header logo image


Page 350«..1020..349350351352..360370..»

OncoHost to Present Data on Predicting Host Response to Immunotherapy at the MAP 2020 Virtual Congress – ESMO – PRNewswire

October 6th, 2020 4:55 am

BINYAMINA, Israel, Oct. 5, 2020 /PRNewswire/ -- OncoHost, a global leader in host response profiling for improved personalized cancer therapy, announced today that Professor Yuval Shaked, co-founder and Chief Scientific Advisor at OncoHost, and Professor of Cell Biology and Cancer Science at the Technion Israel Institute of Technology, will deliver a presentation titled A Proteomics-Based Platform for Predicting Response to Immunotherapy and Personalizing Treatment Plans at the MAP 2020 Virtual Congress - ESMOthis Friday, October 9th at 17:20 PM CEST.

The presentation will show how through the analysis of host response profiles (i.e. the patient's reaction), oncologists may be able to harness this information to better predict clinical outcomes and suggest the ideal combination treatment with immunotherapy.

"Despite major clinical success, immunotherapy treatments have demonstrated efficacy in only a small proportion of patients with non-small cell lung cancer (NSCLC)," said Prof. Yuval Shaked. "OncoHost's studies have indicated that individual host response to anti-cancer treatment can generate pro-tumorigenic activities and support tumor re-growth and spread. It is therefore vital to analyze and earlier predict host response to treatment in order to improve outcomes and reduce unnecessary side effects experienced by so many patients."

Using machine learning (ML)-based analysis and algorithms to identify highly predictive cohort-based proteomic signatures in patients, personalized response prediction can be used to improve precision medicine in oncology. Personalized treatment plans can then be created through information based on cohort-based statistical analysis, personalized adaption and finally, translation to clinically relevant targets.

Prof. Shaked's presentation willinclude a real-life case study on whom a Host Response profile analysis was performed, and will be followed by a live Q&A.

MAP is the leading congress in precision medicine in oncology in Europe, established by key opinion leaders in the field. The name of the Congress was recently changed into Molecular Analysis for Precision Oncology to better reflect its aims of focusing on science, translational research, education and collaboration. This year's event will be held virtually on October 9-10.

About OncoHost

OncoHost combines life-science research and advanced machine learning technology to develop personalized strategies to maximize the success of cancer therapy. Utilizing proprietary proteomic analysis, the company aims to understand patients' unique response to therapy and overcome one of the major obstacles in clinical oncology today resistance to therapy. OncoHost's Host Response Profiling platform (PROphet) analyzes proteomic changes in blood samples to monitor the dynamics of biological processes induced by the patient (i.e., the host) in response to a given cancer therapy. This proteomic profile is highly predictive of individual patient outcome, thus enabling personalized treatment planning. PROphet also identifies potential drug targets, advancing the development of novel therapeutic strategies as well as rationally based combination therapies.

For more information, visithttp://www.oncohost.com

Follow OncoHost onLinkedIn

OncoHost Media Contact: Ellie HansonFinn Partners [emailprotected]+1 929-222-8006

SOURCE OncoHost

https://oncohost.com/

Read the original here:
OncoHost to Present Data on Predicting Host Response to Immunotherapy at the MAP 2020 Virtual Congress - ESMO - PRNewswire

Read More...

Comparing the benefits of scooter-sharing vs. bike-sharing – MIT News

October 6th, 2020 4:55 am

While ride-sharing services like Grab, Uber, and Gojek have become a pervasive part of life, many countries in the Asia Pacific region are still unconvinced when it comes to micro-mobilities such as bike and scooter sharing. While the convenience offered by these is great, especially in this Covid-19 era when people may remain wary of crowding in buses and metro trains, there is a need for in-depth knowledge of these new transportation options to help guide policy and regulation.

A group of scientists in the Senseable City Lab at MIT and the Future Urban Mobility (FM) Interdisciplinary Research Group at the Singapore-MIT Alliance for Research and Technology (SMART), MITs research enterprise in Singapore, set out to better understand the phenomenon and inform policy-making through a comparative analysis of bike-sharing and scooter-sharing activities in Singapore.

The researchers shared their findings in a paper titled Understanding spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility published in the journal Computers, Environment and Urban Systems. The study is based on real usage records containing location and time of departures and arrivals in two distinct areas in Singapore.

We constructed historical trajectories of the bike-sharing and scooter-sharing trips and compared usage patterns of the two systems at the Marina Bay area and the NUS campus, says Rui Zhu, a postdoc at SMART FM. Our results showed increased sharing frequency and decreased fleet size for scooter-sharing, suggesting that it performs better than bike-sharing.

More specifically, the sharing frequency was increased from less than one time per day for bike-sharing to more than three times per day for scooter-sharing, but the researchers believe that can be improved even further to create a more profitable service.

The study also found that shared scooters in Marina Bay were frequently left away from their designated parking spaces or charging stations, indicating costly and labor-intensive maintenance since employees need to collect and transport scooters between stations continuously. However, the statistics also showed that over 28 percent and 26 percent of trips departed from and arrived at non-stations respectively, suggesting that users actually utilized most of the inappropriately returned scooters.

In addition, the study revealed quantitative changes in trips over time, distances, and duration, and the influence of weather on the demand of micro-mobilities.

In Singapore and a few other cities, dockless bike-sharing systems rose and fell in just one year, followed by an explosion of docking scooter-sharing systems. But we didnt have the necessary insights for appropriate business and policy decisions, Zhu explains. Our study goes deeper into the problems and possibilities of micro-mobility sharing and suggests how these services can be improved.

To facilitate a sustainable scooter-sharing service, the researchers suggest optimizing the fleet size of stations and their locations, regulating returning behaviors more strictly, enabling scooters to have autonomous repositioning functionality, and increasing the useful battery life of scooters.

To increase battery life, they suggest installing a photovoltaic module on scooters for solar charging during trips and parking time or equipping conventional dock-based stations with grid charging or solar charging platforms, allowing for an environmentally friendly solution that will be able to reduce carbon footprints.

While the business model and user behavior greatly impact the success of mobility-sharing services, government policy also plays a significant role. Supportive policies or regulations on controlling fleet sizes and limiting usage to discrete areas are huge drivers for the sustainable development of the new transportation modes. With this study, SMARTs researchers hope to fill existing gaps in knowledge about micro-mobility sharing to help inform policy decisions.

SMART was established by MIT in partnership with the National Research Foundation of Singapore (NRF) in 2007. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise (CREATE) developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, performing cutting-edge research in areas of interest to both. SMART currently comprises an Innovation Center and six Interdisciplinary Research Groups: Future Urban Mobility, Antimicrobial Resistance, BioSystems and Micromechanics, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, and Low Energy Electronic Systems.

The Future Urban Mobility group harnesses new technological and institutional innovations to create the next generation of urban mobility systems to increase accessibility, equity, safety, and environmental performance for the citizens and businesses of Singapore and other metropolitan areas, worldwide.

SMART research is supported by the NRF and situated in CREATE.

See more here:
Comparing the benefits of scooter-sharing vs. bike-sharing - MIT News

Read More...

Transgene, NEC and BostonGene Announce Strategic Collaboration for Two Ongoing Clinical Trials for Patients with Ovarian and Head & Neck Cancers -…

October 6th, 2020 4:55 am

Oct. 6, 2020 05:30 UTC

STRASBOURG, France & TOKYO & WALTHAM, Mass.--(BUSINESS WIRE)-- Regulatory News:

Transgene (Euronext Paris: TNG), a biotech company that designs and develops virus-based immunotherapies for the treatment of cancer, NEC Corporation (NEC; TSE: 6701), a leader in IT and network technologies and BostonGene Corporation (BostonGene), a biomedical software company committed to defining optimal precision medicine-based therapies for cancer patients, today announced a strategic collaboration for two ongoing Phase 1 clinical trials of TG4050, an individualized therapeutic vaccine for ovarian and head & neck cancers based on Transgenes proprietary myvac platform and NECs AI-driven Neoantigen Prediction System in Europe and the United States.

Transgenes myvac platform brings together a series of highly innovative technologies, such as viral genome engineering, to achieve high-speed modular manufacturing of bespoke immunotherapies.

TG4050 is an individualized cancer vaccine based on the myvac platform; it is based on an optimized viral platform for cancer vaccination and integrates NECs artificial intelligence capabilities. This therapeutic vaccine aims at stimulating the immune system of patients to induce a T-cell response against tumor-specific antigenic alterations, called neoantigens. These neoantigens are derived from genomic mutations and selected using NECs Neoantigen Prediction System, an advanced AI technology that has already been applied in the field of oncology. TG4050 has been designed to target up to 30 patient-specific neoantigens. Transgene is sponsoring two Phase 1 trials that are expected to deliver a first proof of concept of this virus-based individualized approach.

As part of the collaboration, BostonGene will conduct genomic and transcriptomic analyses of primary patient tumors collected from patients enrolled in these two clinical trials to identify predictors of response to TG4050 and the cancer cell-intrinsic and -extrinsic factors that may mediate each patients response to the vaccine. BostonGenes platform integrates the genomic and transcriptomic analyses to simultaneously assess the activity of the tumor and the microenvironment through the identification of significant somatic alterations, evaluation of gene expression, estimation of tumor heterogeneity and classification of the microenvironment.

BostonGene generates a Tumor Portrait Report, involving the data-driven, visually appealing and self-explanatory tumor schematics elegantly depicting tumor activity, tumor cellular composition, and functionality of the immune-microenvironment and other tumor-associated processes. The comprehensive report will provide insights into the individual oncogenic state and immunogenicity of the patients tumor.

BostonGenes unique solution and deep expertise in Next Generation Sequencing (NGS) analysis provide us with the detailed profiles of a tumor and its micro-environment. These Tumor Portrait Reports will help us look at our patient data in light of the current published evidence and could help us accelerate the development of TG4050, said ric Qumneur, Pharm.D., Ph.D., Executive VP, Chief Scientific Officer of Transgene. This novel way of analyzing patient data is part of an ambitious translational program that supports the development of our myvac platform. By integrating these types of approaches into our studies, we seek to build an integrated framework for the use of viral-based immunotherapeutics.

NEC looks forward to strengthening its collaboration with BostonGene through these trials of TG4050. BostonGenes advanced analysis of NGS among cancer patients provides excellent profiling that we believe will add important insight into the understanding of each patients tumor environment and how it reflects on the clinical outcomes of our treatment, said Osamu Fujikawa, Senior Vice President at NEC Corporation.

BostonGene is proud to support Transgene and NEC during these critical Phase 1 clinical trials, said Nathan Fowler, MD, Chief Medical Officer at BostonGene. This collaboration represents our ongoing commitment to improve immunotherapy options and transform personalization of treatment for cancer patients.

About TG4050 TG4050 is an individualized immunotherapy being developed for solid tumors that is based on Transgenes myvac technology and powered by NECs longstanding artificial intelligence (AI) expertise. This virus-based therapeutic vaccine encodes neoantigens (patient-specific mutations) identified and selected by NECs Neoantigen Prediction System. The prediction system is based on more than two decades of expertise in AI and has been trained on proprietary data allowing it to accurately prioritize and select the most immunogenic sequences.

TG4050 is designed to stimulate the immune system of patients in order to induce a T-cell response that is able to recognize and destroy tumor cells based on their own neoantigens. This individualized immunotherapy is developed for each patient and can be produced in a very short time frame.

This best-in-class candidate is being evaluated in two Phase 1 clinical trials for patients with ovarian cancers (NCT03839524) and HPV-negative head and neck cancers (NCT04183166).

About myvac myvac is a viral vector (MVA) based, individualized immunotherapy platform that has been developed by Transgene to target solid tumors. myvac-derived products are designed to stimulate the patients immune system, recognize and destroy tumors using the patients own cancer specific genetic mutations. Transgene has set up an innovative network that combines bioengineering, digital transformation, established vectorization know-how and unique manufacturing capabilities. Transgene has been awarded Investment for the Future funding from Bpifrance for the development of its platform myvac. TG4050 is the first myvac-derived product being evaluated in clinical trials.

About NEC's Neoantigen Prediction System NEC's neoantigen prediction utilizes its proprietary artificial intelligence (AI), such as graph-based relational learning, which is combined with other sources of data to discover candidate neoantigen targets. NEC comprehensively evaluates the candidate neoantigens with a primary focus placed on its in-house major histocompatibility complex (MHC) binding affinity prediction trained on public and proprietary datasets. These allow NEC to effectively prioritize the numerous candidate neoantigens identified in a single patient.

About Transgene Transgene (Euronext: TNG) is a publicly traded French biotechnology company focused on designing and developing targeted immunotherapies for the treatment of cancer. Transgenes programs utilize viral vector technology with the goal of indirectly or directly killing cancer cells.

The Companys clinical-stage programs consist of two therapeutic vaccines (TG4001 for the treatment of HPV-positive cancers, and TG4050, the first individualized therapeutic vaccine based on the myvac platform) as well as two oncolytic viruses (TG6002 for the treatment of solid tumors, and BT-001, the first oncolytic virus based on the Invir.IO platform).

With Transgenes myvac platform, therapeutic vaccination enters the field of precision medicine with a novel immunotherapy that is fully tailored to each individual. The myvac approach allows the generation of a virus-based immunotherapy that encodes patient-specific mutations identified and selected by Artificial Intelligence capabilities provided by its partner NEC.

With its proprietary platform Invir.IO, Transgene is building on its viral vector engineering expertise to design a new generation of multifunctional oncolytic viruses. Transgene has an ongoing Invir.IO collaboration with AstraZeneca.

Additional information about Transgene is available at: http://www.transgene.fr.

Follow us on Twitter: @TransgeneSA

About NEC Corporation NEC Corporation has established itself as a leader in the integration of IT and network technologies while promoting the brand statement of Orchestrating a brighter world. NEC enables businesses and communities to adapt to rapid changes taking place in both society and the market as it provides for the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential. For more information, visit NEC at https://www.nec.com.

About BostonGene Corporation BostonGene Corporation is pioneering the use of biomedical software for advanced patient analysis and personalized therapy decision making in the fight against cancer. BostonGenes unique solution performs sophisticated analytics to aid clinicians in their evaluation of viable treatment options for each patient's individual genetics, tumor and tumor microenvironment, clinical characteristics and disease profile. BostonGenes mission is to enable physicians to provide every patient with the highest probability of survival through optimal cancer treatments using advanced, personalized therapies. For more information, visit BostonGene at http://www.BostonGene.com.

Transgene disclaimer This press release contains forward-looking statements, which are subject to numerous risks and uncertainties, which could cause actual results to differ materially from those anticipated. The occurrence of any of these risks could have a significant negative outcome for the Companys activities, perspectives, financial situation, results, regulatory authorities agreement with development phases, and development. The Companys ability to commercialize its products depends on but is not limited to the following factors: positive pre-clinical data may not be predictive of human clinical results, the success of clinical studies, the ability to obtain financing and/or partnerships for product manufacturing, development and commercialization, and marketing approval by government regulatory authorities. For a discussion of risks and uncertainties which could cause the Companys actual results, financial condition, performance or achievements to differ from those contained in the forward-looking statements, please refer to the Risk Factors (Facteurs de Risque) section of the Universal Registration Document, available on the AMF website (http://www.amf-france.org) or on Transgenes website (www.transgene.fr). Forward-looking statements speak only as of the date on which they are made and Transgene undertakes no obligation to update these forward-looking statements, even if new information becomes available in the future.

View source version on businesswire.com: https://www.businesswire.com/news/home/20201005005838/en/

Read the original:
Transgene, NEC and BostonGene Announce Strategic Collaboration for Two Ongoing Clinical Trials for Patients with Ovarian and Head & Neck Cancers -...

Read More...

Managing the President’s COVID-19 – American Council on Science and Health

October 6th, 2020 4:55 am

The treatment given to POTUS is the abstraction we all desire personalized medicine. Just the right treatment, at the right time, in the right way. Of course, physicians' day-to-day dilemma is translating guidelines and treatments tested upon populations into efficacious care for the individual sitting across from your desk. And that dilemma is compounded when you deal with VIPs

It is not March; when the virus didn't respond to the treatments that had always worked so well for influenza - we threw everything we had at the problem. While we have made significant progress in treating COVID-19, I do not believe we have a set-in-place protocol for what to do when. There is a broad outline of medications that may reduce symptoms, improve outcomes, and reduce the length of stay lots of ingredients, lots of chefs, but no classic recipe.

All of the medications that the President has been publically acknowledged as receiving reduce symptoms.

Ethical medicine, "shared decision making" between patient and physician requires that I provide you with options, state which I feel is the best approach and why, and together we choose a path forward. The President's care, as with most VIPs, involves lots of chefs. Many chefs with nuanced opinions that by consensus, majority vote, or eminence eventually become a treatment plan. [1] One of the difficulties in treating VIPs, in general, is that in many instances, they believe their eminence extends to being a chef too. They can be very "hands-on" when it comes to choosing treatments and what to pursue.

The patient applies any factors they feel are relevant in that calculus. I think it is apparent that the President has included a political component to his choices. This is not the time to appear weak physically or emotionally. His motorcade to his supporters is an example of powerful eminence in action. As a rule, hospitals don't allow you to leave for a few hours and return; in many cases, chronic smokers with significant addiction to nicotine are not allowed to go outside for a cigarette.

Of course, it takes two to make a medical decision; you still need a physician. Can we reasonably believe that the phrase "an abundance of caution" has not impacted their clinical judgment? Additionally, by my count, the President has had at least three physicians, including his private one, since taking office. The idea that he has a deep enough long-term relationship with any of them that would allow for considered choice is silly; in that way, the President echoes some of our behavior, honoring primary care in word but not deed.

Words matter and their meaningvariessignificantly from one context to another. Consider Chris Christie, who "checked himself in" to a hospital over the weekend. Hospitals are not hotels; you don't check-in; you are admitted to the hospital by an attending physician who has determined you have met the admission criteria. You only would describe admission to the hospital as checking-in to make it seem more an optional vacation choice, less a medical need.

Or the announcement that the President may go home to continue care, you shouldn't take that to mean he is like a typical COVID-19 patient being discharged from the hospital; unless, of course, that patient has a fully equipped Emergency Department and physicians standing by in their home.

It is a fool's errand to guess at the President's clinical status based on his receiving treatment. Whether he received supplemental oxygen doesn't necessarily mean he was more ill or that the doctors acted out of an abundance of caution. What is supplemental oxygen, 2 liters/min or 8, nasal prongs, or face mask? We cannot tell.

He is receiving personalized care, not care from some guidelines that haven't even been formulated. His treatment, like ours, is or should be, is personalized to his needs. It may very well be that his perception of his non-medical needs overrides his physicians' medical judgment, but that is a problem all doctors and patients face.

[1] One of the problems for VIPS is that, in some cases, "too many cooks do spoil the soup." If you don't believe me take a look at themedical decisionssurrounding President Garfield, "At least a dozen medical experts probed the president's wound, often with unsterilized metal instruments or bare hands, as was common at the time." Or look at thecare of the Shah of Iran, whose cancer was treated by the world's best cardiac surgeon, with a very poor outcome.

Read more:
Managing the President's COVID-19 - American Council on Science and Health

Read More...

AI tool created to guide colorectal cancer care with more precision – Scope

October 6th, 2020 4:55 am

A new modeling tool may be able to help doctors assess which treatments are best for individual patients with colorectal cancer. The artificial intelligence program analyzes a patient's disease details -- such as the stage of cancer and other chronic conditions -- and compares those details to other colorectal cancer cases to predict the patient's chance of surviving past 10 years.

"Predicting survival of cancer patients as a means to help determine treatments is not new," said Jean Emmanuel Bibault, MD, PhD, a radiation oncologist who led the study. "But current standard techniques are not very accurate, and we're hoping that by using AI we can bring more precise information to doctors as they make crucial decisions about care."

Predicting a cancer patient's survival time lends valuable insight into the best course of treatment for both the long and short term, helping to determine what is likely most suitable.

The online tool works by assessing 32 details about an individual patient, such as age, the stage of the cancer, exercise habits, cholesterol levels, history of chronic disease and much more.

After these details are input into the tool, the algorithm predicts how long that person might live and reports a number in years. The tool also provides context, citing the top reasons for its calculation, such as the stage of the cancer, the patient's age at diagnosis, or how the patient was initially treated.

"From a physician's point of view, we want to know how well our patients are going to do from the get-go. We're looking at two main things: how to choose the right therapy, and if we can alter their destiny," said Daniel Chang, MD, professor of radiation oncology, who is an author of the study.

"Some folks have a bit of a nihilistic point of view," he continued, "that survival is determined by the genetics of your cancer and of your body. But the question is: Can anything we, as doctors, do change that outcome if we do it sooner or do it differently from the start? That's where I see a lot of value for this research."

An abstract on the research appeared online inGut.

Bibault, Chang and professor of radiation oncology, Lei Xing, PhD, devised the algorithm powering the prediction tool with data made available through the National Institutes of Health, from thousands of de-identified patients who have or had colorectal cancer at various stages and are of varying ages.

The team trained the algorithm to track survival of thousands of patients, in conjunction with the details of their disease and some details about their course of treatment. In this way, the algorithm uses the outcomes and survival rates of past cohorts to calculate the chance of survival for future patients.

So far, the tool has been about 90% accurate in predictions it made on 472 patient cases that were not used to train the tool. The tool has not been used in a clinical setting.

"The treatments that we have nowadays are becoming more and more specialized, targeted, in many cases intensified. And the reality is that not everybody is going to benefit from new treatments, therapies or technologies in the same way," said Chang.

"This algorithm could allow us a better shot at personalized medicine, and enhance our ability to tailor the treatments to be as appropriate as possible," he added.

Although patients could use the tool on their own, Bibault said the ideal application would be for doctors and patients to use the tool together. That way, doctors would be able to contextualize the result and answer any patient questions.

The team's goal is to enhance the algorithm's accuracy and to find other applications for it.

"We have laid the foundation for this model," said Bibault, "and we're hopeful it can apply to other cancer types as well."

Photo by National Cancer Institute

Read more:
AI tool created to guide colorectal cancer care with more precision - Scope

Read More...

Clinical Mass Spectrometry Market by End-User (Healthcare Facilities and Pharma and Biotech Companies and Research Labs and Institutes) and Geography…

October 6th, 2020 4:55 am

LONDON--(BUSINESS WIRE)--Technavio has been monitoring the clinical mass spectrometry market and it is poised to grow by USD 1.70 billion during 2020-2024, progressing at a CAGR of almost 6% during the forecast period. The report offers an up-to-date analysis regarding the current market scenario, latest trends and drivers, and the overall market environment.

To learn more about the global trends impacting the future of market research, download a free sample: https://www.technavio.com/talk-to-us?report=IRTNTR44340

This Report Addresses:

Although the COVID-19 pandemic continues to transform the growth of various industries, the immediate impact of the outbreak is varied. While a few industries will register a drop in demand, numerous others will continue to remain unscathed and show promising growth opportunities. Technavios in-depth research has all your needs covered as our research reports include all foreseeable market scenarios, including pre- & post-COVID-19 analysis. Download a Free Sample Report on COVID-19 Impacts

Frequently Asked Questions-

The market is fragmented, and the degree of fragmentation will accelerate during the forecast period. Agilent Technologies Inc., Bruker Corp., Danaher Corp., Hitachi Ltd., JEOL Ltd., Kore Technology Ltd., PerkinElmer Inc., Shimadzu Corp., Thermo Fisher Scientific Inc., and Waters Corp. are some of the major market participants. The rise in geriactric population will offer immense growth opportunities. To make most of the opportunities, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

Buy 1 Technavio report and get the second for 50% off. Buy 2 Technavio reports and get the third for free.

View market snapshot before purchasing

Technavio's custom research reports offer detailed insights on the impact of COVID-19 at an industry level, a regional level, and subsequent supply chain operations. This customized report will also help clients keep up with new product launches in direct & indirect COVID-19 related markets, upcoming vaccines and pipeline analysis, and significant developments in vendor operations and government regulations.

Clinical Mass Spectrometry Market 2020-2024: Segmentation

Clinical Mass Spectrometry Market is segmented as below:

Clinical Mass Spectrometry Market 2020-2024: Scope

Technavio presents a detailed picture of the market by the way of study, synthesis, and summation of data from multiple sources. The clinical mass spectrometry market report covers the following areas:

This study identifies increasing demand for clinical mass spectrometry in personalized medicine as one of the prime reasons driving the clinical mass spectrometry market growth during the next few years.

Technavio suggests three forecast scenarios (optimistic, probable, and pessimistic) considering the impact of COVID-19. Technavios in-depth research has direct and indirect COVID-19 impacted market research reports.

Register for a free trial today and gain instant access to 17,000+ market research reports. Technavio's SUBSCRIPTION platform

Clinical Mass Spectrometry Market 2020-2024: Key Highlights

Table of Contents:

Executive Summary

Market Landscape

Market Sizing

Five Forces Analysis

Market Segmentation by End-user

Customer landscape

Geographic Landscape

Vendor Landscape

Vendor Analysis

Appendix

About Us

Technavio is a leading global technology research and advisory company. Their research and analysis focuses on emerging market trends and provides actionable insights to help businesses identify market opportunities and develop effective strategies to optimize their market positions. With over 500 specialized analysts, Technavios report library consists of more than 17,000 reports and counting, covering 800 technologies, spanning across 50 countries. Their client base consists of enterprises of all sizes, including more than 100 Fortune 500 companies. This growing client base relies on Technavios comprehensive coverage, extensive research, and actionable market insights to identify opportunities in existing and potential markets and assess their competitive positions within changing market scenarios.

The rest is here:
Clinical Mass Spectrometry Market by End-User (Healthcare Facilities and Pharma and Biotech Companies and Research Labs and Institutes) and Geography...

Read More...

Orgenesis in deal to acquire regenerative medicine company Koligo Therapeutics – Proactive Investors USA & Canada

October 6th, 2020 4:54 am

The agreed consideration terms include $15 million in shares of Orgenesis stock valued at $7 share which will be issued to Koligos accredited investors

Inc () announced Tuesday that it will acquire Koligo Therapeutics Inc, a regenerative medicine company, before year-end.

According to a statement, Koligo is a leader in developing personalized cell therapies utilizing the patients own (autologous) cells. Koligo has successfully launched its first commercial product, KYSLECEL, and plans to commence a Phase 2 trial of KT-PC-301 for COVID-19-related acute respiratory distress syndrome (ARDS).

Koligos development stage technology utilizes 3D bioprinting and vascularization with autologous cells (3D-V technology) to create biodegradable and shelf-stable three-dimensional cell and tissue implants. The 3D-V technology is being developed for diabetes and pancreatitis, with longer-term applications for neural, liver, and other cell/tissue transplants.

Following the closing of the transaction, Orgenesis plans to accelerate the commercial scaleup of KYSLECEL throughout the US and in international markets as well.

Also after closing and eventual clearance by the US Food and Drug Administration, Orgenesis expects to start patient recruitment for a Phase 2 randomized clinical trial of KT-PC-301 in COVID-19 patients. Koligo already has completed a pre-Investigational New Drug consultation with the FDA to start clinical trials of KT-PC-301 in COVID-19-related ARDS. Orgenesis also plans to leverage Koligos 3D-V bioprinting technology across its POCare platform.

Under the deal, Orgenesis will acquire all of the outstanding stock of Koligo from its shareholders. The agreed consideration terms are an aggregate of $15 million in shares of Orgenesis common stock valued at $7 share, which will be issued to Koligos accredited investors (with certain non-accredited investors to be paid solely in cash) and an assumption of $1.3 million in Koligos liabilities, estimated to be substantially all of Koligos liabilities.

Koligos management team will be joining Orgenesis to continue commercial and development activities. Koligo CEO Matthew Lehman is an accomplished executive in the biotech and regenerative medicine fields.

We are pleased to announce this transformative acquisition, which we expect will add broad capabilities to our therapeutic and technology platform, and will further our leadership in the cell and gene therapy field, said Orgenesis CEO Vered Caplan.

Based on several phase 1 studies, Koligos KT-PC-301, using a patients own cells, has demonstrated safety and tolerability, and has shown signs of efficacy to support continued development in COVID-19-related ARDS. If successful for the treatment of COVID-19-related ARDS, KT-PC-301 is likely to have applications in other acute and chronic respiratory indications, areas that represent significant unmet medical need.

Koligo CEO Lehman added: The merger with Orgenesis marks a major milestone for our company and builds on our recent progress, including the Pre-IND package submitted to the U.S. FDA for KT-PC-301 and our pilot commercial program for KYSLECEL. The Orgenesis team brings extensive clinical, regulatory, and manufacturing expertise well suited to supporting Koligos goals. Orgenesis intellectual property is highly complementary to Koligos technology and the combined companies will work to advance a robust commercial and development product portfolio.

Contact the author: [emailprotected]

Follow him on Twitter @PatrickMGraham

Read more:
Orgenesis in deal to acquire regenerative medicine company Koligo Therapeutics - Proactive Investors USA & Canada

Read More...

What Is Medical 3D Printingand How Is it Regulated? – The Pew Charitable Trusts

October 6th, 2020 4:54 am

Overview

Advances in 3D printing, also called additive manufacturing, are capturing attention in the health care field because of their potential to improve treatment for certain medical conditions. A radiologist, for instance, might create an exact replica of a patients spine to help plan a surgery; a dentist could scan a broken tooth to make a crown that fits precisely into the patients mouth. In both instances, the doctors can use 3D printing to make products that specifically match a patients anatomy.

And the technology is not limited to planning surgeries or producing customized dental restorations such as crowns; 3D printing has enabled the production of customized prosthetic limbs, cranial implants, or orthopedic implants such as hips and knees. At the same time, its potential to change the manufacturing of medical productsparticularly high-risk devices such as implantscould affect patient safety, creating new challenges for Food and Drug Administration (FDA) oversight.

This issue brief explains how medical 3D printing is used in health care, how FDA regulates the products that are made, and what regulatory questions the agency faces.

Unlike traditional methods, in which products are created by shaping raw material into a final form through carving, grinding, or molding, 3D printing is an additive manufacturing technique that creates three-dimensional objects by building successive layers of raw material such as metals, plastics, and ceramics. The objects are produced from a digital file, rendered from a magnetic resonance image (MRI) or a computer-aided design (CAD) drawing, which allows the manufacturer to easily make changes or adapt the product as desired.1 3D printing approaches can differ in terms of how the layers are deposited and in the type of materials used.2 A variety of 3D printers are available on the market, ranging from inexpensive models aimed at consumers and capable of printing small, simple parts, to commercial grade printers that produce significantly larger and more complex products.

To date, most FDA-reviewed products developed via 3D printing have been medical devices such as orthopedic implants; more than 100 have been reviewed.3 Such a manufacturing approach offers several clinical advantages. For example, manufacturers have used 3D printing technologies to create devices with complex geometries such as knee replacements with a porous structure, which can facilitate tissue growth and integration.4 3D printing also provides the ability to create a whole product or device component at once while other manufacturing techniques may require several parts to be fabricated separately and screwed or welded together.

Because this type of manufacturing does not rely on molds or multiple pieces of specialized equipment and designs can rapidly be modified, 3D printing can also be used for creating patient-matched products based on the patients anatomy. Examples include joint replacements, cranial implants, and dental restorations.5 While some large-scale manufacturers are creating and marketing these products, this level of customization is also being used at the site of patient care in what is called point-of-care manufacturing. This on-demand creation of 3D-printed medical products is based on a patients imaging data. Medical devices that are printed at the point of care include patient-matched anatomical models, prosthetics, and surgical guides, which are tools that help guide surgeons on where to cut during an operation. The number of U.S. hospitals with a centralized 3D printing facility has grown rapidly in the past decade, from just three in 2010 to more than 100 by 2019.6 As the technology evolves, this point-of-care model may become even more widespread.

3D printing also has potential applications in other product areas. For example, research is underway to use 3D printing to manufacture pharmaceuticals with the potential for unique dosage forms or formulations, including those that might enable slower or faster absorption. FDA approved one such 3D-printed drug in 2015, an epilepsy treatment formulated to deliver a large dose of the active ingredient that can disintegrate quickly in water.7 3D printing could also one day be used to make personalized treatments that combine multiple drugs into one pill, or a polypill.8 Additionally, researchers are using bioprinters to create cellular and tissue constructs, such as skin grafts9and organs,10 but these applications are still in experimental phases.11

FDA does not regulate 3D printers themselves; instead, FDA regulates the medical products made via 3D printing. The type of regulatory review required depends on the kind of product being made, the intended use of the product, and the potential risks posed to patients. Devicesthe most common type of product made using 3D printing at this timeare regulated by FDAs Center for Devices and Radiological Health and are classified into one of three regulatory categories, or classes. (The agency may also regulate the imaging devices and software components involved in the production of these devices, but these are reviewed separately.)

FDA classifies devices based on their level of risk and the regulatory controls necessary to provide a reasonable assurance of safety and effectiveness.12 Class I devices are low risk and include products such as bandages and handheld surgical instruments. Class II devices are considered moderate risk and include items such as infusion pumps, while Class III devices, which are considered high risk, include products that are life-supporting or life-sustaining, substantially important in preventing impairment of human health, or present an unreasonable risk of illness or injury. A pacemaker is an example of a Class III device.13

Regulatory scrutiny increases with each corresponding class. Most Class I and some Class II devices are exempt from undergoing FDA review prior to entering the market, known as premarket review; however, they must comply with manufacturing and quality control standards. Most Class II devices undergo what is known as a 510(k) review (named for the relevant section of the Federal Food, Drug, and Cosmetic Act), in which a manufacturer demonstrates that its device is substantially equivalent to an existing device on the market, reducing the need for extensive clinical research. Class III devices must submit a full application for premarket approval that includes data from clinical trials.14 FDA then determines whether sufficient scientific evidence exists to demonstrate that the new device is safe and effective for its intended use.15

FDA also maintains an exemption for custom devices. A custom device may be exempt from 510(k) or premarket approval submissions if it meets certain requirements articulated under Section 520(b) of the Federal Food, Drug, and Cosmetic Act. These requirements include, for example, that the manufacturer makes no more than five units of the device per year, and that it is designed to treat a unique pathology or physiological condition that no other device is domestically available to treat.16 In addition, FDA has the option to issue emergency use authorizations as it did in response to the COVID-19 pandemic for certain 3D-printed ventilator devices.17

All devices, unless specifically exempted, are expected by FDA to adhere to current good manufacturing practices, known as the quality system regulations that are intended to ensure a finished device meets required specifications and is produced to an adequate level of quality.18

In 2017, FDA released guidance on the type of information that should be included for 3D-printed device application submissions, including for patient-matched devices such as joint replacements and cranial implants. The document represents FDAs initial thinking, and provides information on device and manufacturing process and testing considerations.19 However, the guidance does not specifically address point-of-care manufacturing, which is a potentially significant gap given the rapid uptake of 3D printers by hospitals over the past few years. FDA has also cleared software programs that are specifically intended to generate 3D models of a patients anatomy;20 however, it is up to the actual medical facility to use that software within the scope of its intended useand to use it correctly.

Although specific guidance from FDA does not yet exist for 3D printing in the drug or biologic domains, these products are subject to regulation under existing pathways through FDAs Center for Drug Evaluation and Research (CDER) or FDAs Center for Biologics Evaluation and Research (CBER). Each product type is associated with unique regulatory challenges that both centers are evaluating. CDERs Office of Pharmaceutical Quality is conducting its own research to understand the potential role of 3D printing in developing drugs and has been coordinating with pharmaceutical manufacturers to utilize this technology.21 CBER has also interacted with stakeholders who are researching the use of 3D printing for biological materials, such as human tissue. In 2017, former FDA Commissioner Scott Gottlieb said that FDA planned to review the regulatory issues associated with bioprinting to see whether additional guidance would be necessary outside of the regulatory framework for regenerative medicine products.22 However, no subsequent updates on this review have emerged.

For medical 3D printing that occurs outside the scope of FDA regulation, little formal oversight exists. State medical boards may be able to exert some oversight if 3D printing by a particular provider is putting patients at risk; however, these boards typically react to filed complaints, rather than conduct proactive investigations. At least one medical professional organization, the Radiological Society of North America, has released guidelines for utilizing 3D printing at the point of care, which includes recommendations on how to consistently and safely produce 3D-printed anatomical models generated from medical imaging, as well as criteria for the clinical appropriateness of using 3D-printed anatomical models for diagnostic use.23 Other professional societies may follow suit as 3D printing becomes more frequent in clinical applications; however, such guidelines do not have the force of regulation.

3D printing presents unique opportunities for biomedical research and medical product development, but it also poses new risks and oversight challenges because it allows for the decentralized manufacturing of highly customized productseven high-risk products such as implantable devicesby organizations or individuals that may have limited experience with FDA regulations. The agency is responsible for ensuring that manufacturers comply with good manufacturing practices and that the products they create meet the statutory requirements for safety and effectiveness. When used by registered drug, biologic, or device manufacturers in centralized facilities subject to FDA inspection, 3D printing is not unlike other manufacturing techniques. With respect to 3D printing of medical devices in particular, FDA staff have stated that [t]he overarching view is that its a manufacturing technology, not something that exotic from what weve seen before.24

However, when 3D printing is used to manufacture a medical product at the point of care, oversight responsibility can become less clear. It is not yet apparent how the agency should adapt its regulatory requirements to ensure that these 3D-printed products are safe and effective for their intended use. FDA does not directly regulate the practice of medicine, which is overseen primarily by state medical boards. Rather, the agencys jurisdiction covers medical products. In some clinical scenarios where 3D printing might be used, such as the printing of an anatomical model that is used to plan surgery, or perhaps one day the printing of human tissue for transplantation, the distinction between product and practice is not always easy to discern.

In recognition of this complexity, FDAs Center for Devices and Radiological Health is developing a risk-based framework that includes five potential scenarios in which 3D printing can be used for point-of-care manufacturing of medical devices. (See Table 1.)25

Sources: U.S. Food and Drug Administration, Center for Devices and Radiological Health Additive Manufacturing Working Group; The American Society of Mechanical Engineers

Questions remain related to each regulatory scenario for point-of-care manufacturing. For example, it is unclear how minimal risk should be evaluated or determined. Should only Class I devices be considered minimal risk or is this determination independent of classification? Is off-label use considered minimal risk? Under the scenarios that involve a close collaboration between a device manufacturer and a health care facility, such as scenarios B and C, who assumes legal liability in cases in which patients may be harmed? Who ensures device quality, given that a specific 3D-printed device depends on many factors that will vary from one health care facility to another (including personnel, equipment, and materials)? Co-locating a manufacturer with a health care facility raises questions about the distinction between the manufacturer and the facility, in addition to liability concerns. Finally, many health care facilities may be ill-prepared to meet all the regulatory requirements necessary for device manufacturers, such as quality system regulations.26

More broadly, challenges will emerge in determining how FDA should deploy its limited inspection and enforcement resources, especially as these technologies become more widespread and manufacturing of 3D-printed devices becomes more decentralized. Furthermore, as the technology advances and potentially enables the development of customized treatments, including drugs and biological products, FDAs other centers will need to weigh in on 3D printing. The agency may need to define a new regulatory framework that ensures the safety and effectiveness of these individualized products.

3D printing offers significant promise in the health care field, particularly because of its ability to produce highly customized products at the point of care. However, this scenario also presents challenges for adequate oversight. As 3D printing is adopted more widely, regulatory oversight must adapt in order to keep pace and ensure that the benefits of this technology outweigh the potential risks.

Read the original here:
What Is Medical 3D Printingand How Is it Regulated? - The Pew Charitable Trusts

Read More...

Proposition 14 would authorize state to borrow $5.5 billon for stem cell research – KESQ

October 6th, 2020 4:54 am

California voters are once again considering the issue of stem cell research.

After approving spending $3 billion on the work in 2004, taxpayers are being asked for another $5.5 billion under Proposition 14.

Some of the initial funding was used to create the California Institute for Regenerative Medicine which would get more money if the measure passes.

"Prop 14 is targeted at treating and curing curable diseases that we all care about," said Dr. Larry Goldstein, a professor at UC San Diego, and the Scientific Director for the Sanford Consortium for Regenerative Medicine.

He a supporter of Prop 14, along with the California Democratic Party and the UC Board of Regents.

He says the funding is necessary to save lives.

"We lose family members prematurely to terrible diseases like cancer and Alzheimer's Disease," said Goldstein.

Proposition 14's total cost to tax payers, including interest on the general obligation bonds, is $7.8 billion according to the state legislate analyst.

That breaks down to $280 million a year over 30 years, with the money coming from the state general fund.

The highest profile opponent of Prop 14 points to what they call a "lack of legislative oversight" of the California Institute for Regenerative Medicine.

They also say the state budget deficit is already too high.

That opponent is the Oakland-based "Center for Genetics and Society".

Another opponent has close ties to the California Institute for Regenerative Medicine.

Jeff Sheehy is a member of the agency's Citizen's Oversight Committee.

"We have a lot of needs that are more pressing than stem cell research which is well funded by the federal government," said Sheehy.

Sheehy contends state funding for scientific research should be up to the state legislature.

"You don't vernally pay for programs like this with debt," said Sheehy.

ANALYSIS OF PROPOSITION 21 FROM BALLOTPEDIA:

https://ballotpedia.org/California_Proposition_14,_Stem_Cell_Research_Institute_Bond_Initiative_(2020)

Read the rest here:
Proposition 14 would authorize state to borrow $5.5 billon for stem cell research - KESQ

Read More...

Election Guide: Here’s What You Need to Know About Proposition 14 – NBC Bay Area

October 6th, 2020 4:54 am

Proposition 14 on the November ballot asks voters to approve $5.5 billion to continue funding stem cell research in California.

Supporters said the research has already lead to important medical breakthroughs, including for COVID-19 victims. Opponents said the proposition is more "shameless overpromising" with money that could be better spent elsewhere.

California voters have been though this before.

In 2004, state voters approved Proposition 71, which meant $3 billion for stem cell research and to establish the California Institute of Regenerative Medicine, or CIRM. The group's chairman and Proposition 14's financial backer, Robert Klein, said that money has lead to significant medical breakthroughs.

But now, CIRM is almost out of money, and Proposition 14 asks voters for $5.5 more for stem cell research.

"If 70 different patient advocacy organizations, from the Michael J. Fox Foundation to the American Diabetes Foundation and the American Association of Cancer Researchers all endorse us -- could they all be wrong?" Klein asked.

Longtime AIDS activist Jeff Sheehy is on the CIRM board and said residents are still paying $325 million a year for Proposition 71.

"We're going to add another $300 million on top of that -- that's two-thirds of $1 billion for stem cell research," Sheehy said. "We don't have a single FDA approved product yet."

Sheehy said taxpayer funding of stem cell research was needed back in 2004 when California was on its own, but now the feds and private industry are spending billions on it every year.

"So we're just duplicating," Sheehy said.

Marcy Darnovsky, executive director of the Center for Genetics and Society, opposes Proposition 14 because of CIRM's quote "Shameless overpromising and hype set the stage for hundreds of underregulated commercial stem cell clinics now offering unapproved treatments that have caused tumors and blindness."

"All those people who survive COVID-19, they are finding up to 50% have heart damage and other organ damage," Darnovsky said. "How are you going to regenerate those tissues? Regenerative medicine is still cell therapy."

Dr. Michael Matthay professor of critical care medicine at UCSF, said CIRM has provided grant money to help research COVID-19 treatments.

"We are using cell based therapy to reduce injury to longs from COVID-19 and to accelerate the recovery process," Matthay said.

It should be pointed out everyone interviewed for this story are in favor of stem cell research -- Darnovsky and Sheehy believe that the billions of dollars being asked of taxpayers could be better spent on education, healthcare, housing and jobs.

See the original post:
Election Guide: Here's What You Need to Know About Proposition 14 - NBC Bay Area

Read More...

Stem cell therapy for blood cancer patients at NIMS – The Hindu

October 6th, 2020 4:54 am

In a big blessing for blood cancer patients requiring stem cell therapy, the State government has established a Centre for Stem Cell and Regenerative Medicine in the Nizams Institute of Medical Sciences (NIMS). The facility will particularly help those from the lower strata of the society who cannot afford corporate medical care.

The centre was inaugurated on Friday by Health Minister Eatala Rajender in the presence of NIMS Director K. Manohar and Superintendent N. Satyanarayana. The centre will provide a ray of hope to blood cancer patients from poor families, those covered under Aarogyashri scheme, requiring stem cell therapy as they would be treated at the centre free of cost, the Minister saidafter dedicating the stem cell and molecular lab as part of the centre to the people.

With the opening of the stem cell therapy centre, NIMS has grown into one of the major hospitals in the country, Mr Rajender stated samples of blood cancer patients which were sent to Delhi for diagnosis earlier can now be done here itself. The success rate of NIMS in stem cell therapy among kidney and heart transplantation patients was very high, he said, but some services were stopped due to rise in COVID-19 cases. However, all services would be resumed within a week with the COVID spread now under control.

Stating that living with COVID-19 would be a new norm as the society was doing with dengue, viral fever, swine flu and malaria, the Minister said and asserted that as per ICMR statistics, about 40 lakh people in Telangana had developed antibodies to COVID and the fleecing of patients families by corporate hospitals in the name of plasma therapy and some costly injections was wrong.

Mr Rajender admitted that COVID treatment in NIMS had impacted the treatment of other patients, particularly those coming in emergency health conditions, and made it clear that outpatient services would be scaled up soon with OP and Critical Care blocks being set up with an investment of 250 crore. Chief Minister K. Chandrasekhar Rao would lay the foundation stone for the new blocks soon to scale up the outpatient services from 2,500 a day in the past to 5,000 a day.

Here is the original post:
Stem cell therapy for blood cancer patients at NIMS - The Hindu

Read More...

Winston-Salem trauma surgeon Dr. J. Wayne Meredith installed as the 101st President of the American College of Surgeons – Newswise

October 6th, 2020 4:54 am

Newswise CHICAGO: J. Wayne Meredith, MD, FACS, MCCM, an esteemed trauma, thoracic, and critical care surgeon from Winston-Salem, N.C., was installed this evening for a one-year term as the 101st President of the American College Surgeons (ACS). The installation occurred during the Convocation ceremony that is a highlight of the virtual ACS Clinical Congress 2020, one of the largest educational meetings of surgeons in the world.

Dr. Meredith is the Richard T. Myers Professor and Chairman, department of surgery, Wake Forest School of Medicine, Winston-Salem, and chair of surgery at Wake Forest School of Medicine since 1997. Dr. Meredith joined the faculty of Wake Forest University Health Sciences in 1987. In his years of service at Wake Forest School of Medicine, Dr. Meredith has taken on leadership roles: he served as director of surgical sciences through June 2014 and was appointed chief of clinical chairs of Wake Forest Baptist Medical Center in July 2019.

In addition to serving as the Richard T. Myers Professor and Chair, he has served 10 years as residency program director, department of surgery, Wake Forest School of Medicine. Along with serving as medical director of The Childress Institute for Pediatric Trauma, Dr. Meredith holds a cross-appointment at Wake Forest Institute for Regenerative Medicine, as well as a joint appointment as professor of pediatrics, department of pediatrics. He is chairman of the medical executive committee, a member of Wake Forests graduate medical education committee (1999present), the risk and insurance management advisory council (2002present), the faculty executive council (2002present), the cancer center oversight committee (2004present), the health system management council (2011present), and chairs the medical executive committee (2011present). He has served on the boards of North Carolina Baptist Hospital and Wake Forest Baptist Medical Center.

During his ACS presidential address, entitled Lessons Learned on the Way to this Podium, Dr. Meredith told more than 2,000 newly initiated Fellows of the American College of Surgeons numerous words of advice on having a successful and rewarding career in surgery.

A Fellow of the American College of Surgeons (FACS) since 1990, Dr. Meredith has devoted much of his expertise and energy to ACS trauma-related activities. He served as the Medical Director of ACS Trauma Programs (20062010) and Chair of the Committee on Trauma (COT) (20022006). He has chaired the COTs National Trauma Data Bank Ad Hoc Committee (19972002), the Trauma Registry Subcommittee (19942002), and continues to serve on the Verification, Review, and Consultation Committee (1996present). In addition, he has been a liaison member of the Program Committee (20022006), a member of the national faculty for Advanced Trauma Life Support (2002present), and the ACS COT representative to the American Board of Surgery (ABS) Trauma, Burns, and Critical Care Advisory Council (20052006).

Dr. Meredith is an ACS Governor at-Large (2017present) and serves on the Board of Governors Surgical Training Workgroup. He previously served on the Health Policy Advisory Council (2018).

Furthermore, Dr. Meredith has played a significant role in state-level ACS activities since joining the North Carolina Chapter of the ACS in 1991. He has served as a member of the chapters Board of Directors (1994present), as a member (1991present) and Chair (19911997) of the North Carolina COT, and North Carolina Chapter President (2005).

The College honored Dr. Meredith for his contributions to the ACS with the 2014 Distinguished Service Award (DSA), the Colleges highest honor. The Board of Regents of the ACS presented the DSA to Dr. Meredith in appreciation of his continuous and devoted service as a Fellow and in recognition of his distinctive scientific contributions in cardiovascular physiology during resuscitation, trauma registries, and trauma systems.

In addition to his previously noted service in leadership roles in ACS Trauma Programs, Dr. Meredith has been active in the field in various capacities both nationally and globally. He has been named a visiting professor or named lecturer at more than 20 institutions around the world, from Johannesburg, South Africa, to Quito, Ecuador. He serves on the editorial board of several journals, and is the author or coauthor of more than 170 scientific publications, more than 20 book chapters, and one textbook,Trauma: Contemporary Principles and Therapy.

Dr. Merediths research interests include thoracic trauma, the biomechanics of crash injury, injury severity measures, and trauma systems development. Over the course of his distinguished career, he has been awarded 10 grants for various trauma research studies. He is the principal investigator for a National Institutes of Health grant for Integrative Training in Trauma and Regenerative Medicine, as well as a joint project with Wake Forest School of Medicine and the National Highway Traffic Safety Administration that established a Crash Injury Research and Engineering Network Center of Wake Forest and Virginia Tech, Blacksburg.

Dr. Meredith has held leadership roles in many other professional organizations including president of many surgical professional societies: the Southeastern Surgical Congress, the Eastern Association for the Surgery on Trauma, the Halsted Society, the American Association for the Surgery of Trauma, and the Southern Surgical Association. He has held multiple other leadership positions, including service as director of the American Board of Surgery and the American Board of Thoracic Surgery.

Dr Meredith lives in Winston Salem with Gayle, his spouse of 46 years and constant source of inspiration and love. They have two wonderful children Russell and Amanda, aged 37 and 32.

Other ACS officers installed this evening include:

First Vice-President-Elect H. Randolph Bailey, MD, FACS, FASCRS, a respected colon and rectal surgeon who practices at the University of Texas (UT)/McGovern Medical School, Houston. Dr. Bailey is professor of surgery and emeritus program director of the UT colon and rectal surgery residency training program. He is chief, division of colon and rectal surgery, Memorial Hermann Hospital Texas Medical Center, and deputy chief of surgery, Houston Methodist Hospital.

Second Vice-President-Elect Lisa A. Newman, MD, MPH, FACS, FASCO, is director, interdisciplinary breast program; chief, division of breast surgery; and medical director, International Center for the Study of Breast Cancer Subtypes; Weill Cornell Medicine-New York Presbyterian Hospital Network, N.Y. She also is an adjunct professor of breast surgery at UT MD Anderson Cancer Center, Houston.

FACS designates that a surgeon is a Fellow of the American College of Surgeons.

# # #

About J. Wayne Meredith, MD, FACS, MCCM Dr. Meredith graduated from Emory University, Atlanta, Ga., with a bachelor of arts degree in physics. He earned his medical degree and completed his surgical training in general surgery and cardiothoracic surgery at what is now Wake Forest Baptist Medical Center, Winston-Salem, N.C. He completed his trauma/critical care fellowship as visiting assistant professor of surgery/trauma under the supervision of the late Donald D. Trunkey, MD, FACS, at Oregon Health Sciences University Hospital, Portland.

About the American College of Surgeons The American College of Surgeons is a scientific and educational organization of surgeons that was founded in 1913 to raise the standards of surgical practice and improve the quality of care for all surgical patients. The College is dedicated to the ethical and competent practice of surgery. Its achievements have significantly influenced the course of scientific surgery in America and have established it as an important advocate for all surgical patients. The College has more than 82,000 members and is the largest organization of surgeons in the world. For more information, visitwww.facs.org.

See the original post here:
Winston-Salem trauma surgeon Dr. J. Wayne Meredith installed as the 101st President of the American College of Surgeons - Newswise

Read More...

Bone Therapeutics, Link Health and Pregene to develop and commercialize the ALLOB allogeneic bone cell therapy platform in China and Southeast Asia -…

October 6th, 2020 4:54 am

Gosselies, Belgium, 5 October 2020, 7am CEST BONE THERAPEUTICS(Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, Link Health Pharma Co., Ltd (Link Health) and Shenzhen Pregene Biopharma Company, Ltd (Pregene) today announce the signing of an exclusive license agreement for the manufacturing, clinical development and commercialization of Bone Therapeutics allogeneic, off-the-shelf, bone cell therapy platform ALLOB in China (including Hong Kong and Macau), Taiwan, Singapore, South Korea, and Thailand.

Under the agreement, Bone Therapeutics is eligible to receive up to 55 million in development, regulatory and commercial milestone payments including 10 million in upfront and milestone payments anticipated in the next 24 months. Bone Therapeutics is also entitled to receive tiered double-digit royalties on annual net sales of ALLOB. Bone Therapeutics retains development and commercialization rights to ALLOB in all other geographies outside of those covered by this agreement. As a result, Bone Therapeutics will continue to concentrate on its development and commercialization plans for ALLOB in the US and Europe and novel innovative cell-based products globally.

This collaboration between Bone Therapeutics, Link Health and Pregene expands our geographic reach and demonstrates the global commercial potential of ALLOB,said Miguel Forte, MD, PhD, Chief Executive Officer of Bone Therapeutics. We already have operational experience in Asia with the Phase III clinical trial of our lead product JTA-004 in Hong Kong. We selected Link Health and Pregene to partner with us in Asia as a result of their expertise in advanced therapeutics and cell therapies, their proven track record of development and commercial implementation in Chinese and Asian markets, and Pregenes well established cell therapy manufacturing capacity. Bone Therapeutics will continue to develop the ALLOB cell therapy platform for other markets while exploring additional partnership opportunities in the U.S. and Europe.

The agreement grants Link Health and Pregene exclusive rights to clinically develop and commercialize ALLOB for the treatment of human bone disorders in Greater China, Taiwan, Singapore, South Korea, and Thailand. All rights for China will be transferred to Pregene and Link Health will gain rights for the remaining countries Bone Therapeutics will share its patented proprietary manufacturing expertise for the expansion and differentiation of bone-forming cells and has the option to sell clinical supplies to Link Health and Pregene in preparation for their clinical development of ALLOB.

This collaboration and license agreement for Bone Therapeutics ALLOB provides a strong addition to our pipeline. ALLOB has demonstrated the potential to reduce the recovery time and stimulate bone growth for a variety of bone conditions, and to have a considerable impact on patients lives,said Yan Song, PhD, Chief Executive Officer of Link Health. It is important for Link Health to collaborate with companies that have strong therapeutic product portfolios and entrepreneurial management. This partnership with Bone Therapeutics is a direct result of our shared commitment to appreciate the enormous potential of cell therapy and regenerative medicine.

Pregene now has a flourishing portfolio of CAR-T cell therapy-based cancer treatments. Bone Therapeutics ALLOB provides anallogeneic, off-the-shelf cell therapy that expands our portfolio of cell therapies to include the sizable commercial potential of orthopedics,said Hongjian Li, Co-founder and Chief Executive Officer of Pregene. We expect to be able to leverage our extensive international cell and gene therapy experience to develop Bone Therapeutics ALLOB platform and subsequently launch products in China and Southeast Asian markets.

ALLOB, an allogeneic and off-the-shelf cell therapy product manufactured through a proprietary, scalable production process, consists of human bone-forming cells derived from cultured bone marrow mesenchymal stem cells of healthy adult donors. In preclinical studies ALLOB has shown to reduce healing time in a delayed-union fracture model by half, and has demonstrated good tolerability and signs of efficacy in two Phase IIa studies for two separate indications. The Companys randomized, placebo-controlled, double-blind Phase IIb clinical trial in patients with difficult tibial fractures has received approval from regulatory authorities in six of the seven planned European countries to date, and is expected to enroll the first patient later this year.

About Link Health Pharma Co., Ltd

Link Health is a leading Chinese pharmaceutical company based in Guangzhou, Southern China, focusing on the development of innovative drugs for unmet medical needs.

Link Health has created a highly professional team with diverse expertise in drug development, medical affairs and regulatory affairs. Leveraging deep understanding of China market, regulatory environment and strong network with global biopharmaceutical companies, Link Health is well positioned to bring innovative drugs to the market efficiently. The company has a drug development pipeline of 5 clinical stage assets and 1 under NDA reviewing in China.

The company has also established a fully owned subsidiary in Amsterdam, the Netherlands. The Dutch office builds and further strengthen collaborations with global pharma/biotech partners and research institutes.

About Pregene Biopharma Co., Ltd

Shenzhen Pregene Biopharma Co. Ltd is a leading enterprise in the cell and gene therapy field with the core technology for industrialization. The companys core team comes from well-known institutions and companies including the Academy of Military Medical Sciences, the University of Toronto, and the US FDA.

Pregene has established the gene editing platform, viral vector and cell production platform, nanobody selection platform and other small to pilot trial manufacturing system, with total investment over 100 million CNY. It has the laboratories and GMP plants for cell and gene therapy of over 10,000 square meter.

The company focuses on the research and development of cell and gene therapy drugs, and participated in the drafting the national standard Considerations for CAR-T Cell Quality Study and Non-clinical Evaluation issued by the National Institutes for Food and Drug Control in June 2018. The CAR-T cell therapy for the treatment of multiple myeloma have obtained NMPA IND clearance as the Class I new drug, which is the first in China and fastest in the world using the humanized single domain antibody in CAR construct, and phase I clinical trials are now in progress. Other pipelines such as CAR-T, TCR-T and mRNA drugs for tumors, autoimmune diseases and other indications are in the development at different stages. The company has broad development prospects with the abundant backup technologies.

Looking forward to the future, the company will build the core capacity in one-stop solution for cell and gene therapy drugs, and fulfill the Express of innovative medicine development from drug discovery to clinical products.

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a, diversified portfolio of cell and biologic therapies at different stages ranging from pre-clinical programs in immunomodulation to mid-to-late stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.

Bone Therapeutics is developing an off-the-shelf next-generation improved viscosupplement, JTA-004, which is currently in phase III development for the treatment of pain in knee osteoarthritis. Consisting of a unique combination of plasma proteins, hyaluronic acid a natural component of knee synovial fluid, and a fast-acting analgesic, JTA-004 intends to provide added lubrication and protection to the cartilage of the arthritic joint and to alleviate osteoarthritic pain and inflammation. Positive phase IIb efficacy results in patients with knee osteoarthritis showed a statistically significant improvement in pain relief compared to a leading viscosupplement.

Bone Therapeutics core technology is based on its cutting-edge allogeneic cell therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company is ready to start the phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.

Bone Therapeutics cell therapy products are manufactured to the highest GMP standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available atwww.bonetherapeutics.com.

For further information, please contact:

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerJean-Luc Vandebroek, Chief Financial OfficerTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com

For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be

International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu

For US Media and Investor Enquiries:LHA Investor RelationsYvonne BriggsTel: +1 310 691 7100ybriggs@lhai.com

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

More:
Bone Therapeutics, Link Health and Pregene to develop and commercialize the ALLOB allogeneic bone cell therapy platform in China and Southeast Asia -...

Read More...

Aziyo Biologics to price IPO on Oct. 7th; competitors include ABBV, MDT, SRGA and SYK – Seeking Alpha

October 6th, 2020 4:54 am

Aziyo Biologics, Inc. is slated to price its IPO on Wednesday, October 7th.

From the prospectus:

"We are a commercial-stage regenerative medicine company focused on creating the next generation of differentiated products and improving outcomes in patients undergoing surgery, concentrating on patients receiving implantable medical devices. From our proprietary tissue processing platforms, we have developed a portfolio of advanced regenerative medical products that are designed to be very similar to natural biological material. Our proprietary products, which we refer to as our Core Products, are designed to address the implantable electronic device/cardiovascular, orthopedic/spinal repair and soft tissue reconstruction markets, which represented a combined $3 billion market opportunity in the United States in 2019. To expand our commercial reach, we have commercial relationships with major medical device companies, such as Boston Scientific and Medtronic, to promote and sell some of our Core Products. We believe our focus on our unique regenerative medicine platforms and our Core Products will ultimately maximize our probability of continued clinical and commercial success and will create a long-term competitive advantage for us."

"We estimate that more than two million patients were either implanted with medical devices, such as pacemakers, defibrillators, neuro-stimulators, spinal fusion and trauma fracture hardware or tissue expanders for breast reconstruction, in the United States in 2019. This number is driven by advances in medical device technologies and an aging population with a growing incidence of comorbidities, including diabetes, obesity and cardiovascular and peripheral vascular diseases. These comorbidities can exacerbate various immune responses and other complications that can be triggered by a device implant."

"Our Core Products are targeted to address unmet clinical needs with the goal of promoting healthy tissue formation and avoiding complications associated with medical device implants, such as scar-tissue formation, capsular contraction, erosion, migration, non-union of implants and implant rejection. We believe that we have developed the only biological envelope, which is covered by a number of patents, that forms a natural, systemically vascularized pocket for holding implanted electronic devices. We have a proprietary processing technology for manufacturing bone regenerative products for use in orthopedic/spinal repair that preserves a cells ability to regenerate bone and decelerates cell apoptosis, or programmed cell death. We have a patented cell removal technology that produces undamaged extracellular matrices for use in soft tissue reconstruction. In pre-clinical and clinical studies, our products have supported and, in some cases, accelerated tissue healing, and thereby improved patient outcomes."

"COMPETITION: Our Core Products compete primarily with implantable electronic device envelopes and other cardiovascular repair products, other orthobiologics and human-derived acellular dermis products. The CanGaroo envelope competes with the synthetic envelope TYRX from Medtronic (NYSE:MDT). ProxiCor, Tyke and VasCure compete with bovine pericardium produced by numerous companies, including Gores Goretex and Terumos (OTCPK:TRUMF) Vascutek. FiberCel, ViBone and OsteGro V compete with other viable bone matrices, such as Smith & Nephews (NYSE:SNN)Bio4, MTFs Trinity ELITE, NuVasives (NASDAQ:NUVA) OsteoCel, Vivex Biologics VIA Graft and LifeNet Healths ViviGen. SimpliDerm competes primarily against human-derived acellular dermis matrix meshes, including AbbVies (NYSE:ABBV)AlloDerm, Surgalign Holdings (NASDAQ:SRGA)Cortiva, Strykers (NYSE:SYK) DermACELL andEthicons FlexHD. SimpliDerm also competes against animal-derived biological mesh products, such as AbbVies Strattice and Integras (NASDAQ:IART) SurgiMend, as well as various synthetic mesh products."

Go here to see the original:
Aziyo Biologics to price IPO on Oct. 7th; competitors include ABBV, MDT, SRGA and SYK - Seeking Alpha

Read More...

Medicure announces an agreement with Reliance Life Sciences for the marketing rights of a cardiovascular biosimilar – BioSpace

October 6th, 2020 4:54 am

WINNIPEG, AB, Oct. 5, 2020 /PRNewswire/ -Medicure Inc.("Medicure" or the "Company") (TSXV: MPH) (OTC: MCUJF), a pharmaceutical company, announces that through its wholly-owned subsidiary, Medicure International Inc., it has entered into a License, Manufacture and Supply Agreement (the "Agreement") with Reliance Life Sciences Private Limited ("RLS") for a cardiovascular biosimilar (the "Product"). Medicure is responsible for the regulatory approval process for the Product. A biosimilar is a biological product that is highly similar to and has no clinically meaningful differences from an approved reference product. The Agreement grants an exclusive right to Medicure to market and sell the Product in the United States of America, Canada and the European Union.

"We are very pleased with the agreement we have reached with RLS. The Product fits well with Medicure's mission of being a significant cardiovascular company focused on the U.S. market." commented Dr. Albert Friesen, Chief Executive Officer for Medicure. "We look forward to the growth of our portfolio of cardiovascular products."

About Medicure Inc. Medicure is a pharmaceutical company focused on the development and commercialization of therapies for the U.S. cardiovascular market. The present focus of the Company is the marketing and distribution of AGGRASTAT(tirofiban hydrochloride) injection and ZYPITAMAGTM (pitavastatin) tablets in the United States, where they are sold through the Company's U.S. subsidiary, Medicure Pharma Inc. For more information on Medicure please visit http://www.medicure.com. For additional information about ZYPITAMAGTM, refer to the full Prescribing Information.

About Reliance Life Sciences Private Limited Reliance Life Sciences Private Limited (RLS) is part of the Promoter Group of Reliance Industries Limited. RLS is a research driven organization developing business opportunities in bio-therapeutics (plasma proteins, biosimilars and novel proteins), pharmaceuticals, regenerative medicine, clinical research services, and molecular medicine. The Reliance Group isIndia'slargest private sector enterprise, with annual revenues of$ 86 billion USD. The Group's flagship company, Reliance Industries Limited isIndia'slargest private sector company and a Fortune Global 100 company. RLS is a fully integrated life sciences industry player with in-house capabilities in research, pre-clinical and clinical development, process development, quality management, commercial-scale manufacturing, and marketing. For further information on Reliance Life Sciences please visithttp://www.rellife.com/

To be added to Medicure's e-mail list, please visit: http://medicure.mediaroom.com/alerts

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward Looking Information: Statements contained in this press release that are not statements of historical fact, including, without limitation, statements containing the words "believes", "may", "plans", "will", "estimates", "continues", "anticipates", "intends", "expects" and similar expressions, may constitute "forward-looking information" within the meaning of applicable Canadian and U.S. federal securities laws (such forward-looking information and forward-looking statements are hereinafter collectively referred to as "forward-looking statements"). Forward-looking statements, include estimates, analysis and opinions of management of the Company made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors which the Company believes to be relevant and reasonable in the circumstances. Inherent in forward-looking statements are known and unknown risks, uncertainties and other factors beyond the Company's ability to predict or control that may cause the actual results, events or developments to be materially different from any future results, events or developments expressed or implied by such forward-looking statements, and as such, readers are cautioned not to place undue reliance on forward-looking statements. Such risk factors include, among others, the Company's future product revenues, the ability of AGGRASTATto provide benefits to COVID-19 patients, expected future growth in revenues, stage of development, additional capital requirements, risks associated with the completion and timing of clinical trials and obtaining regulatory approval to market the Company's products, the ability to protect its intellectual property, dependence upon collaborative partners, changes in government regulation or regulatory approval processes, and rapid technological change in the industry. Such statements are based on a number of assumptions which may prove to be incorrect, including, but not limited to, assumptions about: general business and economic conditions; the impact of changes in Canadian-US dollar and other foreign exchange rates on the Company's revenues, costs and results; the timing of the receipt of regulatory and governmental approvals for the Company's research and development projects; the availability of financing for the Company's commercial operations and/or research and development projects, or the availability of financing on reasonable terms; results of current and future clinical trials; the uncertainties associated with the acceptance and demand for new products and market competition. The foregoing list of important factors and assumptions is not exhaustive. The Company undertakes no obligation to update publicly or otherwise revise any forward-looking statements or the foregoing list of factors, other than as may be required by applicable legislation. Additional discussion regarding the risks and uncertainties relating to the Company and its business can be found in the Company's other filings with the applicable Canadian securities regulatory authorities or the US Securities and Exchange Commission, and in the "Risk Factors" section of its Form 20F for the year ended December 31, 2019.

View original content:http://www.prnewswire.com/news-releases/medicure-announces-an-agreement-with-reliance-life-sciences-for-the-marketing-rights-of-a-cardiovascular-biosimilar-301145432.html

SOURCE Medicure Inc.

Read the original post:
Medicure announces an agreement with Reliance Life Sciences for the marketing rights of a cardiovascular biosimilar - BioSpace

Read More...

A Painless Future Provides the Incentive Behind Cytonics – InvestorPlace

October 6th, 2020 4:54 am

Thanks to the advent of equity crowdfunding, theres never been a better time for retail investors seeking new opportunities. Innovative companies that may not have traditional venture capital backing can now market their solutions to a wider demographic. And thats the case with Cytonics. But its the promising nature of the treatment platform that has many excited about Cytonics stock.

Source: Shutterstock

Cytonics is a biotechnology firm specializing in regenerative medicine for osteoarthritis patients. According to Cytonics SeedInvest.com investor profile, over 27 million people in the U.S. suffer from arthritis-related pain, imposing a $180 billion burden on our health care system and economy.

However, this number is understated, according to the Centers for Disease Control and Prevention, which states that 32.5 million American adults suffer from osteoarthritis. Right there, the case for Cytonics stock theoretically improves by 20%.

Setting that aside, the osteoarthritis profile in this country makes this biotech firm a compelling equity crowdfunding opportunity. For instance, one of the risk factors for this condition is old age. As you know, the U.S. experienced a baby boom following the end of World War II to sometime in the early 1960s. But that increase in baby-making now means we have a massive population of older people.

Logically, this dynamic increases the probabilities of osteoarthritis, presenting a growing case for Cytonics stock. In addition, obesity is a risk factor because according to the CDC, Extra weight puts more stress on joints, particularly weight-bearing joints like the hips and knees.

You only need to go outside to see our national expanding waistline.

Although we can talk all day about the plentiful and still-expanding market size for osteoarthritis solutions, it wont mean a darn thing if the underlying science backing Cytonics stock was lacking. Fortunately, this biotech firm is all about the science.

What separates Cytonics from other therapies is the discovery of alpha-2-macroglobulin (A2M), which may hold the key for many osteoarthritis sufferers because multiple tests confirm this blood serum protein protects cartilage. Further, the presence of A2M may halt the progression of osteoarthritis.

Therefore, the catalyst behind Cytonics stock came from an idea: what if bioengineers can inject A2M at the source of trouble, providing both pain relief and preventative therapy? And thats exactly the concept here. Under a three-step process, Cytonics take blood from patients, run it through a centrifuge to increase the level of platelets, and then reinject the A2M-rich solution to the source of pain.

In this manner, patients can enjoy relief essentially through their own blood. However, the present technology of platelet-rich plasma injections may not produce enough A2M to restore damaged joints. This is where the second catalyst of Cytonics stock comes into play.

The biotech firm is presently developing a synthetic version of A2M called CYT-108. Based on its hypothesis, Cytonics believes that its synthetic version is more effective, perhaps between two to three times more effective than naturally occurring A2M.

Now, this is the key factor that has many excited about the potential of Cytonics stock. If the Food and Drug Administration approves CYT-108, this may be the only therapy that addresses osteoarthritis root cause, perhaps leading to a cure.

What lends credibility for the biotech firm is that its natural A2M therapy has treated over 7,000 people in the U.S., leading to encouraging results.

While the science of osteoarthritis treatments makes this equity crowdfunding opportunity distinct, its not without risks you must consider. As with all private investing ventures, youve got to do your due diligence. Remember, most startups fail this is just a harsh fact.

But experimental biotech firms are probably among the wildest investments. Yes, if a company passes advanced-stage clinical trials, the target security could fly to the moon. But such successes are rare, as evidenced by the wasteland of failed biotechs. In addition, you should keep in mind that for decades, the FDA has approved relatively few drugs/treatments.

To be fair, the platelet-rich plasma therapy which Cytonics technology is based off has few major demerits. Thats according to a 2018 study exploring the pros and cons of regenerative medicine and published by the National Institutes of Health. Still, under certain circumstances, PRP applications can result in injection-site morbidity, infection or injury to nerves or blood vessels. Scar tissue formation and calcification at the injection site have also been reported.

Also, the report notes that patients with compromised immune system or with predisposed diseases are more susceptible to infection at the injured area.

Are these acceptable risks for Cytonics stock? Possibly. Nevertheless, according to a study on platelet-rich plasma therapy for knee disorders, many methods have been utilized to treat osteoarthritis but with limited success. Plus, this report states that variables such as centrifugation prep work can negative the effectiveness of plasma-based regenerative therapies.

Im not trying to dissuade you from Cytonics stock. Rather, Im pointing out that theres a reason why successful therapies havent been found yet: this is a tough condition to address.

Personally, Im a gun shy regarding most biotech plays. There are so many variables involved, each one levering a possible negative impact. And I dont think Cytonics stock is any different in that sense.

However, the underlying science is very compelling. Thus, if you can handle the heat, plenty of justification exists for taking a shot. To learn more about this equity crowdfunding opportunity, please visit Cytonics SeedInvest profile.

On the date of publication, Josh Enomoto did not have (either directly or indirectly) any positions in the securities mentioned in this article.

A former senior business analyst for Sony Electronics, Josh Enomoto has helped broker major contracts with Fortune Global 500 companies. Over the past several years, he has delivered unique, critical insights for the investment markets, as well as various other industries including legal, construction management, and healthcare.

Investing through equity and real estate crowdfunding or asset tokenization requires a high degree of risk tolerance. Despite what individual companies may promise, theres always the chance of losing a portion, or the entirety, of your investment. These risks include:

1) Greater chance of failure2) Risk of fraudulent activity3) Lack of liquidity4) Economic downturns5) Dearth of investor education

Read more:Private Investing Risks

Originally posted here:
A Painless Future Provides the Incentive Behind Cytonics - InvestorPlace

Read More...

Yufan inks deal with Abound to develop antibodies directing CAR T cells against cancer targets – BioWorld Online

October 6th, 2020 4:54 am

HONG KONG Xian, China-based Yufan Biotechnologies Co. Ltd. has partnered with Pittsburgh-based Abound Bio Inc. to discover and develop antibodies directing CAR T cells against cancer targets.

The three-year partnership will see the two companies incorporate antibodies for novel cancer targets into the enhanced, HPK1 (hematopoietic progenitor kinase 1)-inhibited CAR T-cell platform, they said. The agreement covers 10 cancer targets, including difficult to treat solid tumors such as liver cancer, Abounds CEO John Mellors told BioWorld.

Although both companies declined to reveal financial details, Mellors said, I calculate that Yufans technology added to Abounds antibodies gives a value greater than two." Yufan declined to comment for the article, but CEO Yan Zhang said, "The partnership with Abound will improve CAR T-cell products for cancer therapy.

The two companies will also share expertise and any potential commercial upside, as well as inventorship and development rights. Yufan definitely benefits, both financially and non-financially, particularly via development rights in China, Mellors said.

The companies will conduct preclinical, then clinical testing of the new CAR T cells against solid tumors, with trials expected to start in the first or second quarter of 2021, Mellors said. They will target the greater China market initially, with the rest of the world to follow. No other firms have been targeted as future partners yet.

Academic roots

The partnership between Yufan and Abound started with an academic collaboration between the National Cancer Institute and Tsinghua University, based on the work led by the universitys professor of pharmaceutical science, Xuebin Liao, who co-founded Yufan along with Zhang. That work demonstrated that HPK1 promotes T-cell exhaustion through NFkB-Blimp1 activation, and that blocking HPK1, via either gene knockout or small-molecule inhibitors, improves CAR T-cell immunotherapy.

Yufan was founded in July 2016 as part of the Xi'an Hi-tech Industries Development Zone Central Organization Departments Thousand Talents program. It focuses on upstream technology development, services and antibody screening for immuno-oncology therapy. The company is developing CAR T cells with a deleted HKP1 gene to prevent cell exhaustion, with a first-in-human clinical study of the XYF-19 HPK1 knockout CD19 CAR T product currently underway in patients with relapsed or refractory CD19+ leukemia or lymphoma.

Other projects include CAR T-cell therapy, CAR T-cell GMP production, immune cell gene editing CRISPR/Cas9 technology, a phage antibody library, phage display technology, and the buildout of a human antibody screening platform. The company is currently collaborating with the Air Force Military Medical Universitys Xijing Hospital on an investigational CAR T-cell therapy.

Yufan plans to invest 100 million (US$14.72 million) to build manufacturing facilities for CAR T-cell therapies to treat refractory and relapsed leukemia and lymphoma and expects to generate annual sales of between 200 million to 400 million once those candidates reach market.

Across the Pacific, Abound is an early stage biotechnology company developing antibody-based biological therapeutics for cancer and infectious diseases.

One infectious disease that the company is concentrating on is COVID-19, with the number of global cases topping 35 million as of Oct. 5, according to Johns Hopkins University data. An Abound team led by Mellors and the companys chief scientific officer, Dimiter Dimitrov, discovered human monoclonal antibodies with neutralizing activity in the laboratory against SARS-CoV-2, the virus that causes COVID-19, from antibody libraries.

Although the antibodies have proved effective in low doses in mouse and hamsters, human trials have not yet started. However, the antibodies are ready for testing in CAR T cells in preclinical models, and we hope to rapidly progress to clinical studies, Mellors said.

The company is currently proceeding with production and clinical development for regulatory approval and commercialization in the MENA and ASEAN regions, clinching an agreement with Saudi-U.S. joint venture Saudivax earlier in the year.

The Yufan-Abound partnership also aims to tap the lucrative T-cell market, which was valued at $2.7 billion in 2017 and is expected to reach $8.21 billion in 2025, growing at a compounded annual growth rate (CAGR) of 14.9% between 2017 and 2025, according to Frost & Sullivans report Growth Opportunities in the Global Cell Therapy Market, Forecast to 2025.

Amendments in regulatory and reimbursement policies, as well as the implementation of conditional approval policies for regenerative medicine, will further drive the market by expediting product launches, Aarti Chitale, Frost & Sullivan senior research analyst for transformational health, wrote. Additionally, improvements in cell culturing techniques alongside the use of different stem cells such as adipose-derived stem cells, mesenchymal stem cells, and induced pluripotent stem cells will strengthen the market with superior treatment options for non-oncological conditions such as neurological, musculoskeletal, and dermatological conditions, she added.

See original here:
Yufan inks deal with Abound to develop antibodies directing CAR T cells against cancer targets - BioWorld Online

Read More...

Regenerative medicine Market will Register a Significant CAGR During Period 2020-2026 | 23% CAGR| Know the Companies List Could Potentially Benefit or…

October 6th, 2020 4:54 am

The Global Regenerative medicine Market size is projected to reach USD 55.67 Mn by 2026 from USD 13.56 Mn in 2018, at a CAGR of 23% during the forecast period.

AllTheResearch has added Latest Research Report on Regenerative medicine Market 2020 Future Growth Opportunities, Development Trends, and Forecast 2026. The Global Regenerative medicine Market market report cover an overview of the segments and sub-segmentations including the product types, applications, companies & regions. This report describes overall Regenerative medicine Market size by analyzing historical data and future projections.

Get Exclusive Sample Report on Regenerative medicine Market is available at https://www.alltheresearch.com/sample-request/232

Market Segmentation:

The report features unique and relevant factors that are likely to have a significant impact on the Regenerative medicine market during the forecast period. This report also includes the COVID-19 pandemic impact analysis on the Regenerative medicine market. This report includes a detailed and considerable amount of information, which will help new providers in the most comprehensive manner for better understanding. The report elaborates the historical and current trends molding the growth of the Regenerative medicine market

View complete Report, https://www.alltheresearch.com/report/232/Regenerative-medicine

The segmentation of the Regenerative medicine market has been offered on the basis of product type, application, Major Key Players and region. Every segment has been analyzed in detail, and data pertaining to the growth of each segment has been included in the analysis

Top Players Listed in the Regenerative medicine Market Report are

Based on type, report split into

Based on Application Regenerative medicine market is segmented into

Get Chance of 20% Extra Discount, If your Company is Listed in Above Key Players List;https://www.alltheresearch.com/speak-to-analyst/232

Impact of COVID-19: Regenerative medicine Market report analyses the impact of Coronavirus (COVID-19) on the Regenerative medicine industry. Since the COVID-19 virus outbreak in December 2019, the disease has spread to almost 180+ countries around the globe with the World Health Organization declaring it a public health emergency. The global impacts of the coronavirus disease 2019 (COVID-19) are already starting to be felt, and will significantly affect the Regenerative medicine market in 2020

COVID-19 can affect the global economy in 3 main ways: by directly affecting production and demand, by creating supply chain and market disturbance, and by its financial impact on firms and financial markets.

Get the Sample ToC to understand the CORONA Virus/COVID19 impact and be smart in redefining business strategies. https://www.alltheresearch.com/impactC19-request/232

Regenerative medicineMarket: Key Questions Answered in Report

The research study on the Regenerative medicinemarket offers inclusive insights about the growth of the market in the most comprehensible manner for a better understanding of users. Insights offered in the Regenerative medicinemarket report answer some of the most prominent questions that assist the stakeholders in measuring all the emerging possibilities.

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:Contact Name: Rohit B.Email:[emailprotected]Phone: 1-888-691-6870

See the article here:
Regenerative medicine Market will Register a Significant CAGR During Period 2020-2026 | 23% CAGR| Know the Companies List Could Potentially Benefit or...

Read More...

Reven Strengthens Its Clinical Team With Three New Members – BioSpace

October 6th, 2020 4:54 am

Oct. 5, 2020 11:30 UTC

GOLDEN, Colo.--(BUSINESS WIRE)-- Reven Holdings, Inc. (Reven) is a privately held clinical stage biotechnology and pharmaceutical company dedicated to the discovery and development of novel treatment platforms for cancer, viral illnessesincluding COVID-19and inflammatory disorders.

Reven is planning to initiate a randomized, double-blind, placebo-controlled, multi-institutional clinical trial of its lead anti-inflammatory/anti-oxidant investigational drug product Rejuveinix (RJX) in the treatment of COVID-19. The upcoming clinical trial is designed to evaluate the safety and efficacy of RJX in COVID-19 patients.

Reven today announced that three new members with extensive experience and knowledge in clinical research and quality assurance have joined its multi-disciplinary team to work on the COVID-19 clinical project:

Nancy Oehlke has assumed the role of Manager of Regulatory Affairs and Quality Assurance. Nancy has 20+ years of experience in drug development, Good Manufacturing Practice (GMP) / Good Laboratory Practice (GLP) compliance, regulatory aspects of drug product manufacturing and testing, and clinical research.

Renae Townsend has assumed the role of Director of Clinical Operations and Jenny Daniels has assumed the role of Director of Clinical Quality Assurance. Both Renae and Jenny have 15+ years of Good Clinical Practice (GCP), clinical research and clinical monitoring experience.

These new team members will help us provide sponsor oversight for the services rendered by the clinical research organizations (CRO) and other vendors who will support our clinical RJX program and execution of the clinical trial. I am excited to welcome these very experienced new members to Reven. I look forward to the opportunity to work side by side with them as we try to diligently advance the clinical development of RJX, said Fatih Uckun, MD PhD, Chief Medical Officer and Chief Scientific Officer of Reven.

Our IND (Investigational New Drug) application package for COVID-19 is completed and we are planning to roll out our clinical program against COVID-19 in the coming month, said Michael Volk, Director and Chief Strategy Officer of Reven.

Our new team members each will have a very important role in our efforts aimed at evaluating the clinical impact potential of RJX, added Peter Lange, CEO of Reven.

About Rejuveinix (RJX) RJX is an intravenous (IV) formulation of a patented first-in-class pharmaceutical composition containing a specific mixture of anti-oxidant and anti-inflammatory ingredients that is being developed for more effective treatment of patients with inflammatory disorders, including COVID-19 patients with viral sepsis and acute respiratory distress syndrome (ARDS). The clinical safety and tolerability of RJX was confirmed in a recently completed double blind, placebo-controlled Phase 1 dose-escalation study in healthy volunteers (ClinicalTrials.gov Identifier: NCT03680105).

About Reven Holdings, Inc. Reven Holdings, Inc., a Delaware corporation, through its Golden/Colorado-based operating company Reven, LLC, is developing new drugs for difficult-to-treat diseases. As a clinical stage biopharmaceutical company, Revens overarching goal is to develop effective treatments for serious health conditions caused by infectious, inflammatory, cardiovascular, and metabolic diseases. Its lead product, RJX, is being developed as a treatment platform against complications of COVID-19, sepsis, cardiovascular diseases, and diabetes.

About Dr. Fatih Uckun, M.D., Ph.D, Chief Medical Officer of Reven. Dr. Uckun is an Active Member of the American Society for Clinical Investigation (ASCI), an honor society for physician-scientists, and an active member of several professional organizations. He earned his doctoral degrees at University of Heidelberg in Germany and completed his residency training in Pediatrics, fellowship training in Hematology/Oncology/Blood and Bone Marrow Stem Cell Transplantation, as well as postdoctoral research training in immunology and microbiology at the University of Minnesota in the US.

Dr. Uckun has more than 30 years of professional experience in developmental therapeutics and biopharmaceuticals in oncology/immuno-oncology as well as infectious diseases and immunology. In addition, Dr. Uckun has deep knowledge and 20+ years of experience in treatment of infectious diseases and their complications. In particular, he has extensive experience in viral, fungal, and bacterial infections of immunocompromised hosts, septic shock, ARDS as well as systemic capillary leak syndrome and cytokine release syndrome (CRS). Dr. Uckun served as a Defense Advanced Research Projects Agency (DARPA)-funded principal investigator and directed a universal virus neutralizer program project as part of a countermeasures initiative against viruses that can be used as bioweapons and therefore pose a biothreat for our national security. Prior to joining Reven, Dr. Uckun was a Vice President, Clinical Strategy Lead, Oncology-Hematology and Member of the COVID-19 Task Force at Worldwide Clinical Trials.

Dr. Uckun worked 11 years as a Professor of Bone Marrow Transplantation, Therapeutic Radiology-Radiation Oncology, Pharmacology, and Pediatrics as well as Director of the Biotherapy Institute at the University of Minnesota, where he became the first recipient of the Endowed Hughes Chair in Biotherapy. He worked 6 years as a Professor and Head of Translational Research in Leukemia and Lymphoma of the CCBD and a Principal Investigator of the Stem Cell-Regenerative Medicine Initiative at the at the University of Southern California. During that time, Dr. Uckun served as the Chair of the Biotargeting Working Group for the National Cancer Institute (NCI)s Nanotechnology Alliance in Cancer.

He has held executive positions in multiple biotechnology companies and has extensive regulatory experience. He has published more than 500 peer-reviewed papers, received numerous awards, and served as a member of several medical journal editorial boards and NIH grant review/special emphasis panels. Website: https://www.linkedin.com/in/fatihuckun/

Revens Cautionary Note on Forward-Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, included in this communication regarding strategy, future operations, future financial position, prospects, plans and objectives of management are forward-looking statements. Words such as may, on-track, expect, anticipate hope, vision, optimism, design, exciting, promising, will, conviction, estimate, intend, believe and similar expressions are intended to identify forward-looking statements. Forward-looking statements contained in this press release include, but are not limited to, statements about future plans, the progress, timing, clinical development, scope and success of future clinical trials, the reporting of clinical data for the companys product candidates and the potential use of the companys product candidates to treat various disease indications. Each of these forward-looking statements involves risks and uncertainties, and actual results may differ materially from these forward-looking statements. Many factors may cause differences between current expectations and actual results, including unexpected safety or efficacy data observed during preclinical or clinical studies, clinical trial site activation or enrollment rates that are lower than expected, changes in expected or existing market competition, changes in the regulatory environment, failure of collaborators to support or advance collaborations or product candidates, and unexpected litigation or other disputes. These risks are not exhaustive; the company faces known and unknown risks, including the risk factors described in the companys periodic SEC filings. Forward-looking statements are based on expectations and assumptions as of the date of this press release. Except as required by law, the company does not assume any obligation to update forward-looking statements contained herein to reflect any change in expectations, whether as a result of new information regarding future events, or otherwise.

View source version on businesswire.com: https://www.businesswire.com/news/home/20201005005298/en/

See more here:
Reven Strengthens Its Clinical Team With Three New Members - BioSpace

Read More...

Nanotechnology in Medical Market Potential Growth, Size, Share, Demand and Analysis of Key Players Research Forecasts to 2027 – The Daily Chronicle

October 6th, 2020 4:53 am

Global Nanotechnology in Medical Market report explores the Nanotechnology in Medical industry around the globe offers details about industry review, classification, meaning, and possibility along with key regions and countries. This research report delivers detailed insights on each and every aspect of the Nanotechnology in Medical Market.

Additionally, the research study divided the market on the basis of product types, application as well as end-user industries of Shooting Ranges.A 360 degree summarize of the competitive scenario of the Global Nanotechnology in Medical Market is presented by Reportspedia, The recent study on the Nanotechnology in Medical market Analysis report provides information about this industry with a thorough assessment of this business.

Sample Copy of This [emailprotected]:

https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#request_sample

Major Players in the Nanotechnology in Medical market are:

3MCytimmuneNovartisCamurusMerckAmgenAccessRocheCelgeneMitsui ChemicalsSmith and NephewPfizerDentsply International

Nanotechnology in Medical market growth has been segregated into the Americas, APAC, Europe, Middle East & Africa. The Nanotechnology in Medical market size is appropriately divided into pivotal segments in the report. A synopsis of the industry with regards to market size concerning remuneration and volume aspects along with the current Nanotechnology in Medical market shares scenario is also offered in the report.

Ask for [emailprotected]:

https://www.reportspedia.com/discount_inquiry/discount/64313

Types covered in the Nanotechnology in Medical industry are:

Nano MedicineNano DiagnosisOther

Applications covered in the report are:

HospitalsClinicsOthers

The study wanted to focus on key manufacturers, competitive landscape, and SWOT analysis for the Nanotechnology in Medical industry. Apart from looking into the geographical regions, the report concentrated on key trends and segments that are either driving the enlargement of the industry. Researchers have also focused on individual growth trends besides their contribution to the overall market.

This is probable to drive the Global Nanotechnology in Medical Market over the forecast period. This research report covers the market landscape and its progress prospects in the near future. After study key companies, the report focuses on the new entrant contributing to the enlargement of the market. Most companies in the Global Nanotechnology in Medical Market are currently adopted new technological trends in the market.

Inquiry Before [emailprotected]:

https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#inquiry_before_buying

Key highlights of the global Nanotechnology in Medical Market research report:

Some of the key questions answered in this Nanotechnology in Medical Market report:

Table of Contents: Nanotechnology in Medical Market

Chapter 1: Overview of Nanotechnology in Medical Market

Chapter 2: Global Market Status and Forecast by Regions

Chapter 3: Global Nanotechnology in Medical Market Status and Forecast by Types

Chapter 4: Global Nanotechnology in Medical industry Status and Forecast by Downstream Industry

Chapter 5: Nanotechnology in Medical industry Market Driving Factor Analysis

Chapter 6: Market Competition Status by Major Manufacturers

Chapter 7: Major Manufacturers Introduction and Market Data

Chapter 8: Upstream and Downstream Nanotechnology in Medical industry Analysis

Chapter 9: Cost and Gross Margin Analysis

Chapter 10: Marketing Status Analysis

Chapter 11: Nanotechnology in Medical industry Market Report Conclusion

Chapter 12: Research Methodology and Reference

Get ToC for the overview of the premium report @:

https://www.reportspedia.com/report/others/2015-2027-global-nanotechnology-in-medical-industry-market-research-report,-segment-by-player,-type,-application,-marketing-channel,-and-region/64313#table_of_contents

Here is the original post:
Nanotechnology in Medical Market Potential Growth, Size, Share, Demand and Analysis of Key Players Research Forecasts to 2027 - The Daily Chronicle

Read More...

Page 350«..1020..349350351352..360370..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick