post. "The important factors that keep showing up involve a combination of stress, emotion, lack of sleep and change in routine, where the basal ganglia is trying to do what it's supposed to do, and the conscious mind is too weakened to resist. What happens is that the memory circuits in a vulnerable hippocampus literally get overwritten, like with a computer program. Unless the memory circuit is rebooted such as if the child cries, or, you know, if the wife mentions the child in the back it can entirely disappear."

Some parents who accidentally forgot their children in the back seat were acquitted. Most faced public vilification. All face a lifetime of grief and guilt.

No one thought parents would be saddled with such heartache in the early 1990s when car safety experts recommended rear-facing child seats in the back of the car to reduce the potential for injury or death to children when front passenger-side airbags deployed.

Fennell, the Kids and Cars founder, and other child safety advocates, have called on Congress to direct the National Highway Traffic Safety Administration to require new vehicles to be equipped with systems that detect the presence of a child or other occupant left alone in a vehicle and issue warnings to prevent vehicular heatstroke.

Last month, U.S. Reps. Jan Schakowsky of Illinois and Frank Pallone Jr. of New Jersey announced they were including the recommended changes in House Resolution 2, known as the Moving Forward Act.

Separate bills to require automakers to install technology to warn parents their kids are in the back seat are moving through the House and Senate.

"Even if a person is out of position in a seat, the technology can easily sense that because it already knows who's in the car," Fennell says. "If a baby's all alone, all sorts of alarms will go off."

Both Fennell and Null, the meteorologist, worry about what could happen when the pandemic ends and people return to their normal routines after what is a prolonged period of stress for Americans.

"We are extremely worried about that," Fennell says. "The No 1 indicator for a child being left alone in a car is a change in routine. We don't have any normal anymore. Maybe every day will be seen somewhat as a change in routine."

Adds Null: "Are people more stressed and are their routines so disrupted they don't know whether they're coming or going? What will the end of the year look like with all this confusion in parents' lives? It's a whole new landscape."

According to Null's research, cars can heat up quickly, even on mild days. For example:

The National Highway Traffic Safety Administration offers some tips for parents:

View original post here:
Why Fewer Kids Are Dying In Hot Cars -- And Why Number May Spike - Patch.com

Read More...

Obituaries in the Sunday and Monday Courier, June 28-29 – Waterloo Cedar Falls Courier

July 5th, 2020 8:45 am

DENVER Irene M. Hillson, 97, of Denver, formerly of Waterloo, died Thursday, June 25, at home.

She was born Nov. 15, 1922, in Iowa, daughter of Albert K. and Hilda A. Klooster Johnson. She married Robert G. Bob Todd Hillson on June 1, 1946, in Blue Earth, Minn.; he died Feb. 21, 2009.

She worked as a family assistant for many families at nursing homes and private homes.

Survivors: a son, Daris Hillson of Waterloo; two daughters, Adri (Bob) Lang of Denver, and Betty Otting of Waterloo; four grandchildren, James (Rosie) Hillson, Gregory Jensen, Kendra (Quinn) Taplin, and Kayla (Bryan) Sinclair; a stepgrandson, Ray Soto; two foster grandchildren, Jennie Love and Mickey Henderson; nine great-grandchildren, Monica Rynearson, Ivy Mae Hillson, Payton Hillson, Cora Jensen, Sawyer Jensen, Alaina Taplin, Nora Taplin, Karah Sinclair, and Brock Sinclair; three stepgreat-grandchildren, Olivia, Gabbie and Sophia Soto; and a sister, Lois Patten of Grinnell.

Preceded in death by: her parents; her husband; a sister, Margaret Wirtjes; and a brother, Raymond Johnson.

Services: 1 p.m. Friday, July 3, at Kearns Funeral Service Kimball Chapel with burial in the Garden of Memories Cemetery, both in Waterloo. Visitation is 5 to 7 p.m. Thursday, and also one hour before the service at the funeral home. The family asks that masks be worn. The service will be recorded and posted to the funeral home website.

Memorials: to the family.

Irene enjoyed visiting with family and friends, caregiving, reading and both flower and vegetable gardening.

Kearns Funeral Service Kimball Chapel is in charge of arrangements (319) 233-3146. Online condolences may be left at http://www.kearnsfuneralservice.com.

As a young woman, Irene felt the conviction to follow the teachings of Jesus and became part of a worldwide fellowship of believers. She remained true to that choice the rest of her life.

Read the original here:
Obituaries in the Sunday and Monday Courier, June 28-29 - Waterloo Cedar Falls Courier

Read More...

IHS Pets: Bringing Cell And Gene Therapy To Cats, Dogs & Horses – Anti Aging News

July 5th, 2020 8:44 am

Integrated Health System is bringing cell and gene therapy to cats, dogs, and horses. Recently IHS Pets has helped a paralyzed dog with a spinal cord injury to walk again after it was treated with experimental PRP and prolotherapy. Click here to see the video.

Telomeres

Aging is the root of virtually every complex noncommunicable disease in humans and animals. Telomeres are the protective end caps on the ends of our chromosomes, they are as important for the health of both humans and our pets, and they play roles in longevity.

One of the contributing factors in the lifespan in dog breeds is telomere length. As in humans researchers have found that telomere length is a strong predictor of average life span among 15 different breeds consistent with telomeres playing a role in life span determination. Dogs lose telomeric DNA ~10-fold faster than humans, which is similar to the ratio of average life spans between these species. As such telomerase therapy may be beneficial to pets as well as their human caretakers.

Telomerase gene therapy has been shown to extend lifespan in animals, this therapy may help to increase bone mineral density, improve motor performance, improve metabolism, and improve brain function.

Follistatin

The loss of muscle mass with age is just as problematic for animals as it is to humans; in cats for instance a study showed that for each 100g loss of lean body mass increased the risk of death by 20%. This is typically accompanied by frailty, and it is a contributing factor to metabolic syndrome, diabetes, heart disease, and overall mortality.

Diet and exercise have been shown to pay key roles in keeping pets healthy, but the loss of muscle mass is unavoidable without an effective intervention. Enter follistatin: myostatin blocks muscle growth, when it is inhibited then follistatin is able to let muscles grow freely to stop them from wasting away.

Follistatin gene therapy has been shown to be safe and effective in animals, this therapy may help to protect against frailty, increase muscle density, increase strength, and increase endurance.

Klotho: The Queen of Anti-Aging Proteins

1 in 3 cats will suffer from renal disease, but these numbers are under scrutiny with some suggesting that estimate may be too conservative. Chronic kidney failure can occur gradually over months or years, and it is one of the most common conditions affecting older cats with most cases progressing over time worsening the disease.

Klotho is known to play a significant role in the development of chronic kidney disease, and researchers are now turning to its broader role in the anging process as a whole; such as induces expression with gene therapy in mice has been shown to extend lifespan by targeting many of the same pathways as caloric restriction. Blocking Klotho has been shown to cause premature aging.

Klotho also helps to protect the brain, and contributes to more differences in intelligence than any one single gene. Research from the University of California has shown it to protect the brains of mice and improve brain function within 4 hours; and this result included young mice, old mice, and those that were models of Alzheimers disease.

In addition Klotho also plays a critical role in the inflammaging process. Inflammaging is the long term result of the chronic physiological stimulation of the innate immune system which can become damaging during the aging process.

Circulating levels of Kloto decreases with age, this decrease is associated with an increased risk of age related disease. Gene therapy with Klotho has been shown to increase lifespan in animal models, and it may improve kidney function, brain function, clear damage caused by oxidative stress, and protect against cardiovascular disease.

With the remarkable progress being made in genetics, gene therapy may play increasingly prominent and transformative roles in medicine for both humans and animals due to the potential to treat diseases and congenital disorders.

Pets can be an important part of life, they calm us, make us laugh, and create a bond of unconditional love. The company does note that all therapies are experimental, they are not approved by any regulatory body, and they make no claims that outcomes will be positive or beneficial.

IHS Pets is the veterinary wing of Integrated Health Systems, BioViva Sciences exclusive partner. IHS connects with doctors and patients who are interested in the power of gene therapy to pave the way to healthy aging and longevity.

Continued here:
IHS Pets: Bringing Cell And Gene Therapy To Cats, Dogs & Horses - Anti Aging News

Read More...

GMOs: Pros and Cons, Backed by Evidence – Healthline

July 5th, 2020 8:42 am

GMOs, short for genetically modified organisms, are subject to a lot of controversy.

According to the U.S. Department of Agriculture (USDA), GMO seeds are used to plant over 90% of all maize (corn), cotton, and soy grown in the United States, which means that many of the foods you eat likely contain GMOs (1).

Although most notable organizations and research suggest that GMO foods are safe and sustainable, some people claim they may harm your health and the environment.

This article helps explain what GMOs are, provides a balanced explanation of their pros and cons, and gives guidance on how to identify GMO foods.

GMO, which stands for genetically modified organism, refers to any organism whose DNA has been modified using genetic engineering technology.

In the food industry, GMO crops have had genes added to them for various reasons, such as improving their growth, nutritional content, sustainability, pest resistance, and ease of farming (2).

While its possible to naturally give foods desirable traits through selective breeding, this process takes many generations. Also, breeders may struggle to determine which genetic change has led to a new trait.

Genetic modification significantly accelerates this process by using scientific techniques that give the plant the specific desired trait.

For example, one of the most common GMO crops is Bt corn, which is genetically modified to produce the insecticide Bt toxin. By making this toxin, the corn is able to resist pests, reducing the need for pesticides (3).

GMO crops are incredibly common in the United States, with at least 90% of soy, cotton, and corn being grown through genetic techniques (4).

In fact, its estimated that up to 80% of foods in supermarkets contain ingredients that come from genetically modified crops.

While GMO crops make farming much easier, there is some concern around their potential effect on the environment and their safety for human consumption specifically surrounding illnesses and allergies (5).

However, the Food and Drug Administration (FDA), Environmental Protection Agency (EPA), and USDA maintain that GMOs are safe for human and animal consumption (6).

GMOs are food items that have been made using genetic engineering techniques. They comprise 90% of soy, cotton, and corn grown in the United States and are deemed safe for human consumption.

GMO foods may offer several advantages to the grower and consumer.

For starters, many GMO crops have been genetically modified to express a gene that protects them against pests and insects.

For example, the Bt gene is commonly genetically engineered into crops like corn, cotton, and soybeans. It comes from a naturally occurring bacteria known as Bacillus thuringiensis.

This gene produces a protein that is toxic to several pests and insects, which gives the GMO plants a natural resistance. As such, the GMO crops dont need to be exposed to harmful pesticides as often (7).

In fact, an analysis of 147 studies from 2014 found that GMO technology has reduced chemical pesticide use by 37% and increased crop yields by 22% (8).

Other GMO crops have been modified with genes that help them survive stressful conditions, such as droughts, and resist diseases like blights, resulting in a higher yield for farmers (9, 10, 11).

Together, these factors help lower the costs for the farmers and consumers because it allows a greater crop yield and growth through harsher conditions.

Additionally, genetic modification can increase the nutritional value of foods. For example, rice high in beta carotene, also called golden rice, was developed to help prevent blindness in regions where local diets are chronically deficient in vitamin A (12).

Moreover, genetic modification may be used simply to enhance the flavor and appearance of foods, such as the non-browning apple (13).

In addition, current research suggests that GMO foods are safe for consumption (14).

GMO foods are easier and less costly for farmers to grow, which makes them cheaper for the consumer. GMO techniques may also enhance foods nutrients, flavor, and appearance.

Although current research suggests that GMO foods are safe, there is some concern around their long-term safety and environmental impact (14).

Here are some of the key concerns around GMO consumption.

There is some concern that GMO foods may trigger an allergic reaction.

This is because GMO foods contain foreign genes, so some people worry that they harbor genes from foods that may prompt an allergic reaction.

A study from the mid-1990s found that adding a protein from Brazil nuts to GMO soybeans could trigger an allergic reaction in people sensitive to Brazil nuts. However, after scientists discovered this, they quickly abandoned this GMO food (15).

Although allergy concerns are valid, there have been no reports of allergic reactions to GMO foods currently on the market.

According to the FDA, researchers who develop GMO foods run tests to ensure that allergens arent transferred from one food to another (16).

In addition, research has shown that GMO foods are no likelier to trigger allergies than their non-GMO counterparts (17).

Yet, if you have a soy allergy, both GMO and non-GMO soy products will prompt an allergic reaction.

Similarly, theres a common concern that GMO foods may aid the progression of cancers.

Because cancers are caused by DNA mutations, some people fear that eating foods with added genes may affect your DNA.

This worry may stem partly from an early mice study, which linked GMO intake to a higher risk of tumors and early death. However, this study was later retracted because it was poorly designed (18, 19, 20).

Currently, no human research ties GMO intake to cancers.

The American Cancer Society (ACS) has stated that theres no evidence to link GMO food intake to an increased or decreased risk of cancer (21).

All the same, no long-term human studies exist. Thus, more long-term human research is needed.

Although GMO crops are convenient for farmers, there are environmental concerns.

Most GMO crops are resistant to herbicides, such as Roundup. This means that farmers can use Roundup without fear of it harming their own crops.

However, a growing number of weeds have developed resistance to this herbicide over time. This has led to even more Roundup being sprayed on crops to kill the resistant weeds because they can affect the crop harvest (22, 23, 24).

Roundup and its active ingredient glyphosate are subject to controversy because animal and test-tube studies have linked them to various diseases (25, 26, 27).

Still, a review of multiple studies concluded that the low amounts of glyphosate present on GMO foods are safe for human consumption (28).

GMO crops also allow for fewer pesticide applications, which is a positive for the environment.

That said, more long-term human research is necessary.

The main concerns around GMOs involve allergies, cancer, and environmental issues all of which may affect the consumer. While current research suggests few risks, more long-term research is needed.

Although GMO foods appear safe for consumption, some people wish to avoid them. Still, this is difficult since most foods in your supermarket are made with ingredients from GMO crops.

GMO crops grown and sold in the United States include corn, soybean, canola, sugar beet, alfalfa, cotton, potatoes, papaya, summer squash, and a few apple varieties (29).

In the United States, no regulations currently mandate the labeling of GMO foods.

Yet, as of January 2022, the USDA will require food manufacturers to label all foods containing GMO ingredients (6).

That said, the labels wont say GMO but instead the term bioengineered food. It will display either as the USDA bioengineered food symbol, listed on or near the ingredients, or as a scannable code on the package with directions, such as Scan here for more information (6).

Presently, some foods may have a third-party Non-GMO project verified label, which indicates that the product contains no GMOs. However, this label is voluntary.

Its also worth noting that any food labeled 100% organic does not contain any GMO ingredients, because U.S. law prohibits this. However, if a product is simply labeled organic, it may contain some GMOs (30).

In the European Union (EU), foods with more than 0.9% GMO ingredients must list genetically modified or produced from genetically modified [name of food]. For foods without packaging, these words must be listed near the item, such as on the supermarket shelf (31).

Until the new regulations come into place in the United States, there is no clear way to tell if a food contains GMO ingredients.

However, you can try to avoid GMO foods by eating locally, as many small farms are unlikely to use GMO seeds. Alternatively, you can avoid foods that contain ingredients from the GMO crops listed above.

Until the 2022 USDA rule takes effect, its hard to determine which foods contain GMOs in the United States. You can avoid GMOs by limiting GMO ingredients, eating locally, looking for third-party non-GMO labels, or buying 100% organic.

GMOs are foods that have been modified using genetic techniques.

Most foods in your local supermarket contain GMO ingredients because theyre easier and more cost-effective for farmers, which makes them cheaper for the consumer.

In the United States, foods grown using GMO techniques include corn, soybean, canola, sugar beet, alfalfa, cotton, potatoes, papaya, summer squash, and a few varieties of apples.

Although current research suggests that GMO foods are safe for consumption, some people are concerned about their potential health effects. Due to a lack of long-term human studies, more research is needed.

In the United States, its currently not mandatory to label foods that contain GMOs. However, as of 2022, all foods that contain GMO ingredients must have the term bioengineered food somewhere on the packaging or a scannable code to show that it has GMO ingredients.

View original post here:
GMOs: Pros and Cons, Backed by Evidence - Healthline

Read More...

In college, Elon Musk thought these 5 things would change the world – CNBC

July 5th, 2020 8:42 am

The internet

Musk believed the internet, nascent in the '90s, would "fundamentally change humanity," he said on the podcast.

"I would not regard this as a profound insight but rather an obvious one," Musk said.

He compared the internet to the human nervous system: "If you didn't have a nervous system, you wouldn't know what's going on. Your fingers wouldn't know what's going on. Your toes wouldn't know what's going on. You'd have to do it by diffusion," he said.

"The way information used to work was by diffusion. One human would have to call another human or write them in a letter. [That was] extremely slow diffusion. And if you wanted access to books, and you did not have a library, you don't have it. That's it."

He knew the internet could change all that.

And while Musk only had minimal access to the internet at the time (only to use it for his physics studies, he said), he knew the internet would be a "fundamental and profound change."

"Now, you have access to all books instantly, and you can be in a remote mountaintop location and have access to all of humanity's information if you got a link to the internet," he said on the podcast. "Now suddenly, human organisms anywhere would have access to all the information instantly."

Musk believed "making life multi-planetary and making consciousness multi-planetary" would change the world, he said on the podcast.

As a child, Musk was influenced by a variety of science fiction booksand he believed he'd one day "[build] spaceships to extend the human species's reach," according tothe book"Elon Musk." (Musk previously said that theseven-book "Foundation" science fiction series by scientist and author Isaac Asimov, for example, was "fundamental to the creation of his aerospace company, SpaceX.")

On May 30, SpaceXsuccessfully launched two NASA astronautsinto orbit for the first time. It was a milestone forhuman spaceflightand got Musk one step closer to achievinghis Mars ambitions.

Just as a character in the 1997 movie Gattaca undergoes genetic engineering to pursue his dream of space travel, according to Musk, when he was younger he believed being able to change human genetics could change the world.

And it's happening today, with technology like Crispr, Musk said on the podcast.

"It will become normal, I think, to change the human genome for getting rid of diseases or propensity to various diseases," he said. "That's going to be like the first thing you'd want headed out. If you've got a situation where you're definitely going to die of some cancer at age 55, you'd prefer to have that edited out."

"There's the Gattaca sort-of extreme thing where it's not really edited out but it's edited in for various enhancements and that kind of thing," he said, "which probably will come too."

"I'm not arguing for or against it," Musk said. "I'm just saying it's more likely to come than not down the road."

As a teenager, Musk felt a "personal obligation" for the fate of mankind and felt inspired to create "cleaner energy technology" one day, according to the book"Elon Musk."

So he believed that sustainable energy would change the future.

"Sustainability, actually, was something that I thought was important before the environmental implications became as obvious as they are," he said on the podcast. "If you mine and burn hydrocarbons[compounds that form the basis of natural gas, oil and coal], then you're going to run out of them. It's not like mining metals.... We will never run out of metals, but we will run out of hydrocarbons."

He said the future may bring a carbon taxthat would raisethe cost of burning fossil fuels to mitigate climate change, which is a "no brainer."

In 2004, Musk invested in and became a co-founder ofelectric car companyTesla.Hebecame CEO in 2008. On Wednesday, Tesla became the world's most valuable automakerwhen the electric vehicle company's market capitalization surpassed Toyota's for the first time.

"AI is a really major one" too, Musk said on the podcast.

In 2019,at the World Artificial Intelligence Conference in Shanghai, Musk (who co-founded non-profit AI research lab OpenAIbut laterleft the company's board) said computers will "surpass us in every way," including scary things, likejob disruptionfrom robots or even apotentialAIracethatleadstoa third World War.

AI is "capable of vastly more than almost anyone knows and the rate of improvement is exponential," he saidhe said at the 2018 South by Southwest tech conference.

Musk also founded machine intelligence venture Neuralink, because he believes humans must merge with AI to avoid becoming irrelevant.

"We do want a close coupling between collective human intelligence and digital intelligence,"he said at the SXSW conference, "and Neuralink is trying to help in that regard by trying creating a high bandwidth interface between AI and the human brain."

Check out: The best credit cards of 2020 could earn you over $1,000 in 5 years

Don't miss:

See original here:
In college, Elon Musk thought these 5 things would change the world - CNBC

Read More...

Improve alignment of research policy and societal values – Science Magazine

July 5th, 2020 8:42 am

Historically, scientific and engineering expertise has been key in shaping research and innovation (R&I) policies, with benefits presumed to accrue to society more broadly over time (1). But there is persistent and growing concern about whether and how ethical and societal values are integrated into R&I policies and governance, as we confront public disbelief in science and political suspicion toward evidence-based policy-making (2). Erosion of such a social contract with science limits the ability of democratic societies to deal with challenges presented by new, disruptive technologies, such as synthetic biology, nanotechnology, genetic engineering, automation and robotics, and artificial intelligence. Many policy efforts have emerged in response to such concerns, one prominent example being Europe's Eighth Framework Programme, Horizon 2020 (H2020), whose focus on Responsible Research and Innovation (RRI) provides a case study for the translation of such normative perspectives into concrete policy action and implementation. Our analysis of this H2020 RRI approach suggests a lack of consistent integration of elements such as ethics, open access, open innovation, and public engagement. On the basis of our evaluation, we suggest possible pathways for strengthening efforts to deliver R&I policies that deepen mutually beneficial science and society relationships.

Go here to read the rest:
Improve alignment of research policy and societal values - Science Magazine

Read More...

Genome Editing Market to Exhibit Rapid Surge in Consumption in the COVID-19 Crisis 2025 – 3rd Watch News

July 5th, 2020 8:42 am

[98 pages report] This market research report includes a detailed segmentation of the global genome editing market by technology (CRISPR, TALEN, ZFN, and Others), by application (Cell Line Engineering, Genetic Engineering, and Others), By end-user (Research Institutes, Biotechnology and Pharmaceutical Companies, and Contract Research Organizations), by regions (North America, Europe, Asia Pacific, and Rest of the World).

Request For Report[emailprotected]https://www.trendsmarketresearch.com/report/sample/9845

Overview of the Global Genome Editing Market

Infoholics market research report predicts that the Global Genome Editing Market will grow at a CAGR of 14.4% during the forecast period. The market has witnessed steady growth in the past few years with the development in technology and the introduction of highly sensitive, robust, and reliable systems in the market. The market is fueled due to increase in genetic disorders, increasing investment and funds, and technological advancements in genome editing.

The market continues to grow and is one of the increasingly accepted market in many countries worldwide. Vendors are focusing towards obtaining funds and collaborating with universities to enlarge their research and development capabilities. The majority of the revenue is generated from the leading players in the market with dominating sales of ThermoFisher Scientific, GenScript Corp., Sangamo Therapeutics, Lonza Group, and Horizon Discovery Group plc.

According to Infoholic Research analysis, North America accounted for the largest share of the global genome editing market in 2018. US dominates the market with majority of genome editing companies being located in this region. However, China has not been too far behind and has great government support for the research in genome editing field.

Genome Editing Market by Technology:

In 2018, the CRISPR segment occupied the largest share due to specific, effective, and cost-effective nature of the technology. Many companies are focusing on providing genome editing services. For instance, in January 2019, Horizon Discovery extended CRISPR screening service to primary human T cells.

Get Complete TOC with Tables and[emailprotected]https://www.trendsmarketresearch.com/report/discount/9845

Genome Editing Market by Applications:

In 2018, the cell line engineering accounted the maximum share followed by genetic engineering. Increase in the number of people suffering with genetic disorders has driven the growth of the genome editing market.

Genome Editing Market by End Users:

In 2018, the biotechnology and pharmaceutical companies gained the highest market share for genome editing market due to increased pervasiveness of cancer and infectious diseases are driving research goings-on in biotechnology & pharmaceutical companies segment.

Genome Editing Market by Regions:

The market is dominated by North America, followed by Asia Pacific and Europe. The major share of the North America market is from the US due to quick adoption of new and advanced technologies.

Genome Editing Market Research Competitive Analysis The market is extremely fragmented with several smaller companies struggling for market share. Big pharmaceutical establishments have also united with venture capitalists to provide funding to the start-ups. In 2015, Bayer financed $335 million and in the very same year, Celgene combined with Abingworth invested $64 million in CRISPR Therapeutics. The NIH recently granted 21 somatic cell genome editing grants of almost $86 million over the next half a decade. These endowments are the foremost to be granted through the Somatic Cell Genome Editing (SCGE) program that was initiated in January 2018 with NIH Common Fund.

The companies are collaborating and licensing to increase their capabilities in the market. CRISPR, TALEN, ZFN, Meganuclease, ARCUS, and RTDS are some of the key technology areas concentrated by key players in the market. Since 2015, the deals on the CRISPR technology has drastically increased.

Key vendors:

Key competitive facts

Benefits The report provides complete details about the usage and adoption rate of genome editing market. Thus, the key stakeholders can know about the major trends, drivers, investments, vertical players initiatives, and government initiatives towards the healthcare segment in the upcoming years along with details of the pureplay companies entering the market. Moreover, the report provides details about the major challenges that are going to impact the market growth. Additionally, the report gives complete details about the key business opportunities to key stakeholders in order to expand their business and capture the revenue in specific verticals, and to analyze before investing or expanding the business in this market.

<<< Get COVID-19 Report Analysis >>>https://www.trendsmarketresearch.com/report/covid-19-analysis/9845

Key Takeaways:

Original post:
Genome Editing Market to Exhibit Rapid Surge in Consumption in the COVID-19 Crisis 2025 - 3rd Watch News

Read More...

Minister ties smart farming to food security – The News International

July 5th, 2020 8:42 am

ISLAMABAD: Minister for National Food Security and Research Fakhar Imam on Saturday said the government was working hard in applying genetic engineering, crop diversification, and biotechnology in agriculture sector to ensure countrys food security.

The government is committed to double the income of the farmers and this can be achieved only if they use technology and opt for crop diversification, he said.

There is also a dire need to move towards precision agriculture technology, big data, and quality assurance to meet international quality parameters.

The minister said the government wanted to focus on agricultural research, education, and extension to promote export-focused production and that could not be avoided anymore as it was vital for agro-based industrial development.

He said the universities and research departments should be groomed and advanced technology be applied for the benefit of agriculture, adding, there was no doubt Pakistan was an agro-based country but we had not focused on it as we should have over the years.

We should continue to work together towards climate change resilient research, mechanisation in pulses cultivation and processing, improving seed replacement rate to fill the gap of technology adoption in the farming fields.

He said the government would take all-out measures to facilitate the farmers as development of the agriculture sector was among its priorities.

Agriculture is not only the basis for countrys economy, but it also ensures the supply chain of foods to the masses. That is why it is of paramount importance to focus on agriculture sector to avoid food security issues, the minister said.

He explained the agriculture sector was faced with multiple issues including water scarcity, low quality seeds and pesticides.

Moreover, the locust swarms and climate change, were also emerging threat for the sector as it had become a huge challenge for the crops the same way COVID-19 had become a threat to human life, Imam added.

Food availability will be ensured through increase in production of food items, he said, adding, Improved farm techniques will also be promoted and issues like land and water management will also be addressed.

Read more:
Minister ties smart farming to food security - The News International

Read More...

The biotech IPO boom is becoming ‘historic’ as four more throw their hats in – Endpoints News

July 5th, 2020 8:42 am

Four more US biotechs filed to go public Friday as yet more companies clamber to get through a yawning IPO window and onto a market thats signaled its willingness to reward nearly any new drugmaker.

The new entrants are led by ALX Oncology and the biological analytics biotech Berkeley Lights, each of whom filed to raise $100 million. The autoimmune company Pandion Therapeutics also filed for $75 million, and Kiromic Biopharma, a tiny immuno-oncology startup based in San Antonio, filed for $25 million.

These companies will try to capitalize on a 2020 biotech IPO boom that the investment firm Renaissance Capital recently called historic. The spree began in January and, after a brief interlude when the pandemic first hit the US and Europe, has only picked up in the last two months. The 23 companies that have gone public averaged an 80% return on their offering price, according to Renaissance Capital numbers. Every single one priced above their midpoint or upsized their offering.

Unlike most of their fellow newly or would-be public biotechs, Berkeley Lights will enter the market with significant revenue on the books. The company doesnt make drugs but instead has built a digital cell biology platform that can analyze living cells from a variety of different dimensions and, in principal, accelerate drug development. Theyve partnered with Sanofi and Pfizer on antibody discovery and last year, signed a $150 million pact with Ginkgo Bioworks to help the synthetic biology unicorn advance its genetic engineering capabilities.

All told, the company earned $51 million in revenue last year. Unlike a drug developer, they have no cash earmarked for specific pipeline products, and said they will use proceeds for research, potential acquisitions and general corporate purposes.

For ALX Oncology, a successful offering would mean their second $100 million tranche of the year. In February, the California biotech raised $105 million to help advance its sole pipeline candidate: an antibody designed to target CD-47. Thats the same dont-eat-me signal targeted by Irv Weissmans Forty Seven Inc., the biotech Gilead paid $5 billion for in January. ALXs pitch is that their antibodys FC receptor is engineered to not attract macrophages, reducing toxicity. The biotech will use their proceeds to push the drug through its ongoinghead and neck squamous cell carcinomaand gastric cancer trial and begin new trials for it in acute myeloid leukemia and myelodysplastic syndrome. A portion is also earmarked for CMC work.

Founded out of Polaris in 2018, Pandion Therapeutics was tapped last year for an up-to $800 million partnership to help a reorganizing Astellas develop antibodies for auto-immune disorders. That deal included $45 million upfront and the company also earned $80 million from a Series B in April. The new funding will be used to push their lead molecule through Phase I/II trials in ulcerative colitis while also backing preclinical research, particularly on a pair of antibodies meant to turn on the PD-1 checkpoint and tamp down the immune system.

Kiromic, meanwhile, is in part just trying to stay alive. With less than $2 million 5 million when a subsequent $3 million Series B is included in the bank at years end, they acknowledged in their S-1 that theres substantial doubt regarding the Companys ability to continue as a going concern. In this climate, though, thats worked out just fine for other companies. Applied Molecular Transport went publicin May with the same concerns. They ultimately raised $177 million.

View original post here:
The biotech IPO boom is becoming 'historic' as four more throw their hats in - Endpoints News

Read More...

Fakhar Imam stresses importance of biotechnology, crop diversification for food security – Associated Press of Pakistan

July 5th, 2020 8:42 am

ISLAMABAD, Jul 4 (APP):Minister for National Food Security and Research Fakhar Imam Saturday said that government was working hard in applying genetic engineering, crop diversification and biotechnology in agriculture sector to ensure food safety in the country.His government was committed to double the income of the farmers and this can be achieved only if farmers use technology and opt for crop diversification, he said while speaking to PTV news channel.He said there is a dire need to move towards precision agriculture technology, big data and quality assurance to meet international quality parameters.The PTI government wants to focus on agricultural research, education and extension to promote export-focused production that cannot be avoided anymore as it is vital for agro-based industrial development, headded.Imam stated that universities and research departments should be groomed and advanced technology be applied for the benefit of agriculture.The minister said there was no doubt that Pakistan was an agro-based country but we had not focused on it as we should have over the years.We should continue to work together towards climate change resilient research, mechanization in pulses cultivation and processing, improving seed replacement rate to fill the gap of technology adoption in the farmers fields.He said the government would take all-out measures to facilitate the farmers as development of the agriculture sector was among its priorities.Imam said agriculture is not only the basis for countrys economy but it also ensures the supply chain of foods to the masses. That is why it is of paramount importance to focus on agriculture sector to avoid food securityissues.He further explained that the agriculture sector of the country was being faced with multiple issues including water scarcity, low quality seeds and pesticides.Moreover, the locust swarms and climate change, were also emerging threat for the sector as it had become a huge challenge for the crops the same way COVID-19 had become a threat to human life.Food availability will be ensured through increase in production of food items, he said, adding, improved farm techniques will also be promoted and issues like land and water management will also be addressed.He said the present government of PTI had also formulated different policies, which would became especially important in the wake of climate change and water shortages.

Excerpt from:
Fakhar Imam stresses importance of biotechnology, crop diversification for food security - Associated Press of Pakistan

Read More...

Global Stem Cell Therapy Market (2019-2029) with COVID-19 After Effects Analysis by Emerging Trends, Industry Demand, Growth, Key Players – 3rd Watch…

July 5th, 2020 8:41 am

The new research report titled Stem Cell Therapy Market published by Global Marketers into his huge database. Primary and secondary research methodologies have been used to formulate this report. This Report Provides an in-depth study analyzing the current and future demands of this market also it provides the overview, definition, cost structure, segmentation, recent developments, application,and industry chain analysis, CAGR growth, and Porters Five Forces Analysis, demand. The report has offered an all-inclusive analysis of the global market taking into consideration all the pivotal aspects like growth factors, market developments, future prospects, and trends.

Get/Download Free sample report, @ https://www.globalmarketers.biz/report/life-sciences/2014-2029-report-on-global-stem-cell-therapy-market-by-player,-region,-type,-application-and-sales-channel/152309 #request_sample

Osiris TherapeuticsNuVasiveChiesi PharmaceuticalsJCRPharmaceuticalPharmicellMedi-postAnterogenMolmedTakeda (TiGenix)

This Stem Cell Therapy market report will help you determine and analyze your portfolio of key market players with information such as company profile, components and services offered, financial information from the past three years, and key developments it helps you to develop a strategy to gain a competitive edge in the past 4-5 years.

North America (United States, Canada), Asia-Pacific (China, Japan, India, Australia, and South Korea), Latin America (Brazil, Mexico, etc.), The Middle East and Africa (GCC and South Africa), Europe (Germany, Spain, France, UK, Russia, and Italy)

The competitive landscape of the Stem Cell Therapy Market is discussed in the report, including the market share and new orders market share by the company. The report profiles the leading players in the market for providing an in-depth study of this industry as well as provides growth opportunities, future demands of this market. The report also discusses the implemented by the key vendors to maintain their hold on the industry. The business overview and financial overview of each of the key vendors have been analyzed in this research Report.

The research report studies the market in a detailed manner by explaining the key facets of the market that are foreseeable to have a countable stimulus on its developing extrapolations over the forecast period. This report defines the current and present situation as well as the future forecast of this Stem Cell Therapy Market. Also, this report provide all the information on Impact Analysis of COVID-19 on this industry.

Stem Cell Therapy Market By Type:

AutologousAllogeneic

Stem Cell Therapy Market By Application:

Musculoskeletal DisorderWounds & InjuriesCorneaCardiovascular DiseasesOthers

Hurry Up!!! Ask For Discount https://www.globalmarketers.biz/discount_inquiry/discount/152309

For more Information or Browse the complete report @ https://www.globalmarketers.biz/report/life-sciences/2014-2029-report-on-global-stem-cell-therapy-market-by-player,-region,-type,-application-and-sales-channel/152309 #table_of_contents

Go here to see the original:
Global Stem Cell Therapy Market (2019-2029) with COVID-19 After Effects Analysis by Emerging Trends, Industry Demand, Growth, Key Players - 3rd Watch...

Read More...

Impacts of the COVID-19-Mesenchymal Stem Cells Market Size Current and Future Industry Trends, 2020-2028 – 3rd Watch News

July 5th, 2020 8:41 am

A recent report published by QMI on mesenchymal stem cells market is a detailed assessment of the most important market dynamics. After carrying out a thorough research of mesenchymal stem cells market historical as well as current growth parameters, business expectations for growth are obtained with utmost precision. The study identifies specific and important factors affecting the market for mesenchymal stem cells during the forecast period. It can enable manufacturers of mesenchymal stem cells to change their production and marketing strategies in order to envisage maximum growth.

Get Sample Copy of This Report @https://www.quincemarketinsights.com/request-sample-61514?utm_source=3WN&utm_medium=santosh

According to the report, the mesenchymal stem cells market has been segmented by source (bone marrow, umbilical cord blood, peripheral blood, lung tissue, synovial tissues, amniotic fluids, adipose tissues), by application (injuries, drug discovery, cardiovascular infraction, others).Insights about the regional distribution of market:The market has been segmented in major regions to understand the global development and demand patterns of this market.

For the mesenchymal stem cells market, the segments by region are North America, Asia Pacific, Western Europe, Eastern Europe, Middle East, and Rest of the World. During the forecast period, North America, Asia Pacific and Western Europe are expected to be major regions on the mesenchymal stem cells market.

North America and Western Europe have been one of the key regions as they have an established healthcare infrastructure for product innovations and early adaptations. This is estimated to drive demand for the mesenchymal stem cells market in these regions. In addition to this, some of the major companies operating in this market are headquartered in these regions.

Asia Pacific is estimated to register a high CAGR mesenchymal stem cells market. The APAC region has witnessed strategic investments by global companies to cater to the growing demand for healthcare solutions in recent years. The Middle East and Rest of the World are estimated to be emerging regions for the mesenchymal stem cells market.

Make An Inquiry For Purchasing This Report @https://www.quincemarketinsights.com/enquiry-before-buying/enquiry-before-buying-61514?utm_source=3WN&utm_medium=santosh

Market Players Cell Applications, Inc., Cyagen Biosciences Inc. Axol Bioscience Ltd., Cytori Therapeutics Inc., Stem Cell Technologies Inc., Celprogen, Inc.

Reasons to Buy This Report:o It provides niche insights for a decision about every possible segment helping in the strategic decision-making process.o Market size estimation of the mesenchymal stem cells market on a regional and global basis.

o A unique research design for market size estimation and forecast.o Identification of major companies operating in the market with related developmentso Exhaustive scope to cover all the possible segments helping every stakeholder in the mesenchymal stem cells market.

Market Segmentation:By Source:o Bone Marrowo Umbilical Cord Bloodo Peripheral Bloodo Lung Tissueo Synovial Tissueso Amniotic Fluidso Adipose Tissues

By Application:o Injurieso Drug Discoveryo Cardiovascular Infractiono Others

By Region:o North Americao North America, by Country? US? Canada? Mexicoo North America, by Sourceo North America, by Application

o Western Europeo Western Europe, by Country? Germany? UK? France? Italy? Spain? The Netherlands? Rest of Western Europeo Western Europe, by Sourceo Western Europe, by Application

o Asia Pacifico Asia Pacific, by Country? China? India? Japan? South Korea? Australia? Indonesia? Rest of Asia Pacifico Asia Pacific, by Sourceo Asia Pacific, by Application

o Eastern Europeo Eastern Europe, by Country? Russia? Turkey? Rest of Eastern Europeo Eastern Europe, by Sourceo Eastern Europe, by Application

o Middle Easto Middle East, by Country? UAE? Saudi Arabia? Qatar? Iran? Rest of Middle Easto Middle East, by Sourceo Middle East, by Applicationo Rest of the Worldo Rest of the World, by Country? South America? Africao Rest of the World, by Sourceo Rest of the World, by Application

Years Covered in the Study:Historic Year: 2016-2017Base Year: 2018Estimated Year: 2019Forecast Year: 2028

Objectives of this report:o To estimate the market size for mesenchymal stem cells market on a regional and global basis.o To identify major segments in mesenchymal stem cells market and evaluate their market shares and demand.

o To provide a competitive scenario for the mesenchymal stem cells market with major developments observed by key companies in the historic years.o To evaluate key factors governing the dynamics of mesenchymal stem cells market with their potential gravity during the forecast period.Customization:This study is customized to meet your specific requirements:

o By Segmento By Sub-segmento By Region/Countryo Product Specific Competitive Analysis

Contact:Quince Market InsightsAjay D. (Knowledge Partner)Office No- A109Pune, Maharashtra 411028Phone: +91 706 672 4848 +1 208 405 2835 / +44 121 364 6144 /Email: [emailprotected]Web:www.quincemarketinsights.com

ABOUT US:QMI has the most comprehensive collection of market research products and services available on the web. We deliver reports from virtually all major publications and refresh our list regularly to provide you with immediate online access to the worlds most extensive and up-to-date archive of professional insights into global markets, companies, goods, and patterns.

Read more from the original source:
Impacts of the COVID-19-Mesenchymal Stem Cells Market Size Current and Future Industry Trends, 2020-2028 - 3rd Watch News

Read More...

Stem Cell Therapy Market Top-Players and Qualitative Future Analysis Forecast to 2027 | Magellan, Medipost Co., Ltd, Osiris Therapeutics, Inc., Kolon…

July 5th, 2020 8:41 am

Global Stem Cell Therapy Market Report, Sales and Consumption Status and Prospects Professional Research, the report classifies the global Stem Cell Therapy Market in a precise manner to offer detailed insights about the aspects responsible for augmenting as well as restraining market growth.

Stem Cell Therapy Market report provides a thoroughly researched abstract of the key players with considerable shareholdings at a Global level regarding demand, sales, and income by providing better products and services. Research Report outlines a forecast for the Stem Cell Therapy market between 2020 and 2027. In terms of value, the Stem Cell Therapy industry is expected to register a steady CAGR during the forecast period.

To learn more about this report, request a sample copy*

* The sample copy includes: Report Summary, Table of Contents, Segmentation, Competitive Landscape, Report Structure, and Methodology.

Request a sample copy of this report @ https://www.coherentmarketinsights.com/insight/request-sample/2848

The key players profiled in this report include: Magellan, Medipost Co., Ltd, Osiris Therapeutics, Inc., Kolon TissueGene, Inc., JCR Pharmaceuticals Co., Ltd., Anterogen Co. Ltd., Pharmicell Co., Inc., and Stemedica Cell Technologies, Inc.

Regions included:

o North America (United States, Canada, and Mexico)

o Europe (Germany, France, UK, Russia, and Italy)

o Global (China, Japan, Korea, India, and Southeast Asia)

o South America (Brazil, Argentina, Colombia)

o Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, and South Africa)

Key Benefits:

o This study gives a detailed analysis of drivers and factors limiting the market expansion of Stem Cell Therapy

o The micro-level analysis is conducted based on its product types, end-user applications, and geographie

o Porters five forces model gives an in-depth analysis of buyers and suppliers, threats of new entrants & substitutes and competition amongst the key market players

o By understanding the value chain analysis, the stakeholders can get a clear and detailed picture of this Stem Cell Therapy market

Table of Contents

Report Overview: It includes the Stem Cell Therapy market study scope, players covered, key market segments, market analysis by application, market analysis by type, and other chapters that give an overview of the research study.

Executive Summary: This section of the report gives information about Stem Cell Therapy market trends and shares, market size analysis by region and analysis of Global market size. Under market size analysis by region, analysis of market share and growth rate by region is provided.

Profiles of International Players: Here, key players of the Stem Cell Therapy market are studied on the basis of gross margin, price, revenue, corporate sales, and production. This section gives a business overview of the players and shares their important company details.

Regional Study: All of the regions and countries analyzed in the Stem Cell Therapy market report is studied on the basis of market size by application, the market size by product, key players, and market forecast.

Note: *The Download PDF brochure only consist of Table of Content, Research Framework, and Research Methodology.

Request PDF Research Report Brochure @ https://www.coherentmarketinsights.com/insight/request-pdf/2848

The research study can answer the following Key questions:

Major Highlights of TOC:

Chapter One: Global Stem Cell Therapy Market Industry Overview

1.1 Stem Cell Therapy Industry

1.1.1 Overview

1.1.2 Products of Major Companies

1.2 Stem Cell Therapy Market Segment

1.2.1 Industry Chain

1.2.2 Consumer Distribution

1.3 Price & Cost Overview

Chapter Two: Global Stem Cell Therapy Market Demand

2.1 Segment Overview

2.1.1 APPLICATION 1

2.1.2 APPLICATION 2

2.1.3 Other

2.2 Global Stem Cell Therapy Market Size by Demand

2.3 Global Stem Cell Therapy Market Forecast by Demand

Chapter Three: Global Stem Cell Therapy Market by Type

3.1 By Type

3.1.1 TYPE 1

3.1.2 TYPE 2

3.2 Stem Cell Therapy Market Size by Type

3.3 Stem Cell Therapy Market Forecast by Type

Chapter Four: Major Region of Stem Cell Therapy Market

4.1 Global Stem Cell Therapy Sales

4.2 Global Stem Cell Therapy Revenue & market share

Chapter Five: Major Companies List

Chapter Six: Conclusion

Need a discount?

Note: *The discount is offered on the Standard Price of the report.

Request discount for this report @ https://www.coherentmarketinsights.com/insight/request-discount/2848

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

**Be Safe and Stay Home**

About Coherent Market Insights:

Coherent Market Insights is a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contact Us:

Mr.ShahPhone: US +1-206-701-6702/UK +44-020 8133 4027[emailprotected]

Go here to read the rest:
Stem Cell Therapy Market Top-Players and Qualitative Future Analysis Forecast to 2027 | Magellan, Medipost Co., Ltd, Osiris Therapeutics, Inc., Kolon...

Read More...

Page 470«..1020..469470471472..480490..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick