header logo image


Page 30«..1020..29303132..4050..»

8: Techniques of Molecular Genetics – Biology LibreTexts

September 4th, 2024 2:45 am

Genetics is the study of the inheritance and variation of biological traits. We have previously noted that it is possible to conduct genetic research without directly studying DNA. Indeed some of the greatest geneticists had no special knowledge of DNA at all, but relied instead on analysis of phenotypes, inheritance patterns, and their ratios in carefully designed crosses.

Read more here:
8: Techniques of Molecular Genetics - Biology LibreTexts

Read More...

1.5: Molecular Genetics – Biology LibreTexts

September 4th, 2024 2:45 am

Genes and Proteins

Since the rediscovery of Mendels work in 1900, the definition of the gene has progressed from an abstract unit of heredity to a tangible molecular entity capable of replication, transcription, translation, and mutation. Genes are composed of DNA and are linearly arranged on chromosomes. Some genes encode structural and regulatory RNAs. There is increasing evidence from research that profiles the transcriptome of cells (the complete set all RNA transcripts present in a cell) that these may be the largest classes of RNAs produced by eukaryotic cells, far outnumbering the protein-encoding messenger RNAs (mRNAs), but the 20,000 protein-encoding genes typically found in animal cells, and the 30,o00 protein-encoding genes typically found in plant cells, nonetheless have huge impacts on cellular functioning.

Protein-encoding genes specify the sequences of amino acids, which are the building blocks of proteins. In turn, proteins are responsible for orchestrating nearly every function of the cell. Both protein-encoding genes and the proteins that are their gene products are absolutely essential to life as we know it.

Replication, Transcription, and Translation are the three main processes used by all cells to maintain their genetic information and to convert the genetic information encoded in DNA into gene products, which are either RNAs or proteins, depending on the gene. In eukaryotic cells, or those cells that have a nucleus, replication and transcription take place within the nucleus while translation takes place outside of the nucleus in cytoplasm. In prokaryotic cells, or those cells that do not have a nucleus, all three processes occur in the cytoplasm.

Replication is the basis for biological inheritance. It copies a cells DNA. The enzyme DNA polymerase copies a single parental double-stranded DNA molecule into two daughter double-stranded DNA molecules. Transcription makes RNA from DNA. The enzyme RNA polymerase creates an RNA molecule that is complementary to a gene-encoding stretch of DNA. Translation makes protein from mRNA. The ribosome generates a polypeptide chain of amino acids using mRNA as a template. The polypeptide chain folds up to become a protein.

The central dogma of molecular biology describes the flow of genetic information in cells from DNA to messenger RNA (mRNA) to protein. It states that genes specify the sequence of mRNA molecules, which in turn specify the sequence of proteins. Because the information stored in DNA is so central to cellular function, the cell keeps the DNA protected and copies it in the form of RNA. An enzyme adds one nucleotide to the mRNA strand for every nucleotide it reads in the DNA strand. The translation of this information to a protein is more complex because three mRNA nucleotides correspond to one amino acid in the polypeptide sequence.

Transcription is the process of creating a complementary RNA copy of a sequence of DNA. Both RNA and DNA are nucleic acids, which use base pairs of nucleotides as a complementary language that enzymes can convert back and forth from DNA to RNA. During transcription, a DNA sequence is read by RNA polymerase, which produces a complementary, antiparallel RNA strand. Unlike DNA replication, transcription results in an RNA complement that substitutes the RNA uracil (U) in all instances where the DNA thymine (T) would have occurred. Transcription is the first step in gene expression. The stretch of DNA transcribed into an RNA molecule is called a transcript. Some transcripts are used as structural or regulatory RNAs, and others encode one or more proteins. If the transcribed gene encodes a protein, the result of transcription is messenger RNA (mRNA), which will then be used to create that protein in the process of translation.

Translation is the process by which mRNA is decoded and translated to produce a polypeptide sequence, otherwise known as a protein. This method of synthesizing proteins is directed by the mRNA and accomplished with the help of a ribosome, a large complex of ribosomal RNAs (rRNAs) and proteins. In translation, a cell decodes the mRNAs genetic message and assembles the brand-new polypeptide chain. Transfer RNA, or tRNA, translates the sequence of codons on the mRNA strand. The main function of tRNA is to transfer a free amino acid from the cytoplasm to a ribosome, where it is attached to the growing polypeptide chain. tRNAs continue to add amino acids to the growing end of the polypeptide chain until they reach a stop codon on the mRNA. The ribosome then releases the completed protein into the cell.

DNA to protein: This interactive shows the process of DNA code being translated to a protein from start to finish!

The genetic code is degenerate as there are 64 possible nucleotide triplets (43), which is far more than the number of amino acids. These nucleotide triplets are called codons; they instruct the addition of a specific amino acid to a polypeptide chain. Sixty-one of the codons encode twenty different amino acids. Most of these amino acids can be encoded by more than one codon. Three of the 64 codons terminate protein synthesis and release the polypeptide from the translation machinery. These triplets are called stop codons. The stop codon UGA is sometimes used to encode a 21st amino acid called selenocysteine (Sec), but only if the mRNA additionally contains a specific sequence of nucleotides called a selenocysteine insertion sequence (SECIS). The stop codon UAG is sometimes used by a few species of microorganisms to encode a 22nd amino acid called pyrrolysine (Pyl). The codon AUG, also has a special function. In addition to specifying the amino acid methionine, it also serves as the start codon to initiate translation. The reading frame for translation is set by the AUG start codon.

The genetic code is universal. With a few exceptions, virtually all species use the same genetic code for protein synthesis. The universal nature of the genetic code is powerful evidence that all of life on Earth shares a common origin.

See the original post:
1.5: Molecular Genetics - Biology LibreTexts

Read More...

Molecular genetics made simple – PMC – National Center for …

September 4th, 2024 2:45 am

Abstract

Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

All inheritable traits of living organisms are determined by their genetic material, the genome, a long nucleic acid called deoxyribonucleic acid (DNA). The DNA consists of 3109 nucleotides. Each nucleotide is made up of a sugar (deoxyribose), a nitrogenous base (adenine (A), guanine (G), cytosine (C) or thymine (T)) and a phosphate group () [1,2]. The four nitrogenous bases are divided into two groups: purines (including A and G) have two joined heterocyclinc rings and pyrimides (including C and T) have a single heterocyclic ring. Successive sugar and phosphate residues are linked by covalent phosphodiester bonds, forming the backbone of the DNA molecule and a nitrogenous base is attached to each sugar. The stability of DNA is primarily dependent on the strong covalent bonds that connect the constituent atoms of its linear backbone, and also on a number of weak non-covalent bonds that exist. Meanwhile, because of the phosphate group charges present in each nucleotide, DNA is negatively charged and therefore highly soluble in water.

The chemical structure of a nucleotide including the phosphate (yellow), the sugar (deoxyribose in green) and adenine as the nitrogenous base (pink).

The DNA structure is a double helix, in which two DNA molecules are held together by weak hydrogen bonds [37]. Hydrogen bonding occurs between laterally opposed bases, of the two strands according to Watson-Crick rules: A specifically binds to T, and G to C. The two strands are therefore complementary [8]. As the phosphodiester bonds link carbon atoms number 3 and number 5 of successive sugar residues, the end of each DNA strand will have a terminal sugar residue where carbon atom number 5 is not linked to a neighboring sugar residue, and is therefore called 5 end. The other end of the molecule is similarly called 3 end. The two DNA strands are antiparallel because they always associate (anneal) in such a way that the 53 direction of one DNA strand is the opposite to that of its partner. To describe a DNA sequence, the sequence of bases of one strand only, are usually provided, and are provided in the 53 direction. This is the direction of DNA replication as well as transcription.

The human DNA is estimated to be approximately 2 m long. In order for it to fit in the 10 m nucleus of human cells it is imperative that it is tightly folded. The DNA double helix is therefore subjected to at least two levels of coiling: the first involving coiling around a central core of eight histone proteins, resulting in units called nucleosomes, which are connected by spacer DNA; and the second involving coiling of this string of nucleosomes into a chromatin fiber [3]. During the different phases of the cell cycle, the DNA varies in the extent of its condensation. For example, during interphase the chromatin fibers are organized into long loops, whereas in metaphase chromosomes, the DNA is compacted to about 1/10,000 of its stretched out length. In humans there are 24 different chromosomes, namely 122 autosomes, and sex chromosomes X and Y [9]. Since humans are diploid organisms, our DNA is found in two copies, one inherited from each parent, and is folded into 46 chromosomes. Among the major DNA sequence elements of each chromosome are: the centromeres (constriction site where sister chromatics are joined and chromosomes link to the mitotic spindle), the telomeres (structures capping the ends of chromosomes) and the origins of replication (where DNA replication begins). Chromatin is encountered in extended (euchromatin) or highly condensed (heterochromatin) states, which in turn affect the transcriptional status of the corresponding DNA regions (being active or inactive, respectively) [10]. Under the light microscope, these regions appear as light and dark bands of metaphase chromosomes ().

Diagrammatical representation of the human karyotype of haploid chromosome set with X and Y as the sex chromosome complement. The alternating light and dark bands are characteristic of each chromosome in standard G-banding karyotype, and they represent euchromatic and heterochromatic regions, respectively.

Genomic DNA contains coding as well as non-coding regions. The non-coding regions are involved in DNA folding, chromosome formation, chromatin organization within the nucleus, regulation of transcription and more [1114]. The coding regions are responsible for the transcription of RNA molecules and ultimately protein synthesis.

The genes are stretches of DNA that code for polypeptides. Specifically, genes contain regulatory and coding regions, which regulate their transcription or code for the polypeptide product, respectively. A key regulatory region is the promoter, where the transcription machinery binds for transcription to be initiated. Other possible regulatory regions include enhancers, which regulate gene expression in different tissues or cells, and can be found upstream or downstream of the coding region, as far as several thousand bases. The coding regions are represented by exons, whose size and number varies among different genes. Interspersed between gene exons, there are non-coding sequences named introns, which tend to make up the largest percentage of a gene. The human genome is estimated to contain approximately 20,000 different genes [15]. Interestingly, it is estimated that 80% of the human genome is expressed, yet only 2% is coding for proteins [16].

The central dogma of molecular biology was first stated in 1958 and re-stated in 1970 by Francis Crick [17,18]. According to this dogma there are three major classes of biopolymers: DNA, RNA and protein, and three classes of direct transfer of information that can occur between these biopolymers: general transfers, special transfers and unknown transfers. Of these, only the general transfers are believed to occur normally in most cells and they involve DNA replication to DNA, DNA transcription to mRNA and mRNA translation to proteins ().

The central dogma of molecular biology, as it currently applies in most cells (general transfers = black),or under specific conditions (in some viruses and in vitro: special transfers = grey).

The transfer of information from the DNA to the protein level is achieved step-wise and starts with the transcription of a gene to mRNA. Specifically, the transcription machinery (including RNA polymerase and a variety of transcription factors) binds to the gene promoter, the double helix opens in that location and a single strand primary mRNA molecule (hn-RNA), complementary to that gene sequence, is synthesized base by base () [19]. RNA as opposed to DNA, is a single strand nucleic acid containing ribose instead of deoxyribose and uracil instead of thymine. The heterogenous (hn)-RNA molecules go through a series of processing steps including a 5 cap, a poly-A (50250 adenine molecules and a 70kDa protein) tail at the 3 end and splicing, to remove the intronic sequences () [2023]. Alternative splicing can also occur, which removes certain exons and contributes to the diversity of proteins any single gene can produce [24].

During transcription the transcription machinery (including RNA polymerase and a variety of transcription factors) binds to the gene promoter, the double helix opens in that location and a single strand primary mRNA molecule (hn-RNA),complementary to that gene sequence, is synthesized base by base.

The promoter and enhancer elements of each gene are involved in gene transcription to precursor mRNA (hn-RNA) molecules which are then appropriately processed to give mature mRNA.

The mature mRNA molecules can be translated to proteins [25]. This process takes place in the cytoplasm with the aid of ribosomes, which are complexes of RNAs and proteins called ribonucleoproteins. The ribosomes are divided into two subunits: the smaller subunit binds to the mRNA, while the larger subunit binds to the tRNA which carries the amino acids. When a ribosome finishes reading a mRNA, these two subunits split apart. In particular, ribosomes bind mRNA and read through it as triplet codons, usually starting with an AUG triplet (initiation codon) downstream of the ribosome binding site. For each codon, the ribosome, with the aid of initiation and elongation factors, recruits a complementary tRNA molecule, which in turn carries a specific amino acid. Each codon codes for a specific amino acid as shown in . As the amino acids are linked into the growing peptide chain, they begin folding into the correct conformation. The translation process ends with the stop codons UAA, UGA or UAG. The nascent polypeptide chain is then released from the ribosome as a mature protein [25]. In some cases the new polypeptide chain requires additional processing to make a mature protein. Mature proteins in turn can be subjected to a range of post-translational modifications. Their ultimate roles in cell physiology can be highly variable including cytoarchitecture, enzymatic activity, intracellular signalling, transportation, communication etc.

Genetic variation refers to genetic difference between individuals within or between different populations. This variation is what renders each individual unique in its phenotypic characteristics. Genetic variation occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. These variations can be divided in polymorphisms and mutations.

Polymorphisms are defined as variants found in >1% of the general population [26]. Due to their high frequency they are considered unlikely to be causative of genetic disease. They can however, together with other genetic and environmental factors, affect disease predisposition, disease progression or response to treatments (e.g. [27]). Three common types of polymorphisms are the single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and the large-scale copy number polymorphisms (CNPs or CNVs). SNPs are single base changes that occur on average about every 1000 bases in the genome. Their distribution is not homogenous and they occur more frequently in non-coding regions where there is less selective pressure () [28,29]. Most SNPs are neutral; yet 35% are thought to have a functional role, i.e. affect the phenotype of the individual carrying them. Depending on their effect at the protein level, SNPs can be characterized as synonymous (coding for the same amino acid as the wild type DNA sequence) or non-synonymous (coding for a different amino acid than the wild type DNA sequence) [29]. Indels are small insertions or deletions ranging from 1 to 10,000 bp in length, although the majority involves only a few nucleotides [30,31]. They are considered the second most common form of variation in the human genome following SNPs, with over 3 million short indels listed in public databases. CNVs are variations in the number of copies of DNA regions. They can involve loss of one or both copies of a region of DNA, or the presence of more than two copies of this region. They can arise from DNA deletions, amplifications, inversions or insertions and their size can range from 1 kb (1,000 bases) to several megabases [32]. SNPs, indels and CNVs can either be inherited or arise de novo.

A Single-Nucleotide DNA Polymorphism (SNP) is defined as a single DNA variation detected when a single nucleotide in the genome (or other common sequence) is different between species or paired chromosomes in an individual. In this case there is a substitution of a C (Cytosine) in a T (Tymine) which causes the change of a G (Guanine) in a A (Adenine) in the complementary DNA strand.

Mutations on the other hand, are rare (by some defined as variations with <1% frequency in the general population, although there are many exceptions to this rule) changes in the DNA sequence that can change the resulting protein, impair or inhibit the expression of the gene, or leave both the gene function and protein levels/structure unaffected. Although a variety of definitions have been considered over the years, for most scientists mutation has become synonymous with disease. They can arise during DNA replication or as a result of DNA damage through environmental agents including sunlight, cigarette smoke and radiation. A variety of different types of mutations exist and the terminology used to describe them is based on their effect either on DNA structure, on protein product function, or on the fitness of the individual carrying them.

In terms of DNA structure modification, mutations can be categorized as:

A) point mutations in which a single nucleotide is changed for a different one (). These are divided into missense mutations (meaning that when translated this DNA sequence leads to the incorporation of a different amino acid into the produced protein, with possible implications in the protein function), nonsense mutations (where the new nucleotide changes the sequence so that a stop codon is formed earlier than in the normal sequence and therefore the produced protein is truncated), silent mutations (where the nucleotide change does not affect the amino acid in the corresponding position of the produced protein, and therefore the final protein product remains unaltered), and splice-site mutations (which affects the splice site invariant donor or acceptor dinucleotides (5GT or 3AG).

Different types of mutation and possible conseuquence on protein function:A) missense mutation; B) nonsense mutation; C) deletion; D) inversion.

B) insertions in which one or more nucleotides are inserted in the normal DNA sequence, therefore disrupting it. This can have a moderate or severe effect on the corresponding mutant protein product. For example it can affect the splicing or the reading frame ( frame-shift mutations), therefore leading an incorrect reading of all the downstream nucleotide triplets and consequently their translation to a significantly different and/or truncated amino acid sequence.

C) deletions in which one or more nucleotides are deleted from the normal DNA sequence (). As in the case of insertions this can lead to minor (e.g. single amino acid changes) or major protein defects (e.g. reading frame modifications with implications for the entire downstream amino acid sequence of the mutant protein). When larger chromosomal regions are deleted, multiple genes can be lost and/or previously distant DNA sequences can now be juxtaposed (such juxtapositions can lead, for example, to the production of abnormal proteins containing sequences from different genes that have now been merged or abnormal expression of otherwise normal proteins by deletions affecting their upstream regulatory regions).

D) amplifications leading to multiple copies of chromosomal regions and consequently to an increased number of copies of the genes located within them and increased levels of the corresponding proteins.

E) inversions involving the reversal of the orientation of a DNA segment, with variable implications for the protein product, similar to the ones described above ().

F) translocations where regions from non-homologous chromosomes are interchanged.

Mutations can affect the expression of a transcript and its corresponding protein, or modify the structure of the resulting protein therefore impairing its function [33]. Depending on their functional effect, mutations can be classified as dominant negative (the mutant gene product acts antagonistically to the wild-type allele), gain-of-function (the mutant gene product gains a new and abnormal function), and loss-of-function (the mutant gene product has less or no function). Loss-of-function mutations can be associated with haploinsufficiency, a common occurrence in the molecular cardiomyopathy setting.

Haploinsufficiency occurs when the gene product of one of the two alleles in an individual is lost due to a DNA deletion or to instability/degradation of the mutant protein. Other terms used to describe the effect of a mutation on the fitness of the carrier are: harmful or deleterious mutations (decreases the fitness of the carrier), beneficial or advantageous mutations (increases the fitness of the carrier), and lethal mutations (leading to the death of the individual carrying them).

In the field of cardiovascular genetics, when a new genetic variant is identified a common occurrence given the large number of genes and different variants thereof being screened it is crucial to first determine whether it represents a benign polymorphism or a pathogenic mutation. Identifying pathogenic mutations enables the characterization of the molecular mechanisms of pathogenesis, and more importantly for the clinical setting, it allows the development of genetic tests for mutation detection in other family members (including pre-symptomatically) as well as unrelated patients with similar phenotypes (see section on Cardiovascular genetics in clinical practice).

The Clinical Molecular Genetics Society1 and the American College of Medical Genetics2 have issued guidelines to facilitate the determination of the potential pathogenic role of a novel/unclassified variant (). The Human Gene Mutation Database,3 along with locus-specific or disease-specific mutation databases, are valuable resources for first deciphering whether a detected genetic variant represents a known mutation. The databases Online Mendelian Inheritance in Man,4 dbSNP5 and Ensembl,6 along with thorough searches of the literature via PubMED, Google Scholar, Scopus or the Web of Science, can also provide valuable information. From thereon carefully matched controls need to be included in the study populations, co-occurrence with known (in trans) deleterious mutations in the same gene needs to be ruled out, co-segregation with the disease in the family represents useful information, and occurrence of the novel variant concurrent with the incidence of a sporadic disease can be a strong indicator. Bioinformatically, it is important to determine if the unclassified variant leads to an animo acid change and how different the biophysical properties of the new amino acid are: the greater the difference, the higher the likelihood to possess a pathogenic role. Similarly, the more conserved a DNA region is across species, the greater an impact any variations therein are likely to have. A range of in silico analysis tools can also be used for the predication of a pathogenic effect (e.g. Align GVGD, Sorting Intolerant From Tolerant [SIFT], Polyphen, and Alamut) or the prediction of splice sites. One of the best means of determining pathogenicity, however, is the use of suitable functional assays and transgenic animal models [34,35].

From mutation to disease. A DNA mutation can cause qualitative or quantitative changes at the protein level, leading to either a dysfunctional/non-functional protein product and/or aberrant protein expression levels. Both mechanisms can in turn lead to CVD.

Once a mutation has been directly associated with a pathological phenotype a number of additional parameters need to be evaluated in order to maximize its value in the clinical setting. These parameters relate to the mode of inheritance of a mutation, which impacts directly the chances of detecting it in other family members of the patient, or his/her offspring. The categorization gonosomal or autosomal depends on whether the mutations are located on either of the sex chromosomes or not. For example a mutation on the Y chromosome will only affect males. The dominant or recessive nature relates to the need of one or both alleles, respectively, to carry the mutation for the pathogenic phenotype to develop. In hypertrophic cardiomyopathy (HCM) a number of cases have been reported with homozygosity for the pathogenic mutation. Nishi et al. first reported homozygosity for a MYH7 mutation in two brothers with HCM [36]. Homozygous mutations were also detected in MyBPC in HCM patients [37]. The patients who harbour homozygous mutations present with a more severe clinical phenotype than their heterozygous family members. These observations support the notion of a mutation dosage effect, in which a larger amount of the defective protein leads to a greater disruption of the sarcomere function and results in a more severe clinical outcome. For example, in our Egyptian HCM cohort, none of the mutation-positive patients were homozygous for the mutation detected (data not published) which might be explained either by the rarity of its occurrence in the specific cohort or due to technical limitations in the mutation screening method ().

Mutation screening by denaturing high performance liquid chromatography (dHPLC) using WAVE, Transgenomics. dHPLC can be used as an initial mutation screening method, being dependent on heteroduplex (wild type-mutant) formation, and variant profiles from the wild pattern are subsequently sequenced. Note however, that dHPLC is not capable of detecting homozygosity.

Importantly, a number of exceptions apply to the aforementioned inheritance mode rules, such as in the case of incomplete penetrance (a percentage of the individuals carrying the mutation fail to present the corresponding trait) where mutation carriers may not present with any symptoms even in the presence of a dominant mutation. Furthermore, the phenomena of variable expressivity (variations in a phenotype among individuals carrying a particular genotype) and epistasis (one gene is modified by one or several other genes, e.g. modifier genes) can lead to a range of pathological characteristics despite the presence of the same mutation. These parameters, potentially in combination with environmental factors, can often lead to significant clinical heterogeneity in most inherited CVDs, between unrelated individuals as well as family members carrying the same mutation () [38].

Role of genetic and environmental factors in determining the spectrum of the disease phenotype.(Strachan T, Read AP. Genes in pedigrees and populations in Human molecular genetics 3. 3rd ed. London; New York: Garland Press; 2004).

Another exception is this of compound heterozygotes (carriers of two different mutations on the two alleles of the same gene) or double heterozygotes (carriers of mutations in two different genes), which carry one copy of each mutation, yet they can develop the disease. Notably, the concomitant presence of multiple genetic defects contributing to the same disease is usually associated with a more severe clinical phenotype. For example, in HCM the presence of multiple pathogenic mutations could be included amongst the risk stratification criteria [39]. Multiple mutations have been observed in about 5% of HCM patients and they are usually associated with higher septal thickness and worse clinical outcomes, such as heart failure and sudden death [4043]. Double heterozygosity is commonly detected in the Myosin heavy chain (MYH7) and Myosin binding protein C (MyBPC) genes, probably because they represent the most commonly involved genes in the pathogenesis of HCM. Compound heterozygosity in MyBPC however, leading to the absence of a normal protein, has been reported to results in neonatal death in two independent cases, where the parents were each heterozygous for one of the mutations [44]. Similarly to HCM, double heterozygosity has been reported in other CVDs such as long QT, with a similar frequency of 5% [45].

Hereditary CVDs include a variety of different aspects and structures of the cardiovascular system such as inherited cardiomyopathies, arrhythmias, metabolic disorders affecting the heart, congenital heart diseases, as well as vascular disorders such as Marfan syndrome [4648]. Over the past two decades significant progress has been made towards the identification of the genetic basis of CVD, with tens of genes now known to be implicated in almost all of the different disorders. The magnitude of the role of genetics however, remains elusive. Although in some cases the pathogenesis appears to involve complex mechanisms and multifactorial (genetic and environmental) aetiology, multigenic inheritance (e.g. familial hypercholesterolemia: LDLR, APOB, ABCG5, ABCG8, ARH, PCSK9; hypertrophic cardiomyopathy: MYH7, TNNT2, TPM1, TNNI3, MYL2, MYBPC3, ACTC, MYL3) or even monogenic, also known as Mendelian, inheritance (e.g. Marfan syndrome: FNB1) has been described. Pinpointing the gene(s) and their specific mutations that lead to each pathological phenotype can give rise to valuable, complementary genetic diagnostic/prognostic tools for significantly improved clinical management of CVD patients and their families.

For example, the recently published consensus statement on the state of genetic testing for cardiomyopathies and channelopathies has elegantly presented the list of different genes which contribute by >5% to these inherited disorders. [49,50]. There are more than 50 distinct channelopathy/cardiomyopathy-associated genes with hundreds of mutations discovered to date. Each of these mutations/genes usually accounts for a small percentage of the reported cases, while in many cases the causative mutation/gene is never identified. For example, in channelopathies a mutation is found in <20% of short QT syndrome cases and up to 75% in long QT syndrome cases. An exceptional scenario is this of mutations in the cardiac ryanodine receptor (RYR2) gene in catecholaminergic polymorphic ventricular tachychardia, which account for up to 65% of affected patients [51]. In cardiomyopathies, positive genetic testing results range in frequency from <20% in restrictive cardiomyopathy to 60% in familial HCM. Despite the fact that two decades ago, HCM was termed a disease of the sarcomere involving at least 8 causative genes, the rate of mutation detection ranged in frequency from 2530% in MyBPC and MYH7 to 5% in TNNT2 and TNNTI3, and 1% in other sarcomeric genes [42,52]. Additionally, there are HCM phenocopies (same phenotype) associated with non-sarcomeric gene mutations and different modes of inheritance, which may on occasion be difficult to exclude from sarcomeric HCM based on clinical evaluation alone. Therefore, multiple genes need to be screened for a multigenic disease such as HCM.

Overall, our understanding of the genetic basis of CVD has been rapidly expanding over the years with important lessons learned both on monogenic as well as complex disease forms [53]. However, the true value of these findings lies in their translation to the clinical setting and their utilisation towards improved CVD diagnosis, prognosis and treatment. Along these lines, genetic testing is currently available for a number of CVDs in the form of clinical service in most Western countries, and increasingly in the developing world.

Genetic testing can serve three main goals in the clinical practice: first to determine the mode of inheritance of the specific disease in the specific family and identify if there is risk for other family members; second to organize the clinical assessment of unaffected family members through predictive genetic testing so as to distinguish those who are at risk for the disease and should have regular cardiac follow-up (mutation carriers) and those who are not (mutation non-carriers); third, following the establishment of distinct genotypephenotype correlations, the application of genetic testing in disease diagnosis, prognosis and personalized treatment (i.e. identification of the drugs to which each patient will respond best) [54].

The clinical value of genetic screening of a cardiovascular disease patient is therefore valuable initially at the diagnostic/prognostic/therapeutic level, provided the genotypephenotype associations have been established first. These associations vary considerably among different cardiovascular diseases, different genes and different mutations thereof. The relevance of genetic testing towards these three levels of clinical management is possibly best shown in the setting of the long QT syndrome [49,50]. It is critical to note however, that genetic testing in the cardiovascular disease setting cannot be the basis for clinical management of patients, but can serve a complementary role to the comprehensive clinical evaluation to better address the patient's and his/her family's needs.

Identifying the causative mutation of a proband further allows the genetic screening of its family members, a process of marked predictive power and therefore high importance in the cardiovascular clinic [55]. The significance of such pre-symptomatic genetic testing for the probands family members ranges from ensuring that unaffected mutation carriers receive regular clinical follow-up and prophylactic treatment (where available) to reassurance that clinically suspicious findings are unlikely to be indicative of the specific form of the disease in the absence of the specific family mutation (e.g. ) [56,57]. Importantly however, a negative genetic test result in the proband's family members cannot by itself exclude the presence of disease in general, since a large number of different genes and a variety of mutations thereof can contribute to the same or a different pathological cardiovascular phenotype and by chance, a family member could be a carrier of a different gene mutation.

Pedigree of an HCM positive family from the BA HCM Study. A pathogenic mutation in MYH7 exon 23 (Glu927Lys) was detected in the proband II-4. Echo screening of all siblings was undertaken, and sister II-10 was found to have an interventricular septal measurement of 14 mm. Genetic screening of all family members excluded HCM diagnosis for the sister (II-10).However, the symptom free and echo clear son of the proband, was positive for the mutation and therefore given a pre-symptomatic diagnosis of HCM at the age of12 years. Symbols in white represent unaffected individuals, in black are individuals with HCM based on clinical or genetic findings, and in blue are individuals who have not been screened by echo or genetic testing (unpublished data).

Genetic testing of children in the family has always posed an ethical concern, particularly for adult-onset diseases. Therefore pre-symptomatic testing of children should be extensively discussed with the family after a mutation has been identified in the proband, and in the context of the specific cardiovascular disease [58]. In cases where pre-symptomatic genetic screening and mutation identification has direct implications on the child's clinical follow-up, lifestyle adaptations and preventive treatments, it would be valuable to proceed with genetic testing, upon the parents approval. For example, for long QT syndrome and catecholaminergic polymorphic ventricular tachychardia, and occasionally in high risk HCM families, in which preventive measures or prophylactic therapy is advisable for asymptomatic mutation positive family members, genetic testing should be undertaken in early childhood, i.e. regardless of age. On the other hand, for late-onset and/or reduced penetrance diseases, it is reasonable to proceed with clinical monitoring as needed during childhood, leaving the genetic testing option open for when the individual reaches adulthood [49,50]. When a child has already presented with a CVD, the use of genetic testing is complementary to all other clinical tests, and especially valuable for identifying other family members at risk, since childhood-onset cases, even when presumed as sporadic, can often have a genetic aetiology. For example, approximately half of the presumed sporadic cases of childhood-onset hypertrophy have genetic causes [59].

Although the translation of molecular genetics to routine clinical practice is slow, a series of certified genetic testing centers (www.genetests.org) have been established, and guidelines have already been issued for a number of cardiovascular diseases such as HCM, dilated cardiomyopathy (DCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) [60,61]. The consensus is that a minimum of three to four generation family history needs to be obtained, the relatives at risk need to be identified and directed for clinical screening, the potential genetic nature of the disease needs to be explained, and the possibility of genetic testing should be discussed where appropriate.

In order to follow these guidelines, cardiology clinics around the world need to ensure that cardiologists are provided with appropriate training in key genetic concepts, along with information on the latest developments in cardiovascular genetics and the best means to apply them in the clinic. Importantly, the close interaction between cardiologists, geneticists and genetic counsellors, especially in complex cases, will significantly expedite the benchside-to-bedside translation of the latest genetic discoveries and optimize the clinical care provided to the patient [62,63]. For example, when routine cardiovascular genetic screening fails to detect the causative mutations, screening can be extended to include broad gene panels and/or application of high throughput technologies. Similarly, in cases where new mutations are identified, targeted genetic tests can be designed, if needed, for screening family members at risk. Currently, different modes of cardiologist-geneticist interactions are being adopted in clinical settings around the world, a process that requires time, continuing education and to some extent, reorganization of health systems [64]. An example of such an evolving system of interdisciplinary interactions is that of the Egyptian National Genetic study of HCM ().

Combined clinical and genetic evaluation of CVD patients will allow for improved disease management and patient care.

In conclusion, cardiovascular genetic testing is valuable for improving the standards of care for CVD patients and their families at the diagnostic, prognostic and therapeutic level. Importantly, for healthcare systems worldwide, it further represents a cost-effective approach by enabling the timely identification of individuals at risk, ensuring regular follow-up only for the individuals at risk and early disease detection, as well as enabling, where possible, the use of disease preventative measures in order to minimize the environmental contributing factors [65]. To this end, clinical cardiovascular genetics is increasingly emphasized in undergraduate and postgraduate medical education and incorporated in cardiological clinics worldwide [54].

The tremendous technological advancements over the past decade have empowered the discovery of new biological concepts and the emergence of entirely new scientific fields. Among them, cardiac systems genetics a systems-based analysis of genetic variants considering all different levels spanning from their effect on the cardiac transcriptome, proteome, metabolome to organ physiology/pathophysiology (phenome) (). The global analysis of the downstream functional molecular and cellular implications of different genetic variants, will allow the meaningful integration of molecular and clinical data in a powerful way.

To fully unravel the intricate pathways regulating cardiac physiology and pathophysiology the global studies of the human genome will need to be extended to similar studies at the epigenome (chemical changes to the DNA and histone affecting the chromatin structure and function of the genome),transcriptome (the full set of transcripts produced from the human DNA), miRNome (the full set of microRNAs produced from the human DNA), proteome (the full set of proteins) and metabolome (full set of metabolites) levels.

Systems genetics will in turn, serve as an integral part of network medicine, an advanced form of molecular medicine, where perturbations, rather than individual molecules, are investigated as the underlying causes of complex diseases [66]. In cardiology, examples of important first steps in this direction are the identification of cardiac gene expression signatures related with response to left ventricular assist device implantation [67,68] and peripheral leukocyte expression signatures indicative of post-cardiac transplantation tissue rejection [69]. Parameters such as epigenetics and microRNAs are increasingly integrated in network medicine, adding new dimensions to the intricate mechanisms of cardiovascular disease (e.g. [70,71]). A likely next addition to network medicine, based on emerging new data [72,73], could be this of metagenomics the genomic investigation of micro-organisms inside the human body, and their effect on the global networks orchestrating human cardiac physiology/pathophysiology.

Cardiology is rapidly transformed with powerful new technologies expediting the acquisition of new knowledge and exciting new discoveries enriching our understanding of the intricate genotypephenotype correlations. The close interaction of cardiologists and geneticists is facilitating the transition of novel findings to clinical practice and vice versa. It is also enabling the rapid establishment of appropriate research strategies to address emerging clinical questions. Ultimately the convergence of the two disciplines promises to transform the way we perceive, manage and treat CVD.

None.

Go here to see the original:
Molecular genetics made simple - PMC - National Center for ...

Read More...

4 Introduction to Molecular Genetics – University of Minnesota Twin Cities

September 4th, 2024 2:45 am

Figure 1: Dolly the sheep was the first cloned mammal.

The three letters DNA have now become associated with crime solving, paternity testing, human identification, and genetic testing. DNA can be retrieved from hair, blood, or saliva. With the exception of identical twins, each persons DNA is unique and it is possible to detect differences between human beings on the basis of their unique DNA sequence.

DNA analysis has many practical applications beyond forensics and paternity testing. DNA testing is used for tracing genealogy and identifying pathogens. In the medical field, DNA is used in diagnostics, new vaccine development, and cancer therapy. It is now possible to determine predisposition to many diseases by analyzing genes.

DNA is the genetic material passed from parent to offspring for all life on Earth. The technology of molecular genetics developed in the last half century has enabled us to see deep into the history of life to deduce the relationships between living things in ways never thought possible. It also allows us to understand the workings of evolution in populations of organisms. Over a thousand species have had their entire genome sequenced, and there have been thousands of individual human genome sequences completed. These sequences will allow us to understand human disease and the relationship of humans to the rest of the tree of life. Finally, molecular genetics techniques have revolutionized plant and animal breeding for human agricultural needs. All of these advances in biotechnology depended on basic research leading to the discovery of the structure of DNA in 1953, and the research since then has uncovered the details of DNA replication and the complex process leading to the expression of DNA in the form of proteins in the cell.

See the original post here:
4 Introduction to Molecular Genetics - University of Minnesota Twin Cities

Read More...

Molecular genetics – Definition and Examples – Biology Online

September 4th, 2024 2:44 am

DefinitionnounA branch of genetics that deal with the structure and function of genes at a molecular levelSupplementGenetics is a basically a study in heredity, particularly the mechanisms of hereditary transmission, and the variation of inherited characteristics among similar or related organisms. Some of the branches of genetics include behavioural genetics, classical genetics, cytogenetics, molecular genetics, developmental genetics, and population genetics.Molecular genetics, in particular, is a study of heredity and variation at the molecular level. It is focused on the flow and regulation of genetic information between DNA, RNA, and proteins. Its sub-fields are genomics (i.e. the study of all the nucleotide sequences, including structural genes, regulatory sequences, and noncoding DNA segments, in the chromosomes of an organism) and proteomics (i.e. the study of proteins from DNA replication). The different techniques employed in molecular genetics include amplification, polymerase chain reaction, DNA cloning, DNA isolation, mRNA isolation, and so on. Molecular genetics is essential in understanding and treating genetic disorders. It is regarded as the most advanced field of genetics. The Human Genome Project was a large scientific research endeavor in molecular genetics. It began in 1990s and finished in 2003 with the intent of identifying the genes and the sequences of chemical base pairs in human DNA.See also:

Last updated on May 12th, 2021

Go here to see the original:
Molecular genetics - Definition and Examples - Biology Online

Read More...

A Detailed Look at the Science of Molecular Genetics – KnowYourDNA

September 4th, 2024 2:44 am

Genetics has become one of the most diverse branches of science as it deals with heredity, inheritance, and how certain traits are expressed.

Molecular genetics focuses more on the molecules at work in geneticsspecifically DNA, RNA, and the proteins responsible for expressing traits.

This branch of genetics is instrumental in diagnosing genetic disorders. With molecular genetics, scientists and doctors can pinpoint abnormalities or changes within gene sequences.

The study of human DNA has propelled modern medicine towards actionable solutions for even the most difficult genetic conditions and mutations. By observing the molecular structure of DNA, geneticists can determine any deviation and mutation that may cause trouble down the road.

Molecular genetics is concerned with what makes DNAthat is, the molecules that are at work.1 Its a biomedical science concerned with human genes and the genetic material DNA consists of, as well as their nucleotide sequences and structures at the molecular level.

It is also considered the marriage of genetics and molecular biology, the study of the building blocks of every object.

This science shows us how genes inside our DNA determine everything from eye color to disease risk.

Geneticists, scientists, and medical professionals can determine how genes work and how any divergence from the norm can contribute to genetic disorders and abnormalities by exploring the special processes and properties of DNA molecules and their molecular mechanisms.

Molecular genetics breaks down into smaller fields, including:

Don't miss out on the opportunity to learn more about yourself. Read our best DNA test page to find the best one for you.

Yes. Molecular genetics falls under genetics.

Genetics is a broader branch of biology that deals with anything related to genes, traits, and inheritance. Its the study of how genes are passed down from parents to offspring through DNA sequences.2

19th-century monk Gregor Mendels famed pea plant experiments laid the foundation for modern genetics. Since then, niche branches of genetics have become specializations, such as:

DNA, or deoxyribonucleic acid, has a double helix structure thats made up of chemical components called nucleotides.3

Nucleotides, which form the DNA ladder, have three important parts:

The entirety of an organisms set of DNA or genetic material is called a genome. Each genome has all the instructions necessary for an organism to develop.

Every cell in that organism will have the same genome so that when they replicate themselves, they all still contain the exact same instructions.

Molecular genetic testing is when a DNA segment or a gene sequence is inspected for any mutations.4 A DNA strand is often looked closely at and analyzed to determine any variations at the molecular level.

Its compared to normal genetic material and any deviations or mutations are taken note of. Any variance in a gene is then explored.

Different mutations can lead to different genetic conditions. For example, a copy of a chromosome can lead to specific genetic disorders, depending on which chromosome has been duplicated.

Other conditions can also arise from the complex interplay of multiple genetic variants. So a thorough study of the DNA sequence is necessary to determine potential congenital risks.

A DNA molecule can also be further looked at to see how its structure contributes to the persons traits.

Genetic tests can be a little pricey, but its well worth the price tag when you consider what they can tell you.

Molecular genetics is being used today all over the world. Its especially used in a lot of genetic research and genetic testing.

When you get a genetic test done to find out more about your ancestry and heritage, you are investing in molecular genetics.

Your DNA sequence may exhibit similarities with the sequences of people who originate from a certain region. If you share certain key similarities, its a good indicator that you or your ancestors may also be from that area.

This helps you unlock more of your past and potentially provide you with closure around your past. Who knows, you may even find out you have royal ancestry.

If your parents had a genetic test done on you when they were pregnant with you to determine if you were at risk for any genetic disease, molecular genetics provided the results.

Geneticists and genetic counselors who tap into family history and rely on testing delve into your molecular structure and practice molecular genetics to give you better insight into your health. Many human diseases can be traced in family medical history via molecular genetics.

You can also determine if any diseases run in your family and what you can do to prevent contracting them.

In biological sciences, molecular genetics helps us understand the molecular basis of living things. It reveals the why behind how our bodies work at the very smallest level.

The biology of genes has helped us understand why certain genes are expressed over others, how we inherit traits, and the way our alleles work together.

Through the biological lens of genetics, weve been able to develop more medicine, apply more agricultural uses, and even explore gene editing.

Molecular genetics has made strides in forensics, given that its allowed us to identify DNA matches via fingerprints or other potential DNA samples.

Its also a huge help in the courtroom, as legal systems often use DNA testing to prove paternity or exonerate crimes.

Looking for a DNA test that's accurate and can tell you about your health and heritage?

See the article here:
A Detailed Look at the Science of Molecular Genetics - KnowYourDNA

Read More...

Molecular Genetics | NHLBI, NIH

September 4th, 2024 2:44 am

Research Interests

Mendelian principles have been the cornerstone for identifying nuclear genes in biological and diseases processes and ordering these genes into functional cascades. However, the limitation of Mendelian genetics to explain many complex traits has redirected attention beyond the nucleus. In addition to the nuclear genome, each eukaryotic cell contains hundreds to thousands of copies of mitochondrial genome, the small circular DNAs inside mitochondria. Mutations on mitochondrial genome often impair cellular energy homeostasis and have been linked to many diseases including various age-related disorders. Despite the immense impact of mtDNA mutations on health and disease, our understanding of mitochondrial genetics remains rudimentary. Genetic analyses on mitochondrial genome are complicated by the peculiarities of the mitochondrial genetic system that features maternal inheritance, polyploidy, and amitotic segregation.

We are working with fruit flies and other model organisms to understand the basic principles guiding the transmission of mitochondrial genome. We are trying to understand why evolution favors the transmission of mitochondrial genome from the maternal linage exclusively, how mothers limit the transmission of harmful mtDNA variants to their offsring, how organisms prevent the accumulation of mtDNA mutations in somatic tissues and with aging. We are also exploring the coordination and potential genetic conflicts between nuclear and mitochondrial genome, and their impact on health and diseases. Additionally, we are actively developing new tools to advance the genetic study of mtDNA.

Read more:
Molecular Genetics | NHLBI, NIH

Read More...

Molecular biology – Wikipedia

September 4th, 2024 2:44 am

Branch of biology that studies biological systems at the molecular level

Molecular biology is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.[1][2][3]

Though cells and other microscopic structures had been observed in living organisms as early as the 18th century, a detailed understanding of the mechanisms and interactions governing their behavior did not emerge until the 20th century, when technologies used in physics and chemistry had advanced sufficiently to permit their application in the biological sciences. The term 'molecular biology' was first used in 1945 by the English physicist William Astbury, who described it as an approach focused on discerning the underpinnings of biological phenomenai.e. uncovering the physical and chemical structures and properties of biological molecules, as well as their interactions with other molecules and how these interactions explain observations of so-called classical biology, which instead studies biological processes at larger scales and higher levels of organization.[4] In 1953, Francis Crick, James Watson, Rosalind Franklin, and their colleagues at the Medical Research Council Unit, Cavendish Laboratory, were the first to describe the double helix model for the chemical structure of deoxyribonucleic acid (DNA), which is often considered a landmark event for the nascent field because it provided a physico-chemical basis by which to understand the previously nebulous idea of nucleic acids as the primary substance of biological inheritance. They proposed this structure based on previous research done by Franklin, which was conveyed to them by Maurice Wilkins and Max Perutz.[5] Their work led to the discovery of DNA in other microorganisms, plants, and animals.[6]

The field of molecular biology includes techniques which enable scientists to learn about molecular processes.[7] These techniques are used to efficiently target new drugs, diagnose disease, and better understand cell physiology.[8] Some clinical research and medical therapies arising from molecular biology are covered under gene therapy, whereas the use of molecular biology or molecular cell biology in medicine is now referred to as molecular medicine.

Molecular biology sits at the intersection of biochemistry and genetics; as these scientific disciplines emerged and evolved in the 20th century, it became clear that they both sought to determine the molecular mechanisms which underlie vital cellular functions.[9][10] Advances in molecular biology have been closely related to the development of new technologies and their optimization.[11] Molecular biology has been elucidated by the work of many scientists, and thus the history of the field depends on an understanding of these scientists and their experiments.[citation needed]

The field of genetics arose from attempts to understand the set of rules underlying reproduction and heredity, and the nature of the hypothetical units of heredity known as genes. Gregor Mendel pioneered this work in 1866, when he first described the laws of inheritance he observed in his studies of mating crosses in pea plants.[12] One such law of genetic inheritance is the law of segregation, which states that diploid individuals with two alleles for a particular gene will pass one of these alleles to their offspring.[13] Because of his critical work, the study of genetic inheritance is commonly referred to as Mendelian genetics.[14]

A major milestone in molecular biology was the discovery of the structure of DNA. This work began in 1869 by Friedrich Miescher, a Swiss biochemist who first proposed a structure called nuclein, which we now know to be (deoxyribonucleic acid), or DNA.[15] He discovered this unique substance by studying the components of pus-filled bandages, and noting the unique properties of the "phosphorus-containing substances".[16] Another notable contributor to the DNA model was Phoebus Levene, who proposed the "polynucleotide model" of DNA in 1919 as a result of his biochemical experiments on yeast.[17] In 1950, Erwin Chargaff expanded on the work of Levene and elucidated a few critical properties of nucleic acids: first, the sequence of nucleic acids varies across species.[18] Second, the total concentration of purines (adenine and guanine) is always equal to the total concentration of pyrimidines (cysteine and thymine).[15] This is now known as Chargaff's rule. In 1953, James Watson and Francis Crick published the double helical structure of DNA,[19] based on the X-ray crystallography work done by Rosalind Franklin which was conveyed to them by Maurice Wilkins and Max Perutz.[5] Watson and Crick described the structure of DNA and conjectured about the implications of this unique structure for possible mechanisms of DNA replication.[19] Watson and Crick were awarded the Nobel Prize in Physiology or Medicine in 1962, along with Wilkins, for proposing a model of the structure of DNA.[6]

In 1961, it was demonstrated that when a gene encodes a protein, three sequential bases of a gene's DNA specify each successive amino acid of the protein.[20] Thus the genetic code is a triplet code, where each triplet (called a codon) specifies a particular amino acid. Furthermore, it was shown that the codons do not overlap with each other in the DNA sequence encoding a protein, and that each sequence is read from a fixed starting point.During 19621964, through the use of conditional lethal mutants of a bacterial virus,[21] fundamental advances were made in our understanding of the functions and interactions of the proteins employed in the machinery of DNA replication, DNA repair, DNA recombination, and in the assembly of molecular structures.[22]

In 1928, Frederick Griffith, encountered a virulence property in pneumococcus bacteria, which was killing lab rats. According to Mendel, prevalent at that time, gene transfer could occur only from parent to daughter cells. Griffith advanced another theory, stating that gene transfer occurring in member of same generation is known as horizontal gene transfer (HGT). This phenomenon is now referred to as genetic transformation.[23]

Griffith's experiment addressed the pneumococcus bacteria, which had two different strains, one virulent and smooth and one avirulent and rough. The smooth strain had glistering appearance owing to the presence of a type of specific polysaccharide a polymer of glucose and glucuronic acid capsule. Due to this polysaccharide layer of bacteria, a host's immune system cannot recognize the bacteria and it kills the host. The other, avirulent, rough strain lacks this polysaccharide capsule and has a dull, rough appearance.[citation needed]

Presence or absence of capsule in the strain, is known to be genetically determined. Smooth and rough strains occur in several different type such as S-I, S-II, S-III, etc. and R-I, R-II, R-III, etc. respectively. All this subtypes of S and R bacteria differ with each other in antigen type they produce.[6]

The AveryMacLeodMcCarty experiment was a landmark study conducted in 1944 that demonstrated that DNA, not protein as previously thought, carries genetic information in bacteria. Oswald Avery, Colin Munro MacLeod, and Maclyn McCarty used an extract from a strain of pneumococcus that could cause pneumonia in mice. They showed that genetic transformation in the bacteria could be accomplished by injecting them with purified DNA from the extract. They discovered that when they digested the DNA in the extract with DNase, transformation of harmless bacteria into virulent ones was lost. This provided strong evidence that DNA was the genetic material, challenging the prevailing belief that proteins were responsible. It laid the basis for the subsequent discovery of its structure by Watson and Crick.

Confirmation that DNA is the genetic material which is cause of infection came from the HersheyChase experiment. They used E.coli and bacteriophage for the experiment. This experiment is also known as blender experiment, as kitchen blender was used as a major piece of apparatus. Alfred Hershey and Martha Chase demonstrated that the DNA injected by a phage particle into a bacterium contains all information required to synthesize progeny phage particles. They used radioactivity to tag the bacteriophage's protein coat with radioactive sulphur and DNA with radioactive phosphorus, into two different test tubes respectively. After mixing bacteriophage and E.coli into the test tube, the incubation period starts in which phage transforms the genetic material in the E.coli cells. Then the mixture is blended or agitated, which separates the phage from E.coli cells. The whole mixture is centrifuged and the pellet which contains E.coli cells was checked and the supernatant was discarded. The E.coli cells showed radioactive phosphorus, which indicated that the transformed material was DNA not the protein coat.

The transformed DNA gets attached to the DNA of E.coli and radioactivity is only seen onto the bacteriophage's DNA. This mutated DNA can be passed to the next generation and the theory of Transduction came into existence. Transduction is a process in which the bacterial DNA carry the fragment of bacteriophages and pass it on the next generation. This is also a type of horizontal gene transfer.[6]

The Meselson-Stahl experiment was a landmark experiment in molecular biology that provided evidence for the semiconservative replication of DNA. Conducted in 1958 by Matthew Meselson and Franklin Stahl, the experiment involved growing E. coli bacteria in a medium containing heavy isotope of nitrogen (15N) for several generations. This caused all the newly synthesized bacterial DNA to be incorporated with the heavy isotope.

After allowing the bacteria to replicate in a medium containing normal nitrogen (14N), samples were taken at various time points. These samples were then subjected to centrifugation in a density gradient, which separated the DNA molecules based on their density.

The results showed that after one generation of replication in the 14N medium, the DNA formed a band of intermediate density between that of pure 15N DNA and pure 14N DNA. This supported the semiconservative DNA replication proposed by Watson and Crick, where each strand of the parental DNA molecule serves as a template for the synthesis of a new complementary strand, resulting in two daughter DNA molecules, each consisting of one parental and one newly synthesized strand.

The Meselson-Stahl experiment provided compelling evidence for the semiconservative replication of DNA, which is fundamental to the understanding of genetics and molecular biology.

In the early 2020s, molecular biology entered a golden age defined by both vertical and horizontal technical development. Vertically, novel technologies are allowing for real-time monitoring of biological processes at the atomic level.[24] Molecular biologists today have access to increasingly affordable sequencing data at increasingly higher depths, facilitating the development of novel genetic manipulation methods in new non-model organisms. Likewise, synthetic molecular biologists will drive the industrial production of small and macro molecules through the introduction of exogenous metabolic pathways in various prokaryotic and eukaryotic cell lines.[25]

Horizontally, sequencing data is becoming more affordable and used in many different scientific fields. This will drive the development of industries in developing nations and increase accessibility to individual researchers. Likewise, CRISPR-Cas9 gene editing experiments can now be conceived and implemented by individuals for under $10,000 in novel organisms, which will drive the development of industrial and medical applications.[26]

The following list describes a viewpoint on the interdisciplinary relationships between molecular biology and other related fields.[27]

While researchers practice techniques specific to molecular biology, it is common to combine these with methods from genetics and biochemistry. Much of molecular biology is quantitative, and recently a significant amount of work has been done using computer science techniques such as bioinformatics and computational biology. Molecular genetics, the study of gene structure and function, has been among the most prominent sub-fields of molecular biology since the early 2000s. Other branches of biology are informed by molecular biology, by either directly studying the interactions of molecules in their own right such as in cell biology and developmental biology, or indirectly, where molecular techniques are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules "from the ground up", or molecularly, in biophysics.[30]

Molecular cloning is used to isolate and then transfer a DNA sequence of interest into a plasmid vector.[31] This recombinant DNA technology was first developed in the 1960s.[32] In this technique, a DNA sequence coding for a protein of interest is cloned using polymerase chain reaction (PCR), and/or restriction enzymes, into a plasmid (expression vector). The plasmid vector usually has at least 3 distinctive features: an origin of replication, a multiple cloning site (MCS), and a selective marker (usually antibiotic resistance). Additionally, upstream of the MCS are the promoter regions and the transcription start site, which regulate the expression of cloned gene.

This plasmid can be inserted into either bacterial or animal cells. Introducing DNA into bacterial cells can be done by transformation via uptake of naked DNA, conjugation via cell-cell contact or by transduction via viral vector. Introducing DNA into eukaryotic cells, such as animal cells, by physical or chemical means is called transfection. Several different transfection techniques are available, such as calcium phosphate transfection, electroporation, microinjection and liposome transfection. The plasmid may be integrated into the genome, resulting in a stable transfection, or may remain independent of the genome and expressed temporarily, called a transient transfection.[33][34]

DNA coding for a protein of interest is now inside a cell, and the protein can now be expressed. A variety of systems, such as inducible promoters and specific cell-signaling factors, are available to help express the protein of interest at high levels. Large quantities of a protein can then be extracted from the bacterial or eukaryotic cell. The protein can be tested for enzymatic activity under a variety of situations, the protein may be crystallized so its tertiary structure can be studied, or, in the pharmaceutical industry, the activity of new drugs against the protein can be studied.[35]

Polymerase chain reaction (PCR) is an extremely versatile technique for copying DNA. In brief, PCR allows a specific DNA sequence to be copied or modified in predetermined ways. The reaction is extremely powerful and under perfect conditions could amplify one DNA molecule to become 1.07 billion molecules in less than two hours. PCR has many applications, including the study of gene expression, the detection of pathogenic microorganisms, the detection of genetic mutations, and the introduction of mutations to DNA.[36] The PCR technique can be used to introduce restriction enzyme sites to ends of DNA molecules, or to mutate particular bases of DNA, the latter is a method referred to as site-directed mutagenesis. PCR can also be used to determine whether a particular DNA fragment is found in a cDNA library. PCR has many variations, like reverse transcription PCR (RT-PCR) for amplification of RNA, and, more recently, quantitative PCR which allow for quantitative measurement of DNA or RNA molecules.[37][38]

Gel electrophoresis is a technique which separates molecules by their size using an agarose or polyacrylamide gel.[39] This technique is one of the principal tools of molecular biology. The basic principle is that DNA fragments can be separated by applying an electric current across the gel - because the DNA backbone contains negatively charged phosphate groups, the DNA will migrate through the agarose gel towards the positive end of the current.[39] Proteins can also be separated on the basis of size using an SDS-PAGE gel, or on the basis of size and their electric charge by using what is known as a 2D gel electrophoresis.[40]

The Bradford assay is a molecular biology technique which enables the fast, accurate quantitation of protein molecules utilizing the unique properties of a dye called Coomassie Brilliant Blue G-250.[41] Coomassie Blue undergoes a visible color shift from reddish-brown to bright blue upon binding to protein.[41] In its unstable, cationic state, Coomassie Blue has a background wavelength of 465nm and gives off a reddish-brown color.[42] When Coomassie Blue binds to protein in an acidic solution, the background wavelength shifts to 595nm and the dye gives off a bright blue color.[42] Proteins in the assay bind Coomassie blue in about 2 minutes, and the protein-dye complex is stable for about an hour, although it is recommended that absorbance readings are taken within 5 to 20 minutes of reaction initiation.[41] The concentration of protein in the Bradford assay can then be measured using a visible light spectrophotometer, and therefore does not require extensive equipment.[42]

This method was developed in 1975 by Marion M. Bradford, and has enabled significantly faster, more accurate protein quantitation compared to previous methods: the Lowry procedure and the biuret assay.[41] Unlike the previous methods, the Bradford assay is not susceptible to interference by several non-protein molecules, including ethanol, sodium chloride, and magnesium chloride.[41] However, it is susceptible to influence by strong alkaline buffering agents, such as sodium dodecyl sulfate (SDS).[41]

The terms northern, western and eastern blotting are derived from what initially was a molecular biology joke that played on the term Southern blotting, after the technique described by Edwin Southern for the hybridisation of blotted DNA. Patricia Thomas, developer of the RNA blot which then became known as the northern blot, actually did not use the term.[43]

Named after its inventor, biologist Edwin Southern, the Southern blot is a method for probing for the presence of a specific DNA sequence within a DNA sample. DNA samples before or after restriction enzyme (restriction endonuclease) digestion are separated by gel electrophoresis and then transferred to a membrane by blotting via capillary action. The membrane is then exposed to a labeled DNA probe that has a complement base sequence to the sequence on the DNA of interest.[44] Southern blotting is less commonly used in laboratory science due to the capacity of other techniques, such as PCR, to detect specific DNA sequences from DNA samples. These blots are still used for some applications, however, such as measuring transgene copy number in transgenic mice or in the engineering of gene knockout embryonic stem cell lines.[30]

The northern blot is used to study the presence of specific RNA molecules as relative comparison among a set of different samples of RNA. It is essentially a combination of denaturing RNA gel electrophoresis, and a blot. In this process RNA is separated based on size and is then transferred to a membrane that is then probed with a labeled complement of a sequence of interest. The results may be visualized through a variety of ways depending on the label used; however, most result in the revelation of bands representing the sizes of the RNA detected in sample. The intensity of these bands is related to the amount of the target RNA in the samples analyzed. The procedure is commonly used to study when and how much gene expression is occurring by measuring how much of that RNA is present in different samples, assuming that no post-transcriptional regulation occurs and that the levels of mRNA reflect proportional levels of the corresponding protein being produced. It is one of the most basic tools for determining at what time, and under what conditions, certain genes are expressed in living tissues.[45][46]

A western blot is a technique by which specific proteins can be detected from a mixture of proteins.[47] Western blots can be used to determine the size of isolated proteins, as well as to quantify their expression.[48] In western blotting, proteins are first separated by size, in a thin gel sandwiched between two glass plates in a technique known as SDS-PAGE. The proteins in the gel are then transferred to a polyvinylidene fluoride (PVDF), nitrocellulose, nylon, or other support membrane. This membrane can then be probed with solutions of antibodies. Antibodies that specifically bind to the protein of interest can then be visualized by a variety of techniques, including colored products, chemiluminescence, or autoradiography. Often, the antibodies are labeled with enzymes. When a chemiluminescent substrate is exposed to the enzyme it allows detection. Using western blotting techniques allows not only detection but also quantitative analysis. Analogous methods to western blotting can be used to directly stain specific proteins in live cells or tissue sections.[47][49]

The eastern blotting technique is used to detect post-translational modification of proteins. Proteins blotted on to the PVDF or nitrocellulose membrane are probed for modifications using specific substrates.[50]

A DNA microarray is a collection of spots attached to a solid support such as a microscope slide where each spot contains one or more single-stranded DNA oligonucleotide fragments. Arrays make it possible to put down large quantities of very small (100 micrometre diameter) spots on a single slide. Each spot has a DNA fragment molecule that is complementary to a single DNA sequence. A variation of this technique allows the gene expression of an organism at a particular stage in development to be qualified (expression profiling). In this technique the RNA in a tissue is isolated and converted to labeled complementary DNA (cDNA). This cDNA is then hybridized to the fragments on the array and visualization of the hybridization can be done. Since multiple arrays can be made with exactly the same position of fragments, they are particularly useful for comparing the gene expression of two different tissues, such as a healthy and cancerous tissue. Also, one can measure what genes are expressed and how that expression changes with time or with other factors.There are many different ways to fabricate microarrays; the most common are silicon chips, microscope slides with spots of ~100 micrometre diameter, custom arrays, and arrays with larger spots on porous membranes (macroarrays). There can be anywhere from 100 spots to more than 10,000 on a given array. Arrays can also be made with molecules other than DNA.[51][52][53][54]

Allele-specific oligonucleotide (ASO) is a technique that allows detection of single base mutations without the need for PCR or gel electrophoresis. Short (2025 nucleotides in length), labeled probes are exposed to the non-fragmented target DNA, hybridization occurs with high specificity due to the short length of the probes and even a single base change will hinder hybridization. The target DNA is then washed and the unhybridized probes are removed. The target DNA is then analyzed for the presence of the probe via radioactivity or fluorescence. In this experiment, as in most molecular biology techniques, a control must be used to ensure successful experimentation.[55][56]

In molecular biology, procedures and technologies are continually being developed and older technologies abandoned. For example, before the advent of DNA gel electrophoresis (agarose or polyacrylamide), the size of DNA molecules was typically determined by rate sedimentation in sucrose gradients, a slow and labor-intensive technique requiring expensive instrumentation; prior to sucrose gradients, viscometry was used. Aside from their historical interest, it is often worth knowing about older technology, as it is occasionally useful to solve another new problem for which the newer technique is inappropriate.[57]

Link:
Molecular biology - Wikipedia

Read More...

Genetics, Molecular & Cellular Biology Admissions

September 4th, 2024 2:44 am

Students seeking admission to the Genetics, Molecular and Cell Biology (GMCB) program apply to the Graduate School of Biomedical Sciences and select the GMCB program. Students interested in the Mammalian Genetics at JAX track must select this track when they apply to GMCB.

Prospective applicants are evaluated based on prior grades, three letters of recommendation, and personal statements. Prior research experience is strongly valued but is not required.

A personal interview is an important part of our evaluation process and may be conducted in person or virtually. An undergraduate major in the biological or life sciences is recommended, but not required.

The GRE is not required but can be submitted with the application.

The application is completed online on the GSBS Application Portal.

Information about application deadlines and the application process can be found in the Admissions section of this website.

Go here to see the original:
Genetics, Molecular & Cellular Biology Admissions

Read More...

Researchers map 50,000 of DNAs mysterious knots in the human genome – EurekAlert

September 4th, 2024 2:44 am

Researchers map 50,000 of DNAs mysterious knots in the human genome  EurekAlert

Read the original post:
Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert

Read More...

Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean – Nature.com

September 4th, 2024 2:44 am

Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean  Nature.com

See the original post here:
Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com

Read More...

Stem cells: Therapy, controversy, and research – Medical News Today

September 4th, 2024 2:42 am

Researchers have been looking for something that can help the body heal itself. Although studies are ongoing, stem cell research brings this notion of regenerative medicine a step closer. However, many of its ideas and concepts remain controversial. So, what are stem cells, and why are they so important?

Stem cells are cells that can develop into other types of cells. For example, they can become muscle or brain cells. They can also renew themselves by dividing, even after they have been inactive for a long time.

Stem cell research is helping scientists understand how an organism develops from a single cell and how healthy cells could be useful in replacing cells that are not working correctly in people and animals.

Researchers are now studying stem cells to see if they could help treat a variety of conditions that impact different body systems and parts.

This article looks at types of stem cells, their potential uses, and some ethical concerns about their use.

The human body requires many different types of cells to function, but it does not produce every cell type fully formed and ready to use.

Scientists call a stem cell an undifferentiated cell because it can become any cell. In contrast, a blood cell, for example, is a differentiated cell because it has already formed into a specific kind of cell.

The sections below look at some types of stem cells in more detail.

Scientists extract embryonic stem cells from unused embryos left over from in vitro fertilization procedures. They do this by taking the cells from the embryos at the blastocyst stage, which is the phase in development before the embryo implants in the uterus.

These cells are undifferentiated cells that divide and replicate. However, they are also able to differentiate into specific types of cells.

There are two main types of adult stem cells: those in developed bodily tissues and induced pluripotent stem (iPS) cells.

Developed bodily tissues such as organs, muscles, skin, and bone include some stem cells. These cells can typically become differentiated cells based on where they exist. For example, a brain stem cell can only become a brain cell.

On the other hand, scientists manipulate iPS cells to make them behave more like embryonic stem cells for use in regenerative medicine. After collecting the stem cells, scientists usually store them in liquid nitrogen for future use. However, researchers have not yet been able to turn these cells into any kind of bodily cell.

Scientists are researching how to use stem cells to regenerate or treat the human body.

The list of conditions that stem cell therapy could help treat may be endless. Among other things, it could include conditions such as Alzheimers disease, heart disease, diabetes, and rheumatoid arthritis. Doctors may also be able to use stem cells to treat injuries in the spinal cord or other parts of the body.

They may do this in several ways, including the following.

In some tissues, stem cells play an essential role in regeneration, as they can divide easily to replace dead cells. Scientists believe that knowing how stem cells work can help treat damaged tissue.

For instance, if someones heart contains damaged tissue, doctors might be able to stimulate healthy tissue to grow by transplanting laboratory-grown stem cells into the persons heart. This could cause the heart tissue to renew itself.

One study suggested that people with heart failure showed some improvement 2 years after a single-dose administration of stem cell therapy. However, the effect of stem cell therapy on the heart is still not fully clear, and research is still ongoing.

Another investigation suggested that stem cell therapies could be the basis of personalized diabetes treatment. In mice and laboratory-grown cultures, researchers successfully produced insulin-secreting cells from stem cells derived from the skin of people with type 1 diabetes.

Study author Jeffrey R. Millman an assistant professor of medicine and biomedical engineering at the Washington University School of Medicine in St. Louis, MO said, What were envisioning is an outpatient procedure in which some sort of device filled with the cells would be placed just beneath the skin.

Millman hopes that these stem cell-derived beta cells could be ready for research in humans within 35 years.

Stem cells could also have vast potential in developing other new therapies.

Another way that scientists could use stem cells is in developing and testing new drugs.

The type of stem cell that scientists commonly use for this purpose is the iPS cell. These are cells that have already undergone differentiation but which scientists have genetically reprogrammed using genetic manipulation, sometimes using viruses.

In theory, this allows iPS cells to divide and become any cell. In this way, they could act like undifferentiated stem cells.

For example, scientists want to grow differentiated cells from iPS cells to resemble cancer cells and use them to test anticancer drugs. This could be possible because conditions such as cancer, as well as some congenital disabilities, happen because cells divide abnormally.

However, more research is taking place to determine whether or not scientists really can turn iPS cells into any kind of differentiated cell and how they can use this process to help treat these conditions.

In recent years, clinics have opened that offer different types of stem cell treatments. One 2016 study counted 570 of these clinics in the United States alone. They appear to offer stem cell-based therapies for conditions ranging from sports injuries to cancer.

However, most stem cell therapies are still theoretical rather than evidence-based. For example, researchers are studying how to use stem cells from amniotic fluid which experts can save after an amniocentesis test to treat various conditions.

The Food and Drug Administration (FDA) does allow clinics to inject people with their own stem cells as long as the cells are intended to perform only their normal function.

Aside from that, however, the FDA has only approved the use of blood-forming stem cells known as hematopoietic progenitor cells. Doctors derive these from umbilical cord blood and use them to treat conditions that affect the production of blood. Currently, for example, a doctor can preserve blood from an umbilical cord after a babys birth to save for this purpose in the future.

The FDA lists specific approved stem cell products, such as cord blood, and the medical facilities that use them on its website. It also warns people to be wary of undergoing any unproven treatments because very few stem cell treatments have actually reached the earliest phase of a clinical trial.

Historically, the use of stem cells in medical research has been controversial. This is because when the therapeutic use of stem cells first came to the publics attention in the late 1990s, scientists were only deriving human stem cells from embryos.

Many people disagree with using human embryonic cells for medical research because extracting them means destroying the embryo. This creates complex issues, as people have different beliefs about what constitutes the start of human life.

For some people, life starts when a baby is born, while for others, it starts when an embryo develops into a fetus. Meanwhile, other people believe that human life begins at conception, so an embryo has the same moral status and rights as a human child.

Former U.S. president George W. Bush had strong antiabortion views. He believed that an embryo should be considered a life and not be used for scientific experiments. Bush banned government funding for human stem cell research in 2001, but former U.S. president Barack Obama then revoked this order. Former U.S. president Donald Trump and current U.S. president Joe Biden have also gone back and forth with legislation on this.

However, by 2006, researchers had already started using iPS cells. Scientists do not derive these stem cells from embryonic stem cells. As a result, this technique does not have the same ethical concerns. With this and other recent advances in stem cell technology, attitudes toward stem cell research are slowly beginning to change.

However, other concerns related to using iPS cells still exist. This includes ensuring that donors of biological material give proper consent to have iPS cells extracted and carefully designing any clinical studies.

Researchers also have some concerns that manipulating these cells as part of stem cell therapy could lead to the growth of cancerous tumors.

Although scientists need to do much more research before stem cell therapies can become part of regular medical practice, the science around stem cells is developing all the time.

Scientists still conduct embryonic stem cell research, but research into iPS cells could help reduce some of the ethical concerns around regenerative medicine. This could lead to much more personalized treatment for many conditions and the ability to regenerate parts of the human body.

Learn more about stem cells, where they come from, and their possible uses here.

Link:
Stem cells: Therapy, controversy, and research - Medical News Today

Read More...

Stem cell-based therapy for human diseases – PMC

September 4th, 2024 2:42 am

Signal Transduct Target Ther. 2022; 7: 272.

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

2Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

2Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

3Institute for Science & Technology in Medicine, Keele University, Keele, UK

4Department of Biology, Stanford University, Stanford, CA USA

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

1 Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam

2Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam

3Institute for Science & Technology in Medicine, Keele University, Keele, UK

4Department of Biology, Stanford University, Stanford, CA USA

Received 2022 Mar 15; Revised 2022 Jul 19; Accepted 2022 Jul 21.

Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.

Subject terms: Stem-cell research, Mesenchymal stem cells

The successful approval of cancer immunotherapies in the US and mesenchymal stem cell (MSC)-based therapies in Europe have turned the wheel of regenerative medicine to become prominent treatment modalities.13 Cell-based therapy, especially stem cells, provides new hope for patients suffering from incurable diseases where treatment approaches focus on management of the disease not treat it. Stem cell-based therapy is an important branch of regenerative medicine with the ultimate goal of enhancing the body repair machinery via stimulation, modulation, and regulation of the endogenous stem cell population and/or replenishing the cell pool toward tissue homeostasis and regeneration.4 Since the stem cell definition was introduced with their unique properties of self-renewal and differentiation, they have been subjected to numerous basic research and clinical studies and are defined as potential therapeutic agents. As the main agenda of regenerative medicine is related to tissue regeneration and cellular replacement and to achieve these targets, different types of stem cells have been used, including human pluripotent stem cells (hPSCs), multipotent stem cells and progenitor cells.5 However, the emergence of private and unproven clinics that claim the effectiveness of stem cell therapy as magic cells has raised highly publicized concerns about the safety of stem cell therapy. The most notable case involved the injection of a cell population derived from fractionated lipoaspirate into the eyes of three patients diagnosed with macular degeneration, resulting in the loss of vision for these patients.6 Thus, as regenerative medicine continues to progress and evolve and to clear the myth of the magic cells, this review provides a brief overview of stem cell-based therapy for the treatment of human diseases.

Stem cell therapy is a novel therapeutic approach that utilizes the unique properties of stem cells, including self-renewal and differentiation, to regenerate damaged cells and tissues in the human body or replace these cells with new, healthy and fully functional cells by delivering exogenous cells into a patient.7 Stem cells for cell-based therapy can be of (1) autologous, also known as self-to-self therapy, an approach using the patients own cells, and (2) allogeneic sources, which use cells from a healthy donor for the treatment.8 The term stem cell were first used by the eminent German biologist Ernst Haeckel to describe the properties of fertilized egg to give rise to all cells of the organism in 1868.9 The history of stem cell therapy started in 1888, when the definition of stem cell was first coined by two German zoologists Theodor Heinrich Boveri and Valentin Haecker,9 who set out to identify the distinct cell population in the embryo capable of differentiating to more specialized cells (Fig. ). In 1902, studies carried out by the histologist Franz Ernst Christian Neumann, who was working on bone marrow research, and Alexander Alexandrowitsch Maximov demonstrated the presence of common progenitor cells that give rise to mature blood cells, a process also known as haematopoiesis.10 From this study, Maximov proposed the concept of polyblasts, which later were named stem cells based on their proliferation and differentiation by Ernst Haeckel.11 Maximov described a hematopoietic population presented in the bone marrow. In 1939, the first case report described the transplantation of human bone marrow for a patient diagnosed with aplastic anemia. Twenty years later, in 1958, the first stem cell transplantation was performed by the French oncologist George Mathe to treat six nuclear researchers who were accidentally exposed to radioactive substances using bone marrow transplantation.12 Another study by George Mathe in 1963 shed light on the scientific community, as he successfully conducted bone marrow transplantation in a patient with leukemia. The first allogeneic hematopoietic stem cell transplantation (HSCT) was pioneered by Dr. E. Donnall Thomas in 1957.13 In this initial study, all six patients died, and only two patients showed evidence of transient engraftment due to the unknown quantities and potential hazards of bone marrow transplantation at that time. In 1969, Dr. E. Donnall Thomas conducted the first bone marrow transplantation in the US, although the success of the allogeneic treatment remained exclusive. In 1972, the year marked the discovery of cyclosporine (the immune suppressive drug),14 the first successes of allogeneic transplantation for aplastic anemia and acute myeloid leukemia were reported in a 16-year-old girl.15 From the 1960s to the 1970s, series of works conducted by Friendenstein and coworkers on bone marrow aspirates demonstrated the relationship between osteogenic differentiation and a minor subpopulation of cells derived from bone marrow.16 These cells were later proven to be distinguishable from the hematopoietic population and to be able to proliferate rapidly as adherent cells in tissue culture vessels. Another important breakthrough from Friendensteins team was the discovery that these cells could form the colony-forming unit when bone marrow was seeded as suspension culture following by differentiation into osteoblasts, adipocytes, and chondrocytes, suggesting that these cells confer the ability to proliferate and differentiate into different cell types.17 In 1991, combined with the discovery of human embryonic stem cells (hESCs), which will be discussed in the next section, the term mesenchymal stem cells, previously known as stromal stem cells or osteogenic stem cells, was first coined in Caplan and widely used to date.18 Starting with bone marrow transplantation 60 years ago, the journey of stem cell therapy has developed throughout the years to become a novel therapeutic agent of regenerative medicine to treat numerous incurable diseases, which will be reviewed and discussed in this review, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions).

Stem cell-based therapy: the history and cell source. a The timeline of major discoveries and advances in basic research and clinical applications of stem cell-based therapy. The term stem cells was first described in 1888, setting the first milestone in regenerative medicine. The hematopoietic progenitor cells were first discovered in 1902. In 1939, the first bone marrow transplantation was conducted in the treatment of aplasmic anemia. Since then, the translation of basic research to preclinical studies to clinical trials has driven the development of stem cell-based therapy by many discoveries and milestones. The isolations of mesenchymal stem cells in 1991 following by the discovery of human pluripotent stem cells have recently contributed to the progress of stem cell-based therapy in the treatment of human diseases. b Schematic of the different cell sources that can be used in stem cell-based therapy. (1) Human pluripotent stem cells, including embryonic stem cells (derived from inner cell mass of blastocyst) and induced pluripotent stem cells confer the ability to proliferate indefinitely in vitro and differentiate into numerous cell types of the human body, including three germ layers. (2) Mesenchymal stem cells are multipotent stem cells derived from mesoderm possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages. The differentiated/somatic cells can be reprogrammed back to the pluripotent stage using OSKM factors to generate induced pluripotent stem cells. It is important to note that stem cells show a relatively higher risk of tumor formation and lower risk of immune rejection (in the case of mesenchymal stem cells) when compared to that of somatic cells. The figure was created with BioRender.com

In this review, we described the different types of stem cell-based therapies (Fig. ), including hPSCs and MSCs, and provided an overview of their definition, history, and outstanding clinical applications. In addition, we further created the first literature portfolio for the targeted therapy of MSCs based on their origin, delineating their different tissue origins and downstream applications with an in-depth discussion of their mechanism of action. Finally, we provide our perspective on why the tissue origin of MSCs could contribute greatly to their downstream applications as a proposed hypothesis that needs to be proven or disproven in the future to further enhance the safety and effectiveness of stem cell-based therapy.

The clinical applications of stem cell-based therapies for heart diseases have been recently discussed comprehensively in the reviews19,20 and therefore will be elaborated in this study as the focus discussions related to hPSCs and MSCs in the following sections. In general, the safety profiles of stem cell-based therapies are supported by a large body of preclinical and clinical studies, especially adult stem cell therapy (such as MSC-based products). However, clinical trials have not yet yielded data supporting the efficacy of the treatment, as numerous studies have shown paradoxical results and no statistically significant differences in infarct size, cardiac function, or clinical outcomes, even in phase III trials.21 The results of a meta-analysis showed that stem cells derived from different sources did not exhibit any therapeutic effects on the improvement of myocardial contractility, cardiovascular remodeling, or clinical outcomes.22 The disappointing results obtained from the clinical trials thus far could be explained by the fact that the administered cells may exert their therapeutic effects via an immune modulation rather than regenerative function. Thus, well-designed, randomized and placebo-controlled phase III trials with appropriate cell-preparation methods, patient selection, follow-up schedules and suitable clinical measurements need to be conducted to determine the efficacy of the treatments. In addition, concerns related to optimum cell source and dose, delivery route and timing of administration, cell distribution post administration and the mechanism of action also need to be addressed. In the following section of this review, we present clinical trials related to MSC-based therapy in cardiovascular disease with the aim of discussing the contradictory results of these trials and analyzing the potential challenges underlying the current approaches.

Gastrointestinal diseases are among the most diagnosed conditions in the developed world, altering the life of one-third of individuals in Western countries. The gastrointestinal tract is protected from adverse substances in the gut environment by a single layer of epithelial cells that are known to have great regenerative ability in response to injuries and normal cell turnover.23 These epithelial cells have a rapid turnover rate of every 27 days under normal conditions and even more rapidly following tissue damage and inflammation. This rapid proliferation ability is possible owing to the presence of a specific stem cell population that is strictly compartmentalized in the intestinal crypts.24 The gastrointestinal tract is highly vulnerable to damage, tissue inflammation and diseases once the degradation of the mucosal lining layer occurs. The exposure of intestinal stem cells to the surrounding environment of the gut might result in the direct destruction of the stem cell layer or disruption of intestinal functions and lead to overt clinical symptoms.25 In addition, the accumulation of stem cell defects as well as the presence of chronic inflammation and stress also contributes to the reduction of intestinal stem cell quality.

In terms of digestive disorders, Crohns disease (CD) and ulcerative colitis are the two major forms of inflammatory bowel disease (IBD) and represent a significant burden on the healthcare system. The former is a chronic, uncontrolled inflammatory condition of the intestinal mucosa characterized by segmental transmural mucosal inflammation and granulomatous changes.26 The latter is a chronic inflammatory bowel disease affecting the colon and rectum, characterized by mucosal inflammation initiating in the rectum and extending proximal to the colon in a continuous fashion.27 Cellular therapy in the treatment of CD can be divided into haematopoietic stem cell-based therapy and MSC-based therapy. The indication and recommendation of using HSCs for the treatment of IBD were proposed in 1995 by an international committee with four important criteria: (1) refractory to immunosuppressive treatment; (2) persistence of the disease conditions indicated via endoscopy, colonoscopy or magnetic resonance enterography; (3) patients who underwent an imminent surgical procedure with a high risk of short bowel syndromes or refractory colonic disease; and (4) patients who refused to treat persistent perianal lesions using coloproctectomy with a definitive stroma implant.28 In the standard operation procedure, patents HSCs were recruited using cyclophosphamide, which is associated with granulocyte colony-stimulating factor (G-CSF), at two different administered concentrations (4g/m2 and 2g/m2). Recently, it was reported that high doses of cyclophosphamide do not improve the number of recruited HSCs but increase the risk of cardiac and bladder toxicity. An interest in using HSCTs in CD originated from case reports that autologous HSCTs can induce sustained disease remission in some29,30 but not all patients3133 with CD. The first phase I trial was conducted in Chicago and recruited 12 patients with active moderate to severe CD refractory to conventional therapies. Eleven of 12 patients demonstrated sustained remission after a median follow-up of 18.5 months, and one patient developed recurrence of active CD.31 The ASTIC trial (the Autologous Stem Cell Transplantation International Crohn Disease) was the first randomized clinical trial with the largest cohort of patients undergoing HSCT for refractory CD in 2015.34 The early report of the trial showed no statistically significant improvement in clinical outcomes of mobilization and autologous HSCT compared with mobilization followed by conventional therapy. In addition, the procedure was associated with significant toxicity, leading to the suggestion that HSCT for patients with refractory CD should not be widespread. Interestingly, by using conventional assessments for clinical trials for CD, a group reassessed the outcomes of patients enrolled in the ASTIC trial showing clinical and endoscopic benefits, although a high number of adverse events were also detected.35 A recent systematic review evaluated 18 human studies including 360 patients diagnosed with CD and showed that eleven studies confirmed the improvement of Crohns disease activity index between HSCT groups compared to the control group.36 Towards the cell sources, HSCs are the better sources as they afforded more stable outcomes when compared to that of MSC-based therapy.37 Moreover, autologous stem cells were better than their allogeneic counterparts.36 The safety of stem cell-based therapy in the treatment of CD has attracted our attention, as the risk of infection in patients with CD was relatively higher than that in those undergoing administration to treat cancer or other diseases. During the stem cell mobilization process, patient immunity is significantly compromised, leading to a high risk of infection, and requires carefully nursed and suitable antibiotic treatment to reduce the development of adverse events. Taken together, stem cell-based therapy for digestive disease reduced inflammation and improved the patients quality of life as well as bowel functions, although the high risk of adverse events needs to be carefully monitored to further improve patient safety and treatment outcomes.

The liver is the largest vital organ in the human body and performs essential biological functions, including detoxification of the organism, metabolism, supporting digestion, vitamin storage, and other functions.38 The disruption of liver homeostasis and function might lead to the development of pathological conditions such as liver failure, cirrhosis, cancer, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), and autoimmune liver disease (ALD). Orthotropic liver transplantation is the only effective treatment for severe liver diseases, but the number of available and suitable donor organs is very limited. Currently, stem cell-based therapies in the treatment of liver disease are associated with HSCs, MSCs, hPSCs, and liver progenitor cells.

Liver failure is a critical condition characterized by severe liver dysfunctions or decompensation caused by numerous factors with a relatively high mortality rate. Stem cell-based therapy is a novel alternative approach in the treatment of liver failure, as it is believed to participate in the enhancement of liver regeneration and recovery. The results of a meta-analysis including four randomized controlled trials and six nonrandomized controlled trials in the treatment of acute-on-chronic liver failure (ACLF) demonstrated that clinical outcomes of stem cell therapy were achieved in the short term, requiring multiple doses of stem cells to prolong the therapeutic effects.39,40 Interestingly, although MSC-based therapies improved liver functions, including the model of end-stage liver disease score, albumin level, total bilirubin, and coagulation, beneficial effects on survival rate and aminotransferase level were not observed.41 A randomized controlled trial illustrated the improvement of liver functions and reduction of severe infections in patients with hepatitis B virus-related ACLF receiving allogeneic bone marrow-derived MSCs (BM-MSCs) via peripheral infusion.42 HSCs from peripheral blood after the G-CSF mobilization process were used in a phase I clinical trial and exhibited an improvement in serum bilirubin and albumin in patients with chronic liver failure without any specific adverse events related to the administration.43 Taken together, an overview of stem cell-based therapy in the treatment of liver failure indicates the potential therapeutic effects on liver functions with a strong safety profile, although larger randomized controlled trials are still needed to assure the conclusions.

Liver cirrhosis is one of the major causes of morbidity and mortality worldwide and is characterized by diffuse nodular regeneration with dense fibrotic septa and subsequent parenchymal extinction leading to the collapse of liver vascular structure.44 In fact, liver cirrhosis is considered the end-stage of liver disease that eventually leads to death unless liver transplantation is performed. Stem cell-based therapy, especially MSCs, currently emerges as a potential treatment with encouraging results for treating liver cirrhosis. In a clinical trial using umbilical cord-derived MSCs (UC-MSCs), 45 chronic hepatitis B patients with decompensated liver cirrhosis were divided into two groups: the MSC group (n=30) and the control group (n=15).45 The results showed a significant reduction in ascites volume in the MSC group compared with the control. Liver function was also significantly improved in the MSC groups, as indicated by the increase in serum albumin concentration, reduction in total serum bilirubin levels, and decrease in the sodium model for end-stage liver disease score.45 Similar results were also reported from a phase II trial using BM-MSCs in 25 patients with HCV-induced liver cirrhosis.46 Consistent with these studies, three other clinical trials targeting liver cirrhosis caused by hepatitis B and alcoholic cirrhosis were conducted and confirmed that MSC administration enhanced and recovered liver functions.4749 With the large cohort study as the clinical trial conducted by Fang, the safety and potential therapeutic effects of MSC-based therapies could be further strengthened and confirmed the feasibility of the treatment in virus-related liver cirrhosis.49 In terms of delivery route, a randomized controlled phase 2 trial suggested that systemic delivery of BM-MSCs does not show therapeutic effects on patients with liver cirrhosis.50 MSCs are not the only cell source for liver cirrhosis. Recently, an open-label clinical trial conducted in 19 children with liver cirrhosis due to biliary atresia after the Kasai operation illustrated the safety and feasibility of the approach by showing the improvement of liver function after bone marrow mononuclear cell (BMNC) administration assessed by biochemical tests and pediatric end-stage liver disease (PELD) scores.51 Another study using BMNCs in 32 decompensated liver cirrhosis patients illustrated the safety and effectiveness of BMNC administration in comparison with the control group.52 Recently, a long-term analysis of patients receiving peripheral blood-derived stem cells indicated a significant improvement in the long-term survival rate when compared to the control group, and the risk of hepatocellular carcinoma formation did not increase.53 CD133+ HSC infusion was performed in a multicentre, open, randomized controlled phase 2 trial in patients with liver cirrhosis; the results did not support the improvement of liver conditions, and cirrhosis persisted.54 Notably, these results are in line with a previous randomized controlled study, which also reported that G-CSF and bone marrow-derived stem cells delivered via the hepatic artery did not introduce therapeutic potential as expected.55 Thus, stem cell-based therapy for liver cirrhosis is still in its immature stage and requires larger trials with well-designed experiments to confirm the efficacy of the treatment.

Nonalcoholic fatty liver disease (NAFLD) is the most common medical condition caused by genetic and lifestyle factors and results in a severe liver condition and increased cardiovascular risk.56 NAFLD is the hidden enemy, as most patients are asymptomatic for a long time, and their routine life is unaffected. Thus, the detection, identification, and management of NAFLD conditions are challenging tasks, as patients diagnosed with NAFLD often develop nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.57 Although preclinical studies have shown that stem cell administration could enhance liver function in NAFLD models, a limited number of clinical trials were performed in human subjects. Recently, a multi-institutional clinical trial using freshly isolated autologous adipose tissue-derived regenerative cells was performed in Japan to treat seven NAFLD patients.58 The results illustrated the improvement in the serum albumin level of six patients and prothrombin activity of five patients, and no treatment-related adverse events or severe adverse events were observed. This study illustrates the therapeutic potential of stem cell-based therapy in the treatment of NAFLD.

Autoimmune liver disease (ALD) is a severe liver condition affecting children and adults worldwide, with a female predominance.59 The condition occurs in genetically predisposed patients when a stimulator, such as virus infection, leads to a T-cell-mediated autoimmune response directed against liver autoantigens. As a result, patients with ALD might develop liver cirrhosis, hepatocellular carcinoma, and, in severe cases, death. To date, HSCT and bone marrow transplantation are the two common stem cell-based therapies exhibiting therapeutic potential for ALD in clinical trials. An interesting report illustrated that haploidentical HSCTs could cure ALD in patients with sickle cells.60 This report is particularly important, as it illustrates the potential therapeutic approach of using haploidentical HSCTs to treat patients with both sickle cells and ALD. Another case report described a 19-year-old man with a 4-year history of ALD who developed acute lymphoblastic leukemia and required allogeneic bone marrow transplantation from this wholesome brother.61 The clinical data showed that immunosuppressive therapy for transplantation generated ALD remission in the patient.62 However, the data also provided valid information related to the sustained remission and the normalization of ASGPR-specific suppressor-inducer T-cell activity following bone marrow transplantation, suggesting that these suppressor functions originated from donor T cells.61 Thus, it was suggested that if standard immunosuppressive treatment fails, alternative cellular immunotherapy would be a viable option for patients with ALD. Primary biliary cholangitis (PBC), usually known as primary biliary cirrhosis, is a type of ALD characterized by a slow, progressive destruction of small bile ducts of the liver leading to the formation of cirrhosis and accumulation of bile and other toxins in the liver. A pilot, single-arm trial from China recruited seven patents with PBC who had a suboptimal response to ursodeoxycholic acid (UDCA) treatment.63 These patients received UDCA treatment in combination with three rounds of allogeneic UC-MSCs at 4-week intervals with a dose of 0.5106 cells/kg of patient body weight via the peripheral vein. No treatment-related adverse events or severe adverse events were observed throughout the course of the study. The clinical data indicated significant improvement in liver function, including reduction of serum ALP and gamma-glutamyltransferase (GGT) at 48 weeks post administration. The common symptoms of PBC, including fatigue, pruritus, and hypogastric ascites volume, were also reduced, supporting the feasibility of MSC-based therapy in the treatment of PBC, although major limitations of the study were nonrandomized, no control group and small sample size. Another study was conducted in China with ten PBC patients who underwent incompetent UDCA treatment for more than 1 year. These patients received a range of 35 allogeneic BM-MSCs/kg body weight by intravenous infusion.64 Although these early studies have several limitations, such as small sample size, nonrandomization, and no control group, their preliminary data related to safety and efficacy herald the prospects and support the feasibility of stem cell-based therapy in the treatment of ALD.

In summary, the current number of trials for liver disease using stem cell-based therapy has provided fundamental data supporting the safety and potential therapeutic effects in various liver diseases. Unfortunately, due to the small number of trials, several obstacles need to be overcome to prove the effectiveness of the treatments, including (1) stem cell source and dose, (2) administration route, (3) time of intervention, and (4) clinical assessments during the follow-up period. Only by addressing these challenges we will be able to prove, facilitate and promote stem cell-based therapy as a mainstream treatment for liver diseases.

Arthritis is a general term describing cartilage conditions that cause pain and inflammation of the joints. Osteoarthritis (OA) is the most common form of arthritis caused by persistent degeneration and poor recovery of articular cartilage.65 OA affects one or several diarthrodial joints, such as small joints at the hand and large joints at the knee and hips, leading to severe pain and subsequent reduction in the mobility of patients. There are two types of OA: (1) primary OA or idiopathic OA and secondary OA caused by causative factors such as trauma, surgery, and abnormal joint development at birth.66 As conventional treatments for OA are not consistent in their effectiveness and might cause unbearable pain as well as long-term rehabilitation (in the case of joint replacement), there is a need for a more reliable, less painful, and curative therapy targeting the root of OA.67 Thus, stem cell therapy has recently emerged as an alternative approach for OA and has drawn great attention in the regenerative field.

The administration of HSCs has been proven to reduce bone lesions, enhance bone regeneration and stimulate the vascularization process in degenerative cartilage. Attempts were made to evaluate the efficacy of peripheral blood stem cells in ten OA patients by three intraarticular injections. Post-administration analysis indicated a reduction in the WOMAC index with a significant reduction in all parameters. All patients completed 6-min walk tests with an increase of more than 54 meters. MRI analysis indicated an improvement in cartilage thickness, suggesting that cartilage degeneration was reduced post administration. To further enhance the therapeutic potential of HSCT, CD34+ stem cells were proposed to be used in combination with the rehabilitation algorithm, which included three stages: preoperative, hospitalization and outpatient periods.68 Currently, a large wave of studies has been directed to MSC-based therapy for the treatment of OA due to their immunoregulatory functions and anti-inflammatory characteristics. MSCs have been used as the main cell source in several multiple and small-scale trials, proving their safety profile and potential effectiveness in alleviating pain, reducing cartilage degeneration, and enhancing the regeneration of cartilage structure and morphology in some cases. However, the best source of MSCs, whether from bone marrow, adipose tissue, or umbilical cord, for the management of OA is still a great question to be answered. A systematic review investigating over sixty-one of 3172 articles with approximately 2390 OA patients supported the positive effects of MSC-based therapy on OA patients, although the study also pointed out the fact that these therapeutic potentials were based on limited high-quality evidence and long-term follow-up.69 Moreover, the study found no obvious evidence supporting the most effective source of MSCs for treating OA. Another systematic review covering 36 clinical trials, of which 14 studies were randomized trials, provides an interesting view in terms of the efficacy of autologous MSC-based therapy in the treatment of OA.70 In terms of BM-MSCs, 14 clinical trials reported the clinical outcomes at the 1-year follow-up, in which 57% of trials reported clinical outcomes that were significantly better in comparison with the control group. However, strength analysis of the data set showed that outcomes from six trials were low, whereas the outcomes of the remaining eight trials were extremely low. Moreover, the positive evidence obtained from MRI analysis was low to very low strength of evidence after 1-year post administration.70 Similar results were also found in the outcome analysis of autologous adipose tissue-derived MSCs (AT-MSCs). Thus, the review indicated low quality of evidence for the therapeutic potential of MSC therapy on clinical outcomes and MRI analysis. The low quality of clinical outcomes could be explained by the differences in interventions (including cell sources, cell doses, and administration routes), combination treatments (with hyaluronic acid,71 peripheral blood plasma,72 etc.), control treatments and clinical outcome measurements between randomized clinical trials.73 In addition, the data of the systematic analysis could not prove the better source of MSCs for OA treatment. Taken together, although stem cell-based therapy has been shown to be safe and feasible in the management of OA, the authors support the notion that stem cell-based therapy could be considered an alternative treatment for OA when first-line treatments, such as education, exercise, and body weight management, have failed.

Stem cell therapy in the treatment of cancer is a sensitive term and needs to be used and discussed with caution. Clinicians and researchers should protect patients with cancer from expensive and potentially dangerous or ineffective stem cell-based therapy and patients without a cancer diagnosis from the risk of malignancy development. In general, unproven stem cell clinics employed three cell-based therapies for cancer management, including autologous HSCTs, stromal vascular fraction (SVF), and multipotent stem cells, such as MSCs. Allogeneic HSCTs confer the ability to generate donor lymphocytes that contribute to the suppression and regression of hematological malignancies and select solid tumors, a specific condition known as graft-versus-tumor effects.74 However, stem cell clinics provide allogeneic cell-based therapy for the treatment of solid malignancies despite limited scientific evidence supporting the safety and efficacy of the treatment. High-quality evidence from the Cochrane library shows that marrow transplantation via autologous HSCTs in combination with high-dose chemotherapy does not improve the overall survival of women with metastatic breast cancer. In addition, a study including more than 41,000 breast cancer patients demonstrated no significant difference in survival benefits between patients who received HSCTs following high-dose chemotherapy and patients who underwent conventional treatment.75 Thus, the use of autologous T-cell transplants as monotherapy and advertising stem cell-based therapies as if they are medically approved or preferred treatment of solid tumors is considered untrue statements and needs to be alerted to cancer patients.76

Over the past decades, many preclinical studies have demonstrated the potential of MSC-based therapy in cancer treatment due to their unique properties. They confer the ability to migrate toward damaged sites via inherent tropism controlled by growth factors, chemokines, and cytokines. MSCs express specific CXC chemokine receptor type 4 (CXCR4) and other chemokine receptors (including CCR1, CCR2, CCR4, CCR7, etc.) that are essential to respond to the surrounding signals.77 In addition, specific adherent proteins, including CD49d, CD44, CD54, CD102, and CD106, are also expressed on the MSC surface, allowing them to attach, rotate, migrate, and penetrate the blood vessel lumen to infiltrate the damaged tissue.78 Similar to damaged tissues, tumors secrete a wide range of chemoattractant that also attract MSC migration via the CXCL12/CXCR4 axis. Previous studies also found that MSC migration toward the cancer site is tightly controlled by diffusible cytokines such as interleukin 8 (IL-8) and growth factors including transforming growth factor-beta 1 (TGF-1),79 platelet-derived growth factor (PDGF),80 fibroblast growth factor 2 (FGF-2),81 vascular endothelial growth factor (VEGF),81 and extracellular matrix molecules such as matrix metalloproteinase-2 (MMP-2).82 Once MSCs migrate successfully to cancerous tissue, accumulating evidence demonstrates the interaction between MSCs and cancer cells to exhibit their protumour and antitumour effects, which are the major concerns of MSC-based therapy. MSCs are well-known for their regenerative effects that regulate tissue repair and recovery. This unique ability is also attributed to the protumour functions of these cells. A previous study reported that breast cancer cells induce MSC secretion of chemokine (CC motif) ligand 5 (CCL-5), which regulates the tumor invasion process.83,84 Other studies also found that MSCs secrete a wide range of growth factors (VEGF, basic FGF, HGF, PDGF, etc.) that inhibits apoptosis of cancer cells.85 Moreover, MSCs also respond to signals released from cancer cells, such as TGF-,86 to transform into cancer-associated fibroblasts, a specific cell type residing within the tumor microenvironment capable of promoting tumorigenesis.87 Although MSCs have been proven to be involved in protumour activities, they also have potent tumor suppression abilities that have been used to develop cancer treatments. It has been suggested that MSCs exhibit their tumor inhibitory effects by inhibiting the Wnt and AKT signaling pathways,88 reducing the angiogenesis process,89 stimulating inflammatory cell infiltration,90 and inducing tumor cell cycle arrest and apoptosis.91 To date, the exact functions of MSCs in both protumour and antitumor activities are still a controversial issue across the stem cell field. Other approaches exploit gene editing and tissue engineering to convert MSCs into a Trojan horse that could exhibit antitumor functions. In addition, MSCs can also be modified to express specific anticancer miRNAs exhibiting tumor-suppressive behaviors.92 However, genetically modified MSCs are still underdeveloped and require intensive investigation in the clinical setting.

To date, ~25 clinical trials have been registered on ClinicalTrials.gov aimed at using MSCs as a therapeutic treatment for cancer.93 These trials are mostly phase 1 and 2 studies focusing on evaluating the safety and efficacy of the treatment. Studies exploiting MSC-based therapy have combined MSCs with an oncolytic virus approach. Oncolytic viruses are specific types of viruses that can be genetically engineered or naturally present, conferring the ability to selectively infect cancer cells and kill them without damaging the surrounding healthy cells.94 A completed phase I/II study using BM-MSCs infected with the oncolytic adenovirus ICOVIR5 in the treatment of metastatic and refractory solid tumors in children and adult patients demonstrated the safety of the treatment and provided preliminary data supporting their therapeutic potential.95 The same group also reported a complete disappearance of all signs of cancer in response to MSC-based therapy in one pediatric case three years post administration.96 A reported study in 2019 claimed that adipose-derived MSCs infected with vaccinia virus have the potential to eradicate resistant tumor cells via the combination of potent virus amplification and senitization of the tumor cells to virus infection.97 However, in a recently published review, a valid question was posed regarding the 2019 study that do these reported data merit inclusion in the publication record when they were collected by such groups using a dubious therapeutic that was eventually confiscated by US Marshals?76

Taken together, cancer research and therapy have entered an innovative and fascinating era with advancements in traditional therapies such as chemotherapy, radiotherapy, and surgery on one hand and stem cell-based therapy on the other hand. Although stem cell-based therapy has been considered a novel and attractive therapeutic approach for cancer treatment, it has been hampered by contradictory results describing the protumour and antitumour effects in preclinical studies. Despite this contradictory reality, the use of stem cell-based therapy, especially MSCs, offers new hope to cancer patients by providing a new and more effective tool in personalized medicine. The authors support the use of MSC-based therapy as a Trojan horse to deliver specific anticancer functions toward cancer cells to suppress their proliferation, eradicate cancer cells, or limit the vascularization process of cancerous tissue to improve the clinical safety and efficacy of the treatment.

The discovery of hPSCs, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), has revolutionized stem cell research and cell-based therapy.98 hESCs were first isolated from blastocyst-stage embryos in 1998,99 followed by breakthrough reprogramming research that converted somatic cells into hiPSCs using just four genetic factors.100,101 Methods have been developed to maintain these cells long-term in vitro and initiate their differentiation into a wide variety of cell types, opening a new era in regenerative medicine, particularly cell therapy to replace lost or damaged tissues.

hPSCs are defined as self-renewable cell types that confer the ability to differentiate into various cellular phenotypes of the human body, including three germ layers.102 Historically, the first pluripotent cell lines to be generated were embryonic carcinoma (EC) cell lines established from human germ cell tumors103 and murine undifferentiated compartments.104 Although EC cells are a powerful tool in vitro, these cells are not suitable for clinical applications due to their cancer-derived origin and aneuploidy genotype.105 The first murine ESCs were established in 1981 based on the culture techniques obtained from EC research.106 Murine ESCs are derived from the inner cell mass (ICM) of the pre-implantation blastocyst, a unique biological structure that contains outer trophoblast layers that give rise to the placenta and ICM.107 In vivo ESCs only exist for a short period during the embryos development, and they can be isolated and maintained indefinitely in vitro in an undifferentiated state. The discovery of murine ESCs has dramatically changed the field of biomedical research and regenerative medicine over the last 40 years. Since then, enormous investigations have been made to isolate and culture ESCs from other species, including hESCs, in 1998.99 The success of Thomson et al. in 1998 triggered the great controversy in media and ethical research boards across the globe, with particularly strong objections being raised to the use of human embryos for research purposes.108 Several studies using hESCs have been conducted demonstrating their therapeutic potential in the clinical setting. However, the use of hESCs is limited due to (1) the ethical barrier related to the destruction of human embryos and (2) the potential risk of immunological rejection, as hESCs are isolated from pre-implantation blastocysts, which are not autologous in origin. To overcome these two great obstacles, several research groups have been trying to develop technology to generate hESCs, including nuclear transfer technology, the well-known strategy that creates Dolly sheep, although the generation of human nuclear transfer ESCs remains technically challenging.109 Taking a different approach, in 2006, Yamanaka and Takahashi generated artificial PSCs from adult and embryonic mouse somatic cells using four transcription factors (Oct-3/4, Sox2, Klf4, and c-Myc, called OSKM) reduced from 24 factors.100 Thereafter, in 2007, Takahashi and colleagues successfully generated the first hiPSCs exhibiting molecular and biological features similar to those of hESCs using the same OSKM factors.101 Since then, hiPSCs have been widely studied to expand our knowledge of the pathogenesis of numerous diseases and aid in developing new cell-based therapies as well as personalized medicine.

Since its beginning 24 years ago, hPSC research has evolved momentously toward applications in regenerative medicine, disease modeling, drug screening and discovery, and stem cell-based therapy. In clinical trial settings, the uses of hESCs are restricted by ethical concerns and tight regulation, and the limited preclinical data support their therapeutic potential. However, it is important to acknowledge several successful outcomes of hESC-based therapies in treating human diseases. In 2012, Steven Schwartz and his team reported the first clinical evidence of using hESC-derived retinal pigment epithelium (RPE) in the treatment of Stargardts macular dystrophy, the most common pediatric macular degeneration, and an individual with dry age-related macular degeneration.110,111 With a differentiation efficiency of RPE greater than 99%, 5104 RPEs were injected into the subretinal space of one eye in each patient. As the hESC source of RPE differentiation was exposed to mouse embryonic stem cells, it was considered a xenotransplantation product and required a lower dose of immunosuppression treatment. This study showed that hESCs improved the vision of patients by differentiating into functional RPE without any severe adverse events. The trial was then expanded into two open-label, phase I/II studies with the published results in 2015 supporting the primary findings.112 In these trials, patients were divided into three groups receiving three different doses of hESC-derived RPE, including 10104, 15104 and 50104 RPE cells per eye. After 22 months of follow-up, 19 patients showed improvement in eyesight, seven patients exhibited no improvement, and one patient experienced a further loss of eyesight. The technical challenge of hESC-derived RPE engraftment was an unbalanced proliferation of RPE post administration, which was observed in 72% of treated patients. A similar approach was also conducted in two South Korean patients diagnosed with age-induced macular degeneration and two patients with Stargardt macular dystrophy.113 The results supported the safety of hESC-derived RPE cells and illustrated an improvement in visual acuity in three patients. Recently, clinical-graded hESC-derived RPE cells were also developed by Chinese researchers under xeno-free culture conditions to treat patients with wet age-related degeneration.114 As hESC development is still associated with ethical concerns and immunological complications related to allogeneic administration, hiPSC-derived RPE cells have emerged as a potential cell source for macular degeneration. Although RPE differentiation protocols have been developed and optimized to improve the efficacy of hiPSC-derived RPE cells, they are still insufficient, time-consuming and labor intensive.115,116 For clinical application, an efficient differentiation of primed to nave state hiPSCs toward the RPE was developed using feeder-free culture conditions utilizing the transient inhibition of the FGF/MAPK signaling pathway.117 Overexpression of specific transcription factors in hiPSCs throughout the differentiation process is also an interesting approach to generate a large number of RPE cells for clinical use. In a recent study, overexpression of three eye-field transcription factors, including OTX2, PAX6, and MITF, stimulated RPE differentiation in hiPSCs and generated functional RPE cells suitable for transplantation.118 To date, although reported data from phase I/II clinical trials have been produced enough to support the safety of hESC-derived RPE cells, the treatment is still in its immature stage. Thus, future studies should focus on the development of the cellular manufacturing process of RPE and the subretinal administration route to further improve the outcomes of RPE fabrication and engraftment into the patients retina (recommended review119).

Numerous studies have demonstrated that hESC-derived cardiomyocytes exhibit cardiac transcription factors and display a cardiomyocyte phenotype and immature electrical phenotype. In addition, using hPSC-derived cardiomyocytes could provide a large number of cells required for true remuscularization and transplantation. Thus, these cells can be a promising novel therapeutic approach for the treatment of human cardiovascular diseases. In a case report, hESC-derived cardiomyocytes showed potential therapeutic effects in patients with severe heart failure without any subsequent complications.120 This study was a phase I trial (ESCORT [Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure] trial) to evaluate the safety of cardiomyocyte progenitor cells derived from hESCs seeded in fibrin gel scaffolds for 10 patients with severe heart failure (NCT02057900). The encouraging results from this study demonstrated the feasibility of producing hESC-derived cardiomyocyte progenitor cells toward clinical-grade standards and combining them with a tissue-engineered scaffold to treat severe heart disease (the first patient of this trial has already reached the 7-year follow-up in October 2021).121 Currently, the two ongoing clinical trials using hPSC-derived cardiomyocytes have drawn great attention, as their results would pave the way to lift the bar for approving therapies for commercial use. The first trial was conducted by a team led by cardiac surgeon Yoshiki Sawa at Osaka University using hiPSC-derived cardiomyocytes embedded in a cell sheet for engraftment (jRCT2052190081). The trials started first with three patients followed by ten patients to assess the safety of the approach. Once safety is met, the treatment can be sold commercially under Japans fast-track system for regenerative medicine.122 Another trial used a collagen-based construct called BioVAT-HF to contain hiPSC-derived cardiomyocytes. The trial was divided into two parts to evaluate the cell dose: (Part A) recruiting 18 patients and (Part B) recruiting 35 patients to test a broad range of engineered human myocardium (EHM) doses. The expected results from this study will provide the proof-of-concept for the use of EHM in the stimulation of heart remuscularization in humans. To date, no adverse events or severe adverse events have been reported from these trials, supporting the safety of the procedure. However, as the number of treated patients was relatively small, limitations in drawing conclusions regarding efficacy are not yet possible.21,123

One of the first clinical trials using hPSC-based therapy was conducted by Geron Corporation in 2010 using hESC-derived oligodendrocyte progenitor cells (OPC1) to treat spinal cord injury (SCI). The results confirmed the safety one year post administration in five participants, and magnetic resonance imaging demonstrated improvement of spinal cord deterioration in four participants.124 Asterias Biotherapeutic (AST) continued the Geron study by conducting the SCiStar Phase I/IIa study to evaluate the therapeutic effects of AST-OPC1 (NCT02302157). The trials results published in clinicaltrials.gov demonstrated significant improvement in running speed, forelimb stride length, forelimb longitudinal deviations, and rear stride frequency. Interestingly, the recently published data of a phase 1, multicentre, nonrandomized, single-group assignment, interventional trial illustrated no evidence of neurological decline, enlarging masses, further spinal cord damage, or syrinx formation in patients 10 years post administration of the OPC1 product.125 This data set provides solid evidence supporting the safety of OPC1 with an event-free period of up to 10 years, which strengthens the safety profile of the SCiStar trial.

Analysis of the global trends in clinical trials using hPSC-based therapy showed that 77.1% of studies were observational (no cells were administered into patient), and only 22.9% of studies used hPSC-derived cells as interventional treatment.126 The number of studies using hiPSCs was relatively higher than that using hESCs, which was 74.8% compared to 25.2%, respectively. The majority of observational studies were performed in developed countries, including the USA (41.6%) and France (16.8%), whereas interventional studies were conducted in Asian countries, including China (36.7%), Japan (13.3%), and South Korea (10%). The trends in therapeutic studies were also clear in terms of targeted diseases. The three most studied diseases were ophthalmological conditions, circulatory disorders, and nervous systems.127 However, it is surprising that the clinical applications of hPSCs have achieved little progress since the first hESCs were discovered worldwide. The relatively low number of clinical trials focusing on using iPSCs as therapeutic agents to administer into patients could be ascribed to the unstable genome of hiPSCs,128 immunological rejection,129 and the potential for tumor formation.130

Approximately 55 years ago, fibroblast-like, plastic-adherent cells, later named mesenchymal stem cells (MSCs) by Arnold L. Caplan,18 were discovered for the first time in mouse bone marrow (BM) and were later demonstrated to be able to form colony-like structures, proliferate, and differentiate into bone/reticular tissue, cartilage, and fat.131 Protocols were subsequently established to directly culture this subpopulation of stromal cells from BM in vitro and to stimulate their differentiation into adipocytes, chondroblasts, and osteoblasts.132 Since then, MSCs have been found in and derived from different human tissue sources, including adipose tissue (AT), the umbilical cord (UC), UC blood, the placenta, dental pulp, amniotic fluid, etc.133 To standardize and define MSCs, the International Society for Cell and Gene Therapy (ISCT) set minimal identification criteria for MSCs derived from multiple tissue sources.134 Among them, MSCs derived from AT, BM, and UC are the most commonly studied MSCs in human clinical trials,135 and they constitute the three major tissue sources of MSCs that will be discussed in this review.

The discovery of MSCs opened an era during which preclinical studies and clinical trials have been performed to assess the safety and efficacy of MSCs in the treatment of various diseases. The major conclusion of these studies and trials is that MSC-based therapy is safe, although the outcomes have usually been either neutral or at best marginally positive in terms of the clinically relevant endpoints regardless of MSC tissue origin, route of infusion, dose, administration duration, and preconditioning.136 It is important to note that a solid background of knowledge has been generated from all these studies that has fueled the recent translational research in MSC-based therapy. As MSCs have been intensively studied over the last 55 years and have become the subject of multiple reviews, systematic reviews, and meta-analyses, the objective of this paper is not to duplicate these publications. Rather, we will discuss the questions that both clinicians and researchers are currently exploring with regard to MSC-based therapy, diligently seeking answers to the following:

With a solid body of data supporting their safety profiles derived from both preclinical and clinical studies, does the tissue origin of MSCs also play a role in their downstream clinical applications in the treatment of different human diseases?

Do MSCs derived from AT, BM, and UC exhibit similar efficacy in the treatment of neurological diseases, metabolic/endocrine-related disorders, reproductive dysfunction, skin burns, lung fibrosis, pulmonary disease, and cardiovascular conditions?

To answer these questions, we will first focus on the most recently published clinical data regarding these targeted conditions, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and heart-related diseases, to analyze the potential efficacy of MSCs derived from AT, BM, and UC. Based on the level of clinical improvement observed in each trial, we analyzed the potential efficacy of MSCs derived from each source to visualize the correlation between patient improvement and MSC sources. We will then address recent trends in the exclusive use of MSC-based products, focusing on the efficacy of treatment with MSCs from each of the abovementioned sources, and we will analyze the relationship between the respective efficacies of MSCs from these sources in relation to the targeted disease conditions. Finally, we propose a hypothesis and mechanism to achieve the currently still unmet objective of evaluating the use of MSCs from AT, BM, and UC in regenerative medicine.

In general, MSCs are reported to be isolated from numerous tissue types, but all of these types can be organized into two major sources: adult137 and perinatal sources138 (Fig. ). Adult sources of MSCs are defined as tissues that can be harvested or obtained from an individual, such as dental pulp,139 BM, peripheral blood,140 AT,141 lungs,142 hair,143 or the heart.144 Adult MSCs usually reside in specialized structures called stem cell niches, which provide the microenvironment, growth factors, cell-to-cell contacts and external signals necessary for maintaining stemness and differentiation ability.145 BM was the first adult source of MSCs discovered by Friedenstein131 and has become one of the most documented and largely used MSC sources to date, followed by AT. BM-MSCs are isolated and cultured in vitro from BM aspirates using a Ficoll gradient-centrifugation method146 or a red blood cell lysate buffer to collect BM mononuclear cell populations, whereas AT-MSCs are obtained from stromal vascular fractions of enzymatically digested AT obtained through liposuction,141 lipoplasty, or lipectomy procedures.147 These tissue collection procedures are invasive and painful for the patient and are accompanied by a risk of infection, although BM aspiration and adipose liposuction are considered safe procedures for BM and AT biopsies. The number of MSCs that can be isolated from these adult tissues varies significantly in a tissue-dependent manner. The percentage of MSCs in BM mononuclear cells ranges from 0.001 to 0.01% following gradient centrifugation.132 The number of MSCs in AT is at least 500 times higher than that in BM, with approximately 5,000 MSCs per 1g of AT. Perinatal sources of MSCs consist of UC-derived components, such as UC, Whartons jelly, and UC blood, and placental structures, such as the placental membrane, amnion, chorion membrane, and amniotic fluid.138 The collection of perinatal MSCs, such as UC-MSCs, is noninvasive, as the placenta, UC, UC blood, and amnion are considered waste products that are usually discarded after birth (with no ethical barriers).148 Although MSCs represent only 107% the cells found in UC, their higher proliferation rate and rapid population doubling time allow these cells to rapidly replicate and increase in number during in vitro culture.149 Under standardized xeno-free and serum-free culture platforms, AT-MSCs show a faster proliferation rate and a higher number of colony-forming units than BM-MSCs.149 UC-MSCs have the fastest population doubling time compared to AT-MSCs and BM-MSCs in both conventional culture conditions and xeno- and serum-free environments.149 MSCs extracted from AT, BM and UC exhibit all minimal criteria listed by the ISCT, including morphology (plastic adherence and spindle shape), MSC surface markers (95% positive for CD73, CD90 and CD105; less than 2% negative for CD11, CD13, CD19, CD34, CD45, and HLR-DR) and differentiation ability into chondrocytes, osteocytes, and adipocytes.150

The two major sources of MSCs: adult and perinatal sources. The adult sources of MSCs are specific tissue in human body where MSCs could be isolated, including bone marrow, adipose tissue, dental pulp, peripheral blood, menstrual blood, muscle, etc. The perinatal sources of MSCs consist of umbilical cord-derived components, such as umbilical cord, Whartons jelly, umbilical cord blood, and placental structures, such as placental membrane, amnion, chorion membrane, amniotic fluid, etc. The figure was created with BioRender.com

In fact, although MSCs derived from either adult or perinatal sources exhibit similar morphology and the basic characteristics of MSCs, studies have demonstrated that these cells also differ from each other. Regarding immunophenotyping, AT-MSCs express high levels of CD49d and low levels of Stro-1. An analysis of the expression of CD49d and CD106 showed that the former is strongly expressed in AT-MSCs, in contrast to BM-MSCs, whereas CD106 is expressed in BM-MSCs but not in AT-MSCs.151 Increased expression of CD133, which is associated with stem cell regeneration, differentiation, and metabolic functions,152 was observed in BM-MSCs compared to MSCs from other sources.153 A recent study showed that CD146 expression in UC-MSCs was higher than that in AT- and BM-MSCs,153 supporting the observation that UC-MSCs have a stronger attachment and a higher proliferation rate than MSCs from other sources, as CD146 is a key cell adhesion protein in vascular and endothelial cell types.154 In terms of differentiation ability, donor-matched BM-MSCs exhibit a higher ability to differentiate into chondrogenic and osteogenic cell types than AT-MSCs, whereas AT-MSCs show a stronger capacity toward the adipogenic lineage.150 The findings from an in vitro differentiation study indicated that BM-MSCs are prone to osteogenic differentiation, whereas AT-MSCs possess stronger adipogenic differentiation ability, which can be explained by the fact that the epigenetic memory obtained from either BM or AT drives the favored MSC differentiation along an osteoblastic or adipocytic lineage.155 Interestingly, although UC-MSCs have the ability to differentiate into adipocytes, osteocytes, or chondrocytes, their osteogenic differentiation ability has been proven to be stronger than that of BM-MSCs.156 The most interesting characteristic of MSCs is their immunoregulatory functions, which are speculated to be related to either cell-to-cell contact or growth factor and cytokine secretion in response to environmental/microenvironmental stimuli. MSCs from different sources almost completely inhibit the proliferation of peripheral blood mononuclear cells (PBMCs) at PBMC:MSC ratios of 1:1 and 10:1.149 At a higher ratio, BM-MSCs showed a significantly higher inhibitory effect than AT- or UC-MSCs.153 Direct analysis of the immunosuppressive effects of BM- and UC-MSCs has revealed that these cells exert similar inhibitory effects in vitro with different mechanisms involved.157 With these conflicting data, the mechanism of action related to the immune response of MSCs from different sources is still poorly understood, and long-term investigations both in preclinical studies and in clinical trial settings are needed to shed light on this complex immunomodulation function.

The great concern in MSC-based therapy is the fate of these cells post administration, especially through different delivery routes, including systemic administration via an intravenous (IV) route or tissue-specific administration, such as dorsal pancreatic administration. It is important to understand the distribution of these cells after injection to expand our understanding of the underlying mechanisms of action of treatments; in addition, this knowledge is required by authorized bodies (the Food and Drug Administration (FDA) in the United States or the regulation of advanced-therapy medicinal products in Europe, No. 1394/2007) prior to using these cells in clinical trials. The preclinical data using various labeling techniques provide important information demonstrating that MSCs do not have unwanted homing that could lead to the incorrect differentiation of the cells or inappropriate tumor formation. In a mouse model, human BM-MSCs and AT-MSCs delivered via an IV route are rapidly trapped in the lungs and then recirculate through the body after the first embolization process, with a small number of infused cells found mainly in the liver after the second embolization.158 Using the technetium-99 m labeling method, intravenously infused human cells showed long-term persistence up to 13 months in the bone, BM compartment, spleen, muscle, and cartilage.159 A similar result was reported in baboons, confirming the long-term homing of human MSCs in various tissues post administration.160 Although the retainment of MSCs in the lungs might potentially reduce their systemic therapeutic effects,161 it provides a strong advantage when these cells are used in the treatment of respiratory diseases. Local injection of MSCs also revealed their tissue-specific homing, as an injection of MSCs via the renal artery route resulted in the majority of the injected cells being found in the renal cortex.162 Numerous studies have been conducted to track the migration of administered MSCs in human subjects. Henriksson and his team used MSCs labeled with iron sucrose in the treatment of intervertebral disc degeneration.163 Their study showed that chondrocytes differentiated from infused MSCs could be detected at the injured intervertebral discs at 8 months but not at 28 months. A study conducted in a patient with hemophilia A using In-oxine-labeled MSCs showed that the majority of the cells were trapped in the lungs and liver 1h post administration, followed by a reduction in the lungs and an increase in the number of cells in the liver after 6 days.164 Interestingly, a small proportion of infused MSCs were found in the hemarthrosis site at the right ankle after 24h, suggesting that MSCs are attracted and migrate to the injured site. The distribution of MSCs was also reported in the treatment of 21 patients diagnosed with type 2 diabetes using 18-FDG-tagged MSCs and visualized using positron emission tomography (PET).165 The results illustrated that local delivery of MSCs via an intraarterial route is more effective than delivery via an IV route, as MSCs home to the pancreatic head (pancreaticoduodenal artery) or body (splenic artery). Therefore, although the available data related to the biodistribution of infused MSCs are still limited, the results obtained from both preclinical and clinical studies illustrate a comparable set of data supporting results on homing, migration to the injured site, and the major organs where infused MSCs are located. The following comprehensive and interesting reviews are highly recommended.166168

To date, 1426 registered clinical trials spanning different trial phases have used MSCs for therapeutic purposes, which is four times the number reported in 2013.169,170 As supported by a large body of preclinical studies and advancements in conducting clinical trials, MSCs have been proven to be effective in the treatment of numerous diseases, including nervous system and brain disorders, pulmonary diseases,171 cardiovascular conditions,172 wound healing, etc. The outcomes of MSC-based therapy have been the subject of many intensive reviews and systematic analyses with the solid conclusion that these cells exhibit strong safety profiles and positive outcomes in most tested conditions.173175 In addition, the available data have revealed several potential mechanisms that could explain the beneficial effects of MSCs, including their homing efficiency, differentiation potential, production of trophic factors (including cytokines, chemokines, and growth factors), and immunomodulatory abilities. However, it is still not known which MSC types should be used for which diseases, as it seems to be that MSCs exhibit beneficial effects regardless of their sources.169

The theory that brain cells can never regenerate has been challenged by the discovery of newly formed neurons in the human adult hippocampus or the migration of stem cells in the brain in animal models.176 These observations have triggered hope for regeneration in the context of neuronal diseases by using exogenous stem cell sources to replenish or boost the stem cell population in the brain. Moreover, the limited regenerative capacity of the brain and spinal cord is an obstacle for traditional treatments of neurodegenerative diseases, such as autism, cerebral palsy, stroke, and spinal cord injury (SCI). As current treatments cannot halt the progression of these diseases, studies throughout the world have sought to exploit cell-based therapies to treat neurodegenerative diseases on the basis of advances in the understanding and development of stem cell technology, including the use of MSCs. Successful stem cell therapy for treating brain disease requires therapeutic cells to reach the injured sites, where they can repair, replace, or at least prevent the deteriorative effects of neuronal damage.177 Hence, the gold standard of cell-based therapy is to deliver the cells to the target site, stimulate the tissue repair machinery, and regulate immunological responses via either cell-to-cell contact or paracrine effects.178 Among 315 registered clinical trials using stem cells for the treatment of brain diseases, MSCs and hematopoietic stem cells (HSCs; CD34+ cells isolated from either BM aspirate or UC blood) are the two main cell types investigated, whereas approximately 102 clinical trials used MSCs and 62 trials used HSCs for the treatment of brain disease (main search data from clinicaltrial.gov). MSCs are widely used in almost all clinical trials targeting different neuronal diseases, including multiple sclerosis,179 stroke,180 SCI,181 cerebral palsy,182 hypoxic-ischemic encephalopathy,183 autism,184 Parkinsons disease,185 Alzheimers disease185 and ataxia. Among these trials in which MSCs were the major cells used, nearly two-thirds were for stroke, SCI, or multiple sclerosis. MSCs have been widely used in 29 registered clinical trials for stroke, with BM-MSCs being used in 16 of these trials. With 26 registered clinical trials, SCI is the second most common indication for using MSCs, with 16 of these trials using mainly expanded BM-MSCs. For multiple sclerosis, 15 trials employed BM-MSCs among a total of 23 trials conducted for the treatment of this disease. Hence, it is important to note that in neuronal diseases and disorders, BM-MSCs have emerged as the most commonly used therapeutic cells among other MSCs, such as AT-MSCs and UC-MSCs.

The outcomes of the use of BM-MSCs in the treatment of neuronal diseases have been widely reported in various clinical trial types. A review by Zheng et al. indicated that although the treatments appeared to be safe in patients diagnosed with stroke, there is a need for well-designed phase II multicentre studies to confirm the outcomes.173 One of the earliest trials using autologous BM-MSCs was conducted by Bang et al. in five patients diagnosed with stroke in 2005. The results supported the safety and showed an improved Barthel index (BI) in MSC-treated patients.186 In a 2-year follow-up clinical trial, 16 patients with stroke received BM-MSC infusions, and the results showed that the treatment was safe and improved clinical outcomes, such as motor impairment scale scores.187 A study conducted in 12 patients with ischemic stroke showed that autologous BM-MSCs expanded in vitro using autologous serum improved the patients modified Rankin Scale (mRS), with a mean lesion volume reduced by 20% at 1 week post cell infusion.188 In 2011, a modest increase in the Fugl Meyer and modified BI scores was observed after autologous administration of BM-MSCs in patients with chronic stroke.189 More recently, a prospective, open-label, randomized controlled trial with blinded outcome evaluation was conducted, with 39 patients and 15 patients in the BM-MSC administration and control groups, respectively. The results of this study indicated that autologous BM-MSCs with autologous serum administration were safe, but the treatment led to no improvements at 3 months in modified Rankin Scale (mRS) scores, although leg motor improvement was observed.180 Researchers explored whether the efficacy of BM-MSC administration was maintained over time in a 5-year follow-up clinical trial. Patients (85) were randomly assigned to either the MSC group or the control group, and follow-ups on safety and efficacy were performed for 5 years, with 52 patients being examined at the end of the study. The MSC group exhibited a significant improvement in terms of decreased mRS scores, whereas the number of patients with an mRS score increase of 03 was statistically significant.187 Although autologous BM-MSCs did not improve the Basel index, mRS, or National Institutes of Health Stroke Scale (NIHSS) score 2 years post infusion, patients who received BM-MSC therapy showed improvement in their motor function score.190 In addition, a prospective, open-label, randomized controlled trial by Lee et al. showed that autologous BM-MSCs primed with autologous ischemic serum significantly improved motor functions in the MSC-treated group. Neuroimaging analysis also illustrated a significant increase in interhemispheric connectivity and ipsilesional connectivity in the MSC group.191 Recently, a single intravenous infection of allogeneic BM-MSCs has been proven to be safe and feasible in patients with chronic stroke with a significant improvement in BI score and NIHSS score.192

In two systematic reviews using MSCs for the treatment of SCI, BM-MSCs (n=16) and UC-MSCs (n=5) were reported to be safe and well-tolerated.193,194 The results indicated significant improvements in the stem cell administration groups compared with the control groups in terms of a composite of the American Spinal Injury Association (ASIA) impairment scale (AIS) grade, AIS grade A, and ASIA sensory scores and bladder function (Table ). However, larger experimental groups with a randomized and multicentre design are needed for further confirmation of these findings. For multiple sclerosis, several early-phase (phase I/II) registered clinical studies have used BM-MSCs. A study compared the potential efficacy of BM-MSC and BM mononuclear cell (BMMNC) transplantation in 105 patients with spastic cerebral palsy.195 The results showed that the GMFM (gross motor function measure) and the FMFM (fine motor function measure) scores of the BM-MSC transplant group were higher than those of the BMNNC transplant group at 3, 6, and 12 months of assessment. In terms of autism spectrum disorder, a review of 254 children after BMMNC transplantation found that over 90% of patients ISAA (Indian Scale for Assessment of Autism) and CARS (Childhood Autism Rating Scale) scores improved. Young patients and those in whom autism spectrum disorder was detected early generally showed better improvement.196

The reported clinical trials using MSCs from AT, BM, and UC in the treatment of brain-related injuries and neurological disorders

One of the biggest limitations when using BM-MSCs is the bone marrow aspiration process, as it is an invasive procedure that can introduce a risk of complications, especially in pediatric and elderly patients.197 Therefore, UC-MSCs have been suggested as an alternative to BM-MSCs and are being studied in clinical trials for the treatment of neurological diseases in approximately 1550 patients throughout the world; however, only three studies have been completed, with data published recently.198 A recent study showed that UC-MSC administration improved both gross motor function and cognitive skills, assessed using the Activities of Daily Living (ADL), Comprehensive Function Assessment (CFA), and GMFM, in patients diagnosed with cerebral palsy. The improvements peaked 6 months post administration and lasted for 12 months after the first transplantation.199 In a single-targeted phase I/II clinical trial using UC-MSCs for the treatment of autism, Riordan et al. reported decreases in Autism Treatment Evaluation Checklist (ATEC) and CARS scores for eight patients, but the paper has been retracted due to a violation of the journals guidelines.200 In an open-label, phase I study, UC-MSCs were used as the main cells to treat 12 patients with autism spectrum disorder via IV infusions. It is important to note that five participants developed new class I anti-human leukocyte antigen in response to the specific lot of manufactured UC-MSCs, although these responses did not exhibit any immunological response or clinical manifestations. Only 50% of participants showed improvements in at least two autism-specific measurements.201 Although not as widely used as BM-MSCs, these trials have demonstrated the efficacy of using UC-MSCs in the treatment of SCIs. In a pilot clinical study, Yang et al. showed that the use of UC-MSCs has the potential to improve disease status through an increase in total ASIA and SCI Functional Rating Scale of the International Association of Neurorestoratology (IANR-SCIFRS) scores, as well as an improvement in pinprick, light touch, motor and sphincter scores.202 A study of 22 patients with SCIs showed a potential therapeutic effect in 13 patients post UC-MSC infusion.203 AT-MSCs were also used to treat SCI, with a single case report indicating an improvement in neurological and motor functions in a domestic ferret patient.204 However, a result obtained from another phase I trial using AT-MSCs showed mild improvements in neurological function in a small number of patients.205 A phase II, randomized, double-blind, placebo-controlled, single-center, pilot clinical trial using AT-MSCs in the treatment of acute ischemic stroke published a data set that supports the safety of the therapy, although patients who received AT-MSCs showed a nonsignificant improvement after 24 months of follow-up.206 In all of the above studies, the safety of using either AT-MSCs or UC-MSCs was evaluated, and no significant reactions were reported after infusion.

Therefore, based on the number of recovered patients post-transplantation and the number of recruited patients in large-scale trials using BM-MSCs, it seems that BM-MSCs are the prominent cells in regard to treating neurodegenerative disease with potentially good outcomes (Table ). It is important to note that we do not negate the fact that AT- and UC-MSCs also show positive outcomes in the treatment of neuronal diseases, with numerous ongoing large-scale, multicentre, randomized, and placebo-control trials,207,208 but we suggest alternative and thoughtful decisions regarding which sources of MSCs are best for the treatment of neuronal diseases and degenerative disorders.

In the last decade, significant increases in respiratory disease incidence due to air pollution, smoking behavior, population aging, and recently, respiratory virus infections such as coronavirus disease 2019 (COVID-19)209 have been observed, leading to substantial burdens on public health and healthcare systems worldwide. Respiratory inflammatory diseases, including bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS), have recently emerged as three prevalent pulmonary diseases in children and adults. These conditions are usually associated with inflammatory cell infiltration, a disruption of alveolar structural integrity, a reduction in alveolar fluid clearance ability, cytokine release and associated cytokine storms, airway remodeling, and the development of pulmonary fibrosis. Traditional treatments are focused on relieving symptoms and preventing disease progression using surfactants, artificial respiratory support, mechanical ventilation, and antibiotic/anti-inflammatory drugs, with limited effects on the damaged airway, alveolar fluid clearance, and other detrimental effects caused by the inflammatory response. MSCs are known for their immunomodulatory abilities, showing potential in injury reduction and aiding lung recovery after injury. According to ClinicalTrials.gov, from 2017 to date, there have been 159 studies testing the application of MSCs in the treatment of pulmonary diseases, including but not limited to BPD, COPD, and ARDS, suggesting a trend in the use of MSCs as an alternative approach for the treatment of respiratory diseases, especially MSCs from UC as an off-the-shelf and allogeneic source.

Extremely premature infants are born with arrested lung development at the canalicular-saccular phases prior to alveolarization and before pulmonary maturation occurs, which results in the development of BPD.210 These infants require intensive care during the first three months of life using postnatal interventions, including positive pressure mechanical ventilation, external oxygen support, and surfactant infusions, and the newborns have recurrent infections that further compromise normal lung development.211 To date, 13 clinical trials have been proposed to use UC-MSCs in the treatment of BPD, recruiting ~566 premature infants throughout the world, including Vietnam, Korea, the United States, Spain, Australia, and China. The majority of these trials use UC-derived stem cells for phases I and II, focusing on evaluating the safety and efficacy of stem cell-based therapy.212 Human UC tissue and its derivative components are considered the most attractive cell sources for MSCs in the treatment of BPD due to the ease of obtaining them, being readily available, with no ethical concerns, low antigenicity, a high cell proliferation rate, and superior regenerative potential. Chang et al. used MSCs derived from UC blood in a phase I dose-escalation clinical trial to treat 9 preterm infants via intratracheal administration to prevent the development of BPD.213 All 9 preterm infants survived, and only three developed BPD; these infants had significantly decreased BPD severity compared with the historically matched control group. A follow-up study of the same patients after 24 months indicated that only one infant had an E. cloacae infection after discharge at 4 months, with subsequent disseminated intravascular coagulation, which was later proven to be unrelated to the intervention. The remaining eight patients survived with normal pulmonary development and function, suggesting that the therapy was safe. MSCs from UC blood were also used for the treatment of 12 extremely low birthweight preterm patients using the same administration route, which further confirmed the safety of the therapy in the treatment of BPD, although ten of 12 infants still developed severe BPD at 36 weeks.214 Our group also reported the safety and potential efficacy of using UC-MSCs in the treatment of four preterm infants, and the results supported the safety of UC-MSCs and demonstrated that patients could be weaned from oxygen supply and develop normal lung structure and function.215 A phase II clinical trial of 66 infants born at 2328 weeks with a birthweight of 5001250g who were recruited and randomized into an MSC-administration group and a control group was conducted. Although the results supported the safety of MSC administration in preterm infants, the efficacy of the treatment was not supported by statistical analysis, potentially due to the small sample size. Subgroup analysis showed that patients with severe BPD born at 2324 weeks showed a significant improvement in BPD severity, but those born at 2528 weeks did not.216 Hence, it is important to conduct controlled phase II clinical trials with larger cohort sizes to further substantiate the efficacy of UC blood-derived MSCs in the treatment of infants with BPD.

With more than 65 million patients worldwide, COPD was the third-leading cause of death in 2020, according to World Health Organization records. COPD is classified as a chronic inflammatory and destructive pulmonary disease characterized by a progressive reduction in lung function. Averyanov et al. performed a randomized, placebo-controlled phase I/IIa study in 20 patients with mild to moderate idiopathic pulmonary fibrosis (IPF). Treatment group patients received two IV doses of allogeneic MSCs (2108cells) every 3 months, and the second group received a placebo.217 Evaluation tests were performed at weeks 13, 26, 39, and 52. The 6-min walking test distance (6MWTD) results showed that patient fitness improved from week 13 onwards and was maintained until up to the 52nd week. Pulmonary function indicators improved markedly before and after treatment in the treated group but did not change significantly in the placebo group. The goal of MSC therapy in the treatment of COPD is to promote the regeneration of parenchymal cells and alveolar structure and the restoration of lung function. Based on the results of a phase I trial of a commercial BM-MSC product, ProchymalTM, which led to improvements in pulmonary function in treated patients, a multicentre, double-blind, placebo-controlled phase II trial was conducted in 62 patients diagnosed with COPD to determine the safety and potential efficacy of the product. Although the results supported the safety of BM-MSCs, their effectiveness in the treatment of COPD was not assured. No statistically significant differences in FEV1 or FEV1%, total lung capacity, or carbon monoxide diffusing capacity were detected after 2 years of follow-up between the two treatment groups. To date, there have been five clinical trials using BM-MSCs as the main stem cells for the treatment of COPD, but the overall clinical outcomes did not demonstrate the potential therapeutic effects of the treatment.218222 In clinical trial NCT001110252, the results showed that there was an overall reduction in the process of COPD pathological development 3 years after the administration of BM-MSCs, although the trial had a phase I design, with no control group, and evaluated only a small cohort (four patients).219 To alleviate local inflammatory progression in COPD, Oliveira et al. studied the combination treatment of one-way endobronchial valve (EBV) and BM-MSC intubation.223 Ten GOLD (Global Initiative for Obstructive Lung Disease) stage C or D patients were equally divided into 2 groups: one group received a dose of 108 cells before valve insertion, and the other group received a normal saline infusion. The follow-up time was 90 days. Inflammation was significantly improved as assessed by the CRP (C-reactive protein) index at 30 and 90 days after infusion. In addition, improvements in St. Georges Respiratory Questionnaire (SGRQ) scores indicated improved patient quality of life. Furthermore, an investigation into the homing ability of MSCs in vivo was performed on 9 GOLD patients, from stage A to stage D. Each patient received two 2106 BM-MSC/kg IV infusions 1-week apart.224 The marking of MSCs with indium-111 showed that MSCs were retained in the pulmonary vasculature longer in patients with mild COPD and that the levels of inflammatory mediators improved after 7 days of treatment. The results of the evaluation survey conducted after 1 year showed that the number of COPD exacerbations decreased to six times/year compared to 11 times/year before treatment. In addition, AT-MSCs present in the stromal vascular fraction were used to treat patients with COPD, and no adverse events were observed after 12 months of follow-up, but the clinical improvements post administration were not clear.225 The results from a phase I clinical trial using AT-MSCs in eight patients with COPD also reported no significant change in pulmonary function test parameters.226 A study evaluating the use of AT-MSCs as adjunctive therapy for COPD in 12 patients was performed.227 AT was obtained using standard liposuction, MSCs were isolated, and 150300 million cells were intravenously infused. The patients showed improvements in quality of life, with improved SGRQ scores after 3 and 6 months of treatment. Recently, UC-MSCs have emerged as potential allogeneic stem cell candidates for the treatment of COPD.228 In a pilot clinical study, it was demonstrated that allogeneic administration of UC-MSCs in the treatment of COPD was safe and potentially effective.229 In one study, 20 patients, including 9 at stage C and 11 at stage D per the GOLD classification, with histories of smoking were recruited and received cell-based therapy. The patients who received UC-MSC treatment showed significant reductions in Modified Medical Research Council scores, COPD assessment test scores, and the number of pulmonary exacerbations 6 months post administration. The results of the second trial using UC-MSCs showed that the mean FEV1/FVC ratios were increased along with improvements in SGRQ scores and 6MWTDs at three months post administration.230 Although thorough assessments of the effectiveness of UC-MSCs are still in the early stages, the number of trials using UC-MSCs for the treatment of COPD is increasing steadily, with larger sample sizes and stronger designs (randomized or matched casecontrol studies), providing a data set strongly supporting the future applications of UC-MSCs.231

The ongoing pandemic of the 21st century, the COVID-19 pandemic, emerged as a major pulmonary health problem worldwide, with a relatively high mortality rate. Numerous studies, reviews, and systematic analyses have been conducted to discuss and expand our knowledge of the virus and propose different mechanisms by which the virus could alter the immune system.232 One of the most critical mechanisms is the generation of cytokine storms, which result from the initiation of hyperreactions of the adaptive immune response to viral infection.233 These cytokine storms are formed by the establishment of waves of hypercytokinaemia generated from overreactive immune cells, which enhance their expression of TNF-, IL-6, and IL-10, preventing T-lymphocyte recruitment and proliferation and culminating in T-lymphocyte apoptosis and T-cell exhaustion. In COVID-19, once a cytokine storm is formed, it spreads from an initial focal area through the body via circulation, which has been discussed in a comprehensive review by Jamilloux et al.234 At the time of writing this review, there were 74 clinical trials using MSCs from UC (29 trials; including WJ-derived MSCs (WJ-MSCs) and placenta-derived MSCs (PL-MSCs)), AT (15 trials), and BM (11 trials) (comprehensive review171,235). Hence, UC-MSCs have emerged as the most common MSCs for the treatment of COVID-19, with a total of 1047 patients participating in these trials. Among these trials, 15 completed trials using UC-MSCs (including WJ- and PL-MSCs) have been reported, with clinical data from approximately 600 recruited patients.232 Eight of these 15 studies used allogenic UC-MSC transplantation to treat critically ill patients.236 A list of case reports using UC-MSCs showed that the treatments were safe and well-tolerated in 14 patients with COVID-19, with the primary outcomes including increased percentages and numbers of T cells,237,238 improved respiratory and renal functions,239 reductions in inflammatory biomarker levels,240 and positive outcomes in the PaO2/FiO2 ratio.240 In a pilot study conducted in ten patients with severe COVID-19, a single dose of UC-MSCs was safe and improved clinical outcomes, although the study did not investigate whether multiple doses of UC-MSCs could further improve the outcomes.241 Two trials without a control group were conducted in 47 patients, and the results indicated that UC-MSCs were safe and feasible for the treatment of patients with COVID-19.235,242 A single-center, open-label, individually randomized, standard treatment-controlled trial was performed in 41 patients (12 patients assigned to the UC-MSC group), and the results showed that significant improvements in C-reactive protein levels, IL-6 levels, oxygen indices, and lymphocyte numbers were found in the MSC groups. Chest computed tomography (CT) illustrated significant reductions in lung inflammatory responses as reflected by CT findings, the number of lobes involved, and pulmonary consolidation.238 In a phase I trial conducted in 18 hospitalized patients with COVID-19, UC-MSCs were administered via an IV route in nine patients (five patients with moderate COVID-19 and 4 patients with severe COVID-19) at days 0, 3, and 6, with no treatment-related adverse events or severe adverse events.243 Only one patient in the UC-MSC group required mechanical ventilation, compared to four patients in the control group. However, the clinical outcomes, such as COVID-19 symptoms, laboratory test results, CT findings of lung damage, and pulmonary function test parameters, were improved in both groups. Interestingly, a 1-year follow-up of the same sample revealed that the patients who received UC-MSC administration improved in terms of whole-lung lesion volume compared to the control group.244 Moreover, chest CT at 12 months showed significant regeneration of lung tissue in the MSC-administered groups, whereas lung fibrosis was found in all patients in the control group. This finding is of interest because it indicates that a long time is needed to detect the regenerative functions of MSC-based therapy, as the biological process to enhance lung tissue regeneration occurs relatively slowly and requires multiple steps. The effects of UC-MSCs in the attenuation and prevention of the development of cytokine storms were illustrated in an interventional, prospective, three-parallel arm study with two control arms conducted in 30 patients in moderate and critical clinical conditions.245 The results indicated a significant decrease in proinflammatory cytokines (IFN, IL-6, IL-17A, IL-2, and IL-12) and an increase in anti-inflammatory cytokines (IL-10, IL-13, and IL-1ra), suggesting that UC-MSCs might participate in the prevention of cytokine storm development. Lanzoni et al. performed a double-blind, randomized, controlled trial and found that UC-MSC infusions significantly decreased cytokine levels at day 6 and improved survival in patients with COVID-19 with ARDS. In this trial, 24 patients were randomized and assigned 1:1 to receive either MSCs or placebo.246 MSC treatment was associated with a significant improvement in the survival rate without serious adverse events. To date, other trials conducted using UC-MSCs as the main MSCs provide a solid data set on their safety and efficacy in preventing the development of cytokine storms, reducing the inflammatory response, improving pulmonary function, reducing intensive care unit (ICU) stay duration, enhancing lung tissue regeneration, and reducing lung fibrosis progression.240,247249 In two large cohort studies (phase I with 210 patients and phase II with 100 patients), the volume of lung lesions and solid component injuries of patients lungs were reduced significantly after the administration of UC-MSCs,250 and clinical symptoms and inflammatory levels were improved.251 Of the 26 reported clinical trials for the treatment of COVID-19 with MSCs, 1 study used AT-MSCs as the main MSCs.236 Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine, and/or tocilizumab, among others) were treated with allogeneic AT-MSCs. With a mean follow-up time of 16 days after infusion, 9/13 patients clinical symptoms improved, and 7/13 patients were intubated. A decrease in inflammatory cytokines and an increase in immunoregulatory cells were also observed in patients, especially in the group of patients with overall clinical improvement. Although there is a lack of clinical efficacy data supporting the use of AT-MSCs in the treatment of patients with COVID-19, AT-MSCs are still potential candidates for inhibiting COVID-19 due to their high secretory activity, strong immune-modulatory effects, and homing ability.252254

For ARDS, in a phase IIa trial, 60 patients with moderate to severe disease were randomized into 2 groups. A group of 40 patients received a single infusion of BM-MSCs at a dose of 1106 cells/kg body weight, and another 20 patients received a placebo.255 After 6 and 24h of infusion, the decrease in plasma inflammatory cytokine levels in the MSC group was significantly greater than that in the placebo group. For severe pulmonary hypertension (PH) associated with BPD (BPD-PH), in a small trial, two preterm infants born at 2627 weeks of age were intravenously administered heterologous BM-MSCs at a dose of 5106 cells per kg of body weight; the treatment reduced oxygen requirements and supported respiration in the infants.256 The administration of allogeneic AT-MSCs in the treatment of ARDS appeared to be safe and well-tolerated in 12 adult patients, but clinical outcomes were not observed.257 The results of two patients who received BM-MSCs showed that both patients had improved respiratory function and hemodynamic function and a reduction in multiorgan failure.258 Although the safety of BM-MSCs was confirmed in a multicentre, open-label, dose-escalation, phase I clinical trial (The Stem cells for ARDS treatmentSTART trial),259 no significant improvements were found in a phase II trial, including in respiratory function and ARDS conditions.260 The safety profile of UC-MSCs is also supported by the findings of a previous phase I clinical trial conducted in 9 patients, which showed that a single IV administration of UC-MSCs was safe and led to positive outcomes in terms of respiratory function and a reduction in the inflammatory response.261 The findings of this study were also supported by those of the REALIST (Repair of Acute Respiratory Distress with Stromal Cell Administration) trial, which further confirmed the maximum tolerated dose of allogeneic UC-MSCs in patients with moderate to severe ARDS.262

Although AT- and BM-MSCs have demonstrated therapeutic potential with similar mechanisms of action, UC-MSCs have emerged as potential candidates in the treatment of pulmonary diseases due to their ease of production as off-the-shelf products, rapid proliferation, noninvasive isolation methods, and supreme immunological regulation as well as anti-inflammatory effects.263 However, it is important to note that there is a need to conduct phase III clinical trials with larger cohorts and trials with at least two sources of MSCs in the treatment of pulmonary conditions to further confirm this speculation.264 Table summarizes several clinical trials with published results discussed in this review.

The reported clinical trials using MSCs from AT, BM, and UC in the treatment of respiratory diseases

The human body maintains function and homeostatic regulation via a complex network of endocrine glands that synthesize and release a wide range of hormones. The endocrine system regulates body functions, including heartbeat, bone regeneration, sexual function, and metabolic activity. Endocrine system dysregulation plays a vital role in the development of diabetes, thyroid disease, growth disorder, sexual dysfunction, reproductive malfunction, and other metabolic disorders. The central dogma of regenerative medicine is the use of adult stem cells as a footprint for tissue regeneration and organ renewal. The functions of these stem cells are tightly regulated by microenvironmental stimuli from the nervous system (rapid response) and endocrine signals via hormones, growth factors, and cytokines. This harmonized and orchestrated system creates a symphony of signals that directly regulate tissue homeostasis and repair after injury. The disruption of these complex networks results in an imbalance of tissue homeostasis and regeneration that can lead to the development of endocrine disorders in humans, such as diabetes, sexual hormone deficiency, premature ovarian failure (POF), and Asherman syndrome.

In recent years, obesity and diabetes (type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)) have been the two biggest challenges in endocrinology research, and the application of MSCs has emerged as a novel approach for therapeutic consideration. T1DM is characterized by the autoimmune destruction of pancreatic -cells, whereas T2DM is defined as a combination of insulin resistance and pancreatic insulin-producing cell dysfunction. Regenerative medicine seeks to provide an exogenous cell source for replacing damaged or lost -cells to achieve the goal of stabilizing patients blood glucose levels. To date, there are 28 clinical trials using MSCs in the treatment of T1DM (http://www.clinicaltrials.gov, searched in October 2021), among which three trials were completed using autologous BM-MSCs (NCT01068951), allogeneic BM-MSCs (NCT00690066), and allogeneic AT-MSCs (NCT03920397). Interestingly, UC-MSCs were the most favored MSCs for the remaining trials. All published studies confirmed the safety of MSC therapy in the treatment of T1DM with no adverse events. The first study using autologous BM-MSCs showed that patients who were randomized into the MSC-administration group showed an increase in C-peptide levels in response to a mixed-meal tolerance test (MMTT) in comparison to the control group.265 Unfortunately, there was no significant improvement in C-peptide levels, HbA1C or insulin requirements. The use of autologous AT-MSCs in combination with vitamin D was safe and improved HbA1C levels 6 months post administration.266 WJ-MSCs were used as the main MSCs for the treatment of new-onset T1DM, which showed a significant improvement in both HbA1C and C-peptide levels when compared to those of the control group at three and six months post administration.267,268 The combination of allogeneic WJ-MSCs with autologous BM-derived mononuclear cells improved insulin secretion and reduced insulin requirements in patients with T1DM.269 In terms of T2DM, 23 studies were registered on clinicaltrials.gov (searched in October 2021), with six completed studies (three studies used BM-MSCs and three studies used allogeneic UC-MSCs). Although the number of studies using MSCs for the treatment of T2DM is small, their findings support the safety of MSCs, with no severe adverse events observed during the course of these studies.270 It was confirmed that MSC therapy potentially reduced fasting blood glucose and HbA1C levels and increased C-peptide levels. However, these effects were short-term, and multiple doses were required to maintain the MSC effects. Interestingly, the autologous MSC approach in the treatment of patients with diabetes in general is hampered, as both BM-MSCs and AT-MSCs isolated from patients with diabetes showed reduced stemness and functional characteristics.271,272 In addition, the durations of diabetes and obesity are strongly associated with autologous BM-MSC metabolic function, especially mitochondrial respiration, and the accumulation of mitochondrial DNA, which directly interfere with the functions of BM-MSCs and reduce the effectiveness of the therapy.271 Therefore, the allogeneic approach using MSCs from healthy donors provides an alternative approach for stem cell therapy in the treatment of patients with diabetes.

Modern society is increasingly facing the problem of infertility, which is defined as the inability to become pregnant after more than 1 year of unprotected intercourse.273 This problem has emerged as an important worldwide health issue and social burden. Assisted reproductive techniques and in vitro fertilization technology have recently become the most effective methods for the treatment of infertility in humans, but the use of these approaches is limited, as they cannot be applied in patients with no sperm or those who are unable to support implantation during pregnancy, they are associated with complications, they are time-consuming and expensive, and they are associated with ethical issues in certain territories.274 Numerous conditions are related to infertility, including POF, nonobstructive azoospermia, endometrial dysfunction, and Asherman syndrome. Recent progress has been illustrated in preclinical studies for the potential applications of stem cell-based therapy for reproductive function recovery, especially recent studies in the field of MSCs, which provide new hope for patients with infertility and reproductive disorders.275

POF is characterized by a loss of ovarian activity during middle age (before 40 years old) and affects 12% of women of reproductive age.276 Patients diagnosed with POF exhibit oligo-/amenorrhea for at least 4 months, with increased levels of follicle-stimulating hormone (FSH) (>25IU/L) on two occasions more than 1 month apart.277 Diverse factors, such as genetic backgrounds, autoimmune disorders, environmental conditions, and iatrogenic and idiopathic situations, have been reported to be the cause of POF.278 POF can be treated with limited effectiveness via psychosocial support, hormone replacement intervention, and fertility management.279 MSCs from AT, BM, and UC have been used in the treatment of POF, with improvements in ovarian function in preclinical studies using chemotherapy-induced POF animal models. The early published POF study using BM-MSCs as the main cell source is a single case report in which a perimenopausal woman showed an improvement in follicular regeneration, and increased AMH levels resulted in a successful pregnancy followed by delivery of a healthy infant.280 A report using autologous BM-MSCs in two women with POF illustrated an increase in baseline estrogen levels and the volume of the treated ovaries along with amelioration of menopausal symptoms.281 The clinical procedures used in this early trial were invasive, as patients underwent two operations: (1) BM aspiration and (2) laparoscopy. A similar approach was used in two trials conducted in 10 women with POF (age range from 2633 years old) and 30 patients (age from 18 to 40 years old).282 A later study investigated two different routes of cell delivery, including laparoscopy and the ovarian artery, but the results have not been reported at this time.282 Based on the positive outcomes of the mouse model, an autologous stem cell ovarian transplantation (ASCOT) trial was deployed using BM-derived stem cells with encouraging observations of improved ovarian function, as determined by elevated levels of AMH and AFC in 81.3% of participants, six pregnancies, and the successful delivery of three healthy babies.283 A randomized trial (NCT03535480) was conducted in 20 patients with POF aged less than 39 years to further elaborate on the results of the ASCOT trial.284 To date, there are no completed trials using AT-MSCs or UC-MSCs in the treatment of patients with POF, limiting the evaluation of these MSCs in the treatment of POF. The speculated reason is that POF is a rare disease, affecting 1% of women younger than 40 years, and with improvements in assisted productive technology, patients have several alternative options to enhance the recovery of reproductive function.285

Burns are the fourth most common injury worldwide, affecting ~11 million people, and are a major cause of death (180,000 patients annually). The severity of burns is defined based on the percentage of surface area burned, burn depth, burn location and patient age, and burns are usually classified into first-, second-, third-, and fourth-degree burns on the basis of their severity.286 Postburn recovery depends on the severity of the burn and the effectiveness of treatment. Rapid healing may occur over weeks, while alternatively, healing can take months, with the ultimate result being scar formation and disability in patients with severe burns. Different from mechanical injury, burn injury is an invasive progression of damage to tissue at the burn site, including both mechanical damage to the skin surface and biological damage caused by natural apoptosis that prolongs excessive inflammation, oxidative stress, and impaired tissue perfusion.287 To date, completely reversing the devastating damage of severe burns remains unachievable in medicine, and stem cell therapy provides an alternative option for patients with burn injury. The first case report of the use of BM-MSCs to treat a 45-year-old patient with burns on 40% of their body demonstrated the safety of the therapy and showed partial improvements in vascularization at the wound site and reduced coarse cicatrices.288,289 Later, patients with second- and third-degree burns as well as deep burns were treated using either autologous BM-MSCs or allogeneic BM-MSCs by spraying the MSCs onto the burn sites or adding MSCs over a dermal matrix sheet to cover the wound. The results in these case reports revealed the potential efficacy of MSC-based therapy, which not only enhanced the speed of wound recovery but also reduced pain and improved blood supply without introducing infection.288,290,291 In 2017, a study conducted in 60 patients with 1025% of their total body surface areas burned treated with either autologous BM-MSCs or UC-MSCs showed that both MSC types improved the rate of healing and reduced the hospitalization period.292 The drawback of BM-MSCs in the treatment of burns is the invasive harvesting method, which causes pain and possible complications in patients. Hence, treatment with allogeneic MSCs obtained from healthy donors is the method of choice, and AT- and UC-MSCs are two suitable candidates for this option. To date, a limited number of clinical trials have been conducted using MSC therapy. These trials have several limitations in trial design, such as a lack of a negative control group and blinding, small sample sizes, and the use of standardized measurement tools for burn injury and wound healing. Currently, AT-MSCs are being used in seven ongoing phase I and II trials in the treatment of burns. Hence, it is important to note that among the most widely studied MSCs, AT-MSCs have advantages over BM-MSCs when obtained from an allogeneic source, while their abilities in burn treatment remain to be determined. The main MSCs that should be used in the regeneration of burn tissue remain undefined (Table ), and we observed the trend that AT-MSCs are more suitable candidates due to their biological nature, which contributes to the generation of keratinocytes and secretion profiles that strongly enhance the skin regeneration process.293296

The reported clinical trials using MSCs from AT, BM, and UC in the treatment of the endocrinological disorder, reproductive disease, and skin healing

In the last two decades, great advancements have been achieved in the development of novel regenerative medicine and cardiovascular research, especially stem cell technology.297 The discovery of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs) opened a new door for basic research and therapeutic investigation of the use of these cells to treat different diseases.298 However, the clinical path of hiPSCs and hiPSC-derived cardiomyocytes in the treatment of cardiovascular diseases is limited due to the potential for teratoma formation with hiPSCs and the immaturity of hiPSC-derived cardiomyocytes, which might pose a risk of cancer formation,299 arrhythmia, and cardiac arrest to patients.300 A recently emerged stem cell type is adult stem cells/progenitor cells, including MSCs, which can stimulate myocardial repair post administration due to their paracrine effects. Promising results of MSC-based therapy obtained from preclinical studies of cardiac diseases enhance the knowledge and strengthen the clinical research to investigate the safety and efficacy in a clinical trial setting. There are papers that discuss the importance of MSC therapy in the treatment of cardiovascular diseases, with the following references being highly recommended.301306 To date, 36 trials have evaluated the therapeutic potential of MSCs in different pathological conditions, with the most prevalent types being BM-MSCs (25 trials), followed by UC-MSCs (7 trials) and AT-MSCs (4 trials).303 However, the reported results are contradictory and create controversy about the efficacy of the treatments.

One of the first trials using MSCs in the treatment of chronic heart failure was the Cardiopoietic Stem Cell Therapy in Heart Failure (C-CURE) trial, a multicentre, randomized clinical trial that recruited 47 patients. The trial findings supported the safety of BM-MSC therapy and provided a data set that demonstrated improvements in cardiovascular scores along with New York Heart Association functional class, quality of life, and general physical health.307 Despite these encouraging results in the phase I trial, the treatment failed to achieve the primary outcomes in the phase II/III trial (CHART-1 trial), including no significant improvements in cardiac structure or function or patient quality of life.308 A positive outcome was also found in a phase I/II, randomized pilot study called the POSEIDON trial, which was the first trial to demonstrate the superior effectiveness of the administration of allogeneic BM-MSCs compared to allogeneic MSCs from other sources.309,310 Published results from the MSC-HF study, with 4 years of follow-up results,311,312 and the TRIDENT study313 illustrated the positive outcomes of BM-MSCs in the treatment of heart failure. However, a contradictory result from the recently published CONCERT-HF trial demonstrated that the administration of autologous BM-MSCs to patients diagnosed with chronic ischemic heart failure did not improve left ventricular function or reduce scar size at 12 months post administration, but the patients quality of life was improved.314 This observation is similar to that of the TAC-HFT trial315 but completely different from the reported results of the MSC-HF trial. A comprehensive investigation is still needed to determine the reasons behind these contradictory results. The largest clinical trial to date using BM-MSCs is the DREAM-HF study, which was a randomized, double-blind, placebo-controlled, phase III trial that was conducted at 55 sites across North America and recruited a total of 565 patients with ischemic and nonischaemic heart failure.172 Although recent reports from the sponsor confirmed that the trial missed its primary endpoint (a reduction in recurrent heart failure-related hospitalization), other prespecified endpoints were met, such as a reduction in overall major adverse cardiac events (including death, myocardial infarction, and stroke).306 Thus, a complete report from the DREAM-HF trial will provide pivotal data supporting the therapeutic potential of BM-MSCs in the treatment of heart failure and open a new path for the FDA to approve cell-based therapy for cardiovascular diseases.

The early trial using AT-derived cells was the PRECISE trial, which was a phase I, randomized, placebo-controlled, double-blind study that examined the safety and efficacy of adipose-derived regenerative cells (ADRCs) in the treatment of chronic ischemic cardiomyopathy.316 ADRCs are a homogenous population of cells obtained from the vascular stromal fraction of AT, which contains a small proportion of AT-MSCs.317 Although the study supported the safety of ADRC administration and illustrated a preserved functional capacity (peak VO2) in the treated group and improvements in heart wall motion, neither poor left ventricle (LV) volume nor poor left ventricular ejection fraction (LVEF) was ameliorated. The follow-up trial of the PRECISE trial, called the ATHENA trial, was conducted in 31 patients, although the study was terminated prematurely because two cerebrovascular events occurred, which were not related to the cell product itself.318 The results of the study illustrated increases in functional capacity, hospitalization rate, and MLHFQ scores, but the LV volume and LVEF were not significantly different between the two groups. Kastrup and colleagues conducted the first in vitro expanded AT-MSC trial in ten patients with ischemic heart disease and ischemic heart failure in 2017. The results confirmed that ready-to-use AT-MSCs were well-tolerated and potentially effective in the treatment of ischemic heart disease and heart failure.319 Comparable results of AT-MSCs were also reported from the MyStromalCell Trial, which was a randomized placebo-controlled study. In this trial, 61 patients were randomized at a 2:1 ratio into two groups, with the results showing no significant difference in the primary endpoint, which was a change in the maximal bicycle exercise tolerance test (ETT) score from baseline to 6 months post administration.320 A 3-year follow-up report from the MyStromalCell Trial confirmed that patients who received AT-MSC administration maintained their preserved exercise capacity and their cardiac symptoms improved, whereas the control group experienced a significant reduction in exercise performance and a worsened cardiovascular condition.321

UC-MSCs are potential allogeneic cells for the treatment of cardiovascular disease, as they are ready to use and easy to isolate, they rapidly proliferate, and they secrete hepatocyte growth factors,322 which are involved in cardioprotection and cardiovascular regeneration.323 The pilot study using UC-MSCs in 30 patients with heart failure, called the RIMECARD trial, was the first reported trial for which the results supported the effectiveness of UC-MSCs, as seen in the improved ejection fraction, left ventricular function, functional status, and quality of life in patients administered UC-MSCs.324 Encouraging results reported from a phase I/II HUC-HEART trial325 showed improvements in LVEF and reductions in the size of the injured area of the myocardium. However, the opposite observations were also reported from a recently published phase I randomized trial using a combination of UC-MSCs and a collagen scaffold in patients with ischemic heart conditions, in which the size of fibrotic scar tissue was not significantly reduced.326

Although MSCs from AT, BM, and UC have proven to be safe and feasible in the treatment of cardiovascular diseases, the correlation between the MSC types and their therapeutic potentials is still uncertain because different results have been reported from different clinical trials (Table ). The mechanisms by which MSCs participate in recovery and enhance myocardial regeneration have been discussed comprehensively in a recently published review;305,327 therefore, they will not be discussed in this review. In fact, the challenges of MSC-based therapy in cardiovascular diseases have been clearly described previously,328 including (1) the lack of an in vitro evaluation of the transdifferentiation potential of MSCs to functional cardiac and endothelial cells,329 (2) the uncontrollable differentiation of MSCs to undesirable cell types post administration,330 and (3) the undistinguishable nature of MSCs derived from different sources with various levels of differentiation potential.331 Therefore, the applications of MSC-based therapy in cardiovascular disease are still in their immature stage, with potential benefits to patients. Thus, there is a need to conduct large-scale, well-designed randomized clinical trials not only to confirm the therapeutic potential of MSCs from various sources but also to enhance our knowledge of cardiovascular regeneration post administration.

The reported clinical trials using MSCs from AT, BM, and UC in the treatment of cardiovascular diseases

Bones are complex structures constituting a part of the vertebrate skeleton, and they play a vital role in the production of blood cells from HSCs. Similar to the functions of most vertebrate organs, bone function is tightly regulated by its constituents and by long-range signaling from AT and the adrenal glands, parathyroid glands, and nervous system.332 The central nervous system (CNS) orchestrates the voluntary and involuntary input transmitted by a network of peripheral nerves, which act as the bridge between the nervous system and target organs. The CNS controls involuntary responses via the autonomic nervous system (ANS), consisting of the sympathetic nervous system and the parasympathetic nervous system, and voluntary responses via the somatic nervous system. The ANS penetrates deep into the BM cavity, reaching the regions of hematopoietic activity to deliver neurotransmitters that tightly regulate BM stem cell niches.333 The BM microenvironment consists of various cell types that participate in the maintenance of HSC niches, which are composed of specialized cells, including BM-MSCs (Fig. ). The release of a specific neurotransmitter, circadian norepinephrine, from the sympathetic nervous system at nerve terminals leads to a reduction in the circadian expression of CX-C chemokine ligand 12 (CXCL12, which is also known as stromal cell-derived factor-1 (SDF-1)) by Nestin+/NG22+ BM-MSCs, resulting in the secretion of HSCs into the peripheral bloodstream.334,335 In fact, BM-MSCs play a significant role in the regulation of HSC quiescence and are closely associated with arterioles and sympathetic nervous system nerve fibers. Nestin-expressing BM-MSCs have been shown to express high levels of SDF-1, stem cell factor (SCF), angiopoietin-1 (Ang-1), interleukin-7, vascular cell adhesion molecule 1 (VCAM-1), and osteopontin (OPN), which are directly involved in the regulation and maintenance of HSC quiescence.336 The depletion of BM-MSCs in BM leads to the mobilization of HSCs into the peripheral bloodstream and spleen. The findings from a previous study demonstrated that reduced SDF-1 expression in norepinephrine-treated BM-MSCs resulted in the mobilization of CXCR4+ HSCs into circulation.337 The ability of BM-MSCs to produce SDF-1 is tightly related to their neuronal protective functions.338 SDF-1 is a member of a chemokine subfamily that orchestrates an enormous diversity of pathways and functions in the CNS, such as neuronal survival and proliferation. The chemokine has two receptors, CXCR4 and CXCR7, that are involved in the pathogenic development of neurodegenerative and neuroinflammatory diseases.339 In the damaged brain, SDF-1 functions as a stem cell homing signal, and in acquired immune deficiency syndrome (AIDS), SDF-1 has been reported to be involved in the protection of damaged neurons by preventing apoptosis. In a traumatic brain injury model, SDF-1 was found to function as an inhibitor of the caspase-3 pathway by upregulating the Bcl-2/Bax ratio, which in turn protects neurons from apoptosis.340 Moreover, the release of SDF-1 also facilitates cell recruitment, cell migration, and the homing of neuronal precursor cells in the adult CNS by activating the CXCR4 receptor.341,342 Existing data support that SDF-1 acts as the guiding signal for the regeneration of axon growth in damaged neurons and enhances spinal nerve regeneration.343,344 Hence, the ability of BM-MSCs to express SDF-1 in response to the neuronal environment provides a unique neuronal protective effect that could explain the potential therapeutic efficacy of BM-MSCs in the treatment of neurodegenerative diseases (Fig. ).

The nature of the stem niche of bone marrow-derived mesenchymal stem cells (BM-MSCs) supports their therapeutic potential in neuron-related diseases. a Bone marrow is a complex stem cell niche regulated directly by the central nervous system to maintain bone marrow homeostasis and haematopoietic stem cell (HSC) functions. MSCs in bone marrow respond to the environmental changes through the release of norepinephrine (NE) from the sympathetic nerves that regulate the synthesis of SDF-1 and the migration of HSCs through the sinusoids. The secretion of stem cell factors (SCFs), VCAM-1 and angiotensin-1 from MSCs also plays a significant role in the maintenance of HSCs. b BM-MSCs have the ability to produce and release SDF-1, which directly contributes to neuroprotective functions at the damaged site through interaction with its receptors CXCR4/7, located on the neuronal membrane. c Neuronal protection and the functional remyelination induced by BM-MSCs are also modulated by the release of a wide range of growth factors, including VEGF, BDNF, and NGF, by the BM-MSCs. d BM-MSCs also have the ability to regulate neuronal immune responses by direct interaction or paracrine communication with microglia. Figure was created with BioRender.com

The migration of exogenous MSCs after systemic administration to the brain is limited by the physical bloodbrain barrier (BBB), which is a selective barrier formed by CNS endothelial cells to restrict the passage of molecules and cells. The mechanism of molecular movement across the BBB is well established, but how stem cells can bypass the BBB and home to the brain remains unclear. Recent studies have reported that MSCs are able to migrate through endothelial cell sheets by paracellular or transcellular transport followed by migration to the injured or inflammatory site of the brain.345,346 During certain injuries or ischemic events, such as brain injury, stroke, or cerebral palsy, the integrity and efficiency of BBB protection is compromised, which allows MSC migration across the BBB via paracellular transport through the transient formation of interendothelial gaps.347 CD24 expression has been detected in human BM-MSCs, which are regulated by TGF-3,348 allowing them to interact with activated endothelial cells via P-selectin and initiate the tethering and rolling steps of MSCs.349 Additionally, BM-MSCs express high levels of CXCR4 or CXCR7,350,351 which bind to integrin receptors, such as VLA-4, to activate the integrin-binding process and allow the cells to anchor to endothelial cells, followed by the migration of MSCs through the endothelial cell layer and basement membrane in a process called transmigration.352 This process is facilitated by the secretion of matrix metalloproteinases (MMPs), which degrade the endothelial basement membrane, allowing BM-MSCs to enter the brain environment.353,354 BM-MSCs can also regulate the integrity of the BBB via the secretion of tissue inhibitor of matrix metalloproteinase-3 (TIMP3), which has been shown to ameliorate the effects of a compromised BBB in traumatic brain injury.355 The secretion of TIMP3 from MSCs directly blocked vascular endothelial growth factor a (VEGF-a)-induced breakdown of endothelial cell adherent junctions, demonstrating the potential mechanism of BM-MSCs in the regulation of BBB integrity.

The therapeutic applications of BM-MSCs in neurodegenerative conditions have been significantly increased by the demonstration of BM-MSC involvement in axonal and functional remyelination processes. Remyelination is a spontaneous regenerative process occurring in the human CNS to protect oligodendrocytes, neurons, and myelin sheaths from neuronal degenerative diseases.356 Remyelination is considered a neuroprotective process that limits axonal degeneration by demyelination and neuronal damage. The first mechanism of action of BM-MSCs related to remyelination is the activation of the JAK/STAT3 pathway to regulate dorsal root ganglia development.357 It was reported that BM-MSCs secrete vascular endothelial growth factor-A (VEGF-A),358 brain-derived neurotrophic factor (BDNF), interleukin-6, and leukemia inhibitor factor (LIF), which directly function in neurogenesis and neurite growth.357 VEGF-A is a key regulator of hemangiogenesis during development and bone homeostasis. Postnatally, osteoblast- and MSC-derived VEGF plays a critical role in maintaining and regulating bone homeostasis by stimulating MSC differentiation into osteoblasts and suppressing their adipogenic differentiation.359361 To balance osteoblast and adipogenic differentiation, VEGF forms a functional link with the nuclear envelope protein laminin A, which in turn directly regulates the osteoblast and adipocyte transcription factors Runx2 and PPAR, respectively.361,362 In the brain, VEGF is a potent growth factor mediating angiogenesis, neural migration, and neuroprotection. VEGF-A, secreted from BM-MSCs under in vitro xeno- and serum-free culture conditions, is the most studied member of the VEGF family and is suggested to play a protective role against cognitive impairment, such as in the context of Alzheimers disease pathology or stroke.363365 Recently, it was reported that the neurotrophic and neuroprotective function of VEGF is mediated through VEGFR2/Flk-1 receptors, which are expressed in the neuroproliferative zones and extend to astroglia and endothelial cells.366 In animal models of intracerebral hemorrhage and cerebral ischemia, the transfusion of Flk-1-positive BM-MSCs promotes behavioral recovery and anti-inflammatory and angiogenic effects.367,368 Moreover, supplementation with VEGF-A in neuronal disorders enhances intraneural angiogenesis, improves nerve regeneration, and promotes neurotrophic capacities, which in turn increase myelin thickness via the activation of the prosurvival transcription factor nuclear factor-kappa B (NF-kB). This activation, together with the downregulation of Mdm2 and increased expression of the pro-apoptotic transcription factor p53, is considered to be the neuroprotective process associated with an increased VEGF-A level.369371 An analysis of microRNA (miRNA) in extracellular vesicles (EVs) secreted from BM-MSCs revealed that BM-MSCs release substantial amounts of miRNA133b, which suppresses the expression of connective tissue growth factor (CTGF) and protects hippocampal neurons from apoptosis and inflammatory injury372374 (Fig. ).

In terms of immunoregulatory functions, the administration of human BM-MSCs into immunocompetent mice subjected to SCI or brain ischemia showed that BM-MSCs exhibited a short-term neuronal protective function against neurological damage (Fig. ). Further investigation demonstrated the ability of BM-MSCs to directly communicate with host microglia/macrophages and convert them from phenotypic polarization into alternative activated microglia/macrophages (AAMs), which are key players in axonal extension and the reconstruction of neuronal networks.375 Other studies have also illustrated that the administration of AAMs directly to the injured spinal cord induced axonal regrowth and functional improvement.376 The mechanism by which BM-MSCs activate the conversion of microglia/macrophages occurs through two representative macrophage-related chemokine axes, CCL2/CCR2 and CCL-5/CCR5, both of which exhibit acute or chronic elevation following brain injury or SCI.377 The CCL2/CCR2 axis contributed to the enhancement of inflammatory function, and BM-MSC-mediated induction of CCL2 did not alter the total granulocyte number (Fig. ). Although the chemokine-mediated mechanism of BM-MSCs in the activation of AAMs and enhanced axonal regeneration at the damage sites is evident, the direct mechanism by which the communication between BM-MSCs and the target cells results in these phenomena remains unclear, and further investigation is needed.

BM-MSCs also confer the ability to regulate the inflammatory regulation of the immune cells present in the brain by (1) promoting the polarization of macrophages toward the M2 type, (2) suppressing T-lymphocyte activities, (3) stimulating the proliferation and differentiation of regulatory T cells (Tregs), and (4) inhibiting the activation of natural killer (NK) cells. BM-MSCs secrete glial cell line-derived neurotrophic factor (GDNF), a specific growth factor that contributes directly to the transition of the microglial destructive M1 phenotype into the regenerative M2 phenotype during the neuroinflammatory process.378 A similar result was also found in AT-379 and UC-MSCs380 under neuroinflammation-associated conditions, suggesting that AT-, BM-, and UC-MSCs share the same mechanism in promoting macrophage polarization. In terms of T-lymphocyte suppression, compared to MSCs from AT and BM, UC-MSCs show the strongest potential to inhibit the proliferation of T-lymphocytes by promoting cell cycle arrest (G0/G1 phase) and apoptosis.381 In addition, UC-MSCs have been proven to be more effective in promoting the proliferation of Tregs382 and inhibiting NK activation.383 Although MSCs are well-known for their inflammatory regulatory ability, the mechanism is not exclusive to BM-MSCs, especially in neurological disorders.384

In contrast to AT-MSCs and BM-MSCs, UC-MSCs have lower expression of major histocompatibility complex I (MHC I) and no expression of MHC II, which prevents the complications of immune rejection.385 Moreover, as UC is considered a waste product after birth, with the option of noninvasive collection, UC-MSCs are easier to obtain and culture than AD- and BM-MSCs.386 These advantages of UC-MSCs have contributed to their use in the treatment of pulmonary diseases, especially during the rampant COVID-19 pandemic, as off-the-shelf products. Numerous pulmonary diseases have been the subject of applications of UC-MSCs, including BPD, COPD, ARDS, and COVID-19-induced ARDS. In BPD, premature infants are born before the alveolarization process, resulting in arrested lung development and alveolar maturation. Upon administration via an IV route, the majority of exogenous UC-MSCs reach the immature lung and directly interact with immune cells to exert their immunomodulatory properties via cell-to-cell interaction mechanisms (Fig. ). UC-MSCs interact with T cells via the PD-L1 ligand, which binds to the PD-1 inhibitory molecule on T cells, resulting in the suppression of CD3+ T-cell proliferation and effector T-cell responses.387 In addition, UC-MSCs also express CD54 (ICAM-1), which plays a crucial role in the immunomodulatory functions of T cells.388 Direct contact between UC-MSCs and macrophages via CD54 expression on UC-MSCs promotes the immune regulation of UC-MSCs via the regulation of phagocytosis by monocytes.389 Moreover, the contact of UC-MSCs with macrophages during proinflammatory responses increases the secretion of TSG-6 by UC-MSCs, which in turn promotes the inhibitory regulation of CD3+ T cells, macrophages, and monocytes by MSCs.390 Recently, upregulation of SDF-1 was described in neonatal lung injury, especially in layers of the respiratory epithelium.391 SDF-1 has been shown to participate in the migration and initiation of the homing process of MSCs via the CXCR4 receptors on their surface.392 It was reported that UC-MSCs express low levels of CXCR4, allowing them to induce SDF-1-associated migration processes via the Akt, ERK, and p38 signal transduction pathways.393 Hence, in BPD, the upregulation of SDF-1 together with the homing ability of UC-MSCs strongly supports the therapeutic effects of UC-MSCs in the treatment of BPD. Furthermore, UC-MSCs have the ability to communicate with immune cells via cell-to-cell contact to reduce proinflammatory responses and the production of proinflammatory cytokines (such as TGF-, INF-, macrophage MIF, and TNF-). The modulation of the human innate immune system by UC-MSCs is mediated by cellcell interactions via CD54-LFA-1 that switch macrophage polarization processes, promoting the proliferation of M2 macrophages, which in turn reduce inflammatory responses in the immature lung.394 Moreover, UC-MSCs also have the ability to produce VEGF and hepatocyte growth factors (HGFs), promoting angiogenesis and enhancing lung maturation.395

Adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the nature of their tissue of origin support their use in therapeutic applications. a Adipose tissue is considered an endocrine organ, supporting and regulating various functions, including appetite regulation, immune regulation, sex hormone and glucocorticoid metabolism, energy production, the orchestration of reproduction, the control of vascularization, and blood flow, the regulation of coagulation, and angiogenesis and skin regeneration. b In terms of metabolic disorders, such as type 2 diabetes mellitus (T2DM), as adipose tissue is directly involved in the metabolism of glucose and lipids and the regulation of appetite, the detrimental effects of T2DM also alter the functions of AT-MSCs, which in turn, hampers their therapeutic effects. Hence, the use of autologous AT-MSCs is not recommended for the treatment of metabolic disorders, including T2DM, suggesting that allogeneic AT-MSCs from healthy donors could be a better alternative approach. c AT-MSCs are suitable for the treatment of reproductive disorders due to their unique ability to mobilize and home to the thecal layer of the injured ovary, enhance the regeneration and maturation of thecal cells, increase the structure and function of damaged ovaries via exosome-activated SMAD, decrease oxidative stress and autophagy, and increase the proliferation of granulosa cells via PI3K/AKT pathways. These functions are regulated specifically by growth hormones produced by AT-MSCs in response to the surrounding environment, including HGF, TGF-, IGF-1, and EGF. d AT-MSCs are also good candidates for skin healing and regeneration as their growth factors strongly support neovascularization and angiogenesis by reducing PLL4, increase anti-apoptosis via the activation of PI3K/AKT pathways, regulate inflammation by downregulating NADPH oxidase isoform 1, and increase immunoregulation through the inhibition of NF-B activation. The figure was created with BioRender.com

COPD is characterized by an increase in hyperinflammatory reactions in the lung, compromising lung function and increasing the development of lung fibrosis. The mechanism by which UC-MSCs contribute to the response to COPD is inflammatory regulation (Fig. ). The administration of UC-MSCs prevented the infiltration of inflammatory cells in peribronchiolar, perivascular, and alveolar septa and switched macrophage polarization to M2.396 A significant reduction in proinflammatory cytokines, including IL-1, TNF-, and IL-8, was also observed following UC-MSC administration.224 MSCs, including UC-MSCs, have been reported to trigger the production of secretory leukocyte protease inhibitors in epithelial cells through the secretion of HGF and epidermal growth factor (EGF), which is believed to have beneficial effects on COPD.397,398 In addition to their inflammatory regulation ability, UC-MSCs exhibit antimicrobial effects through the inhibition of bacterial growth and the alleviation of antibiotic resistance during Pseudomonas aeruginosa infection.399 The combination of the regulation of the host immune response and the antimicrobial effects of UC-MSCs may be relevant for the prevention and treatment of COPD exacerbations, as inflammation and bacterial infections are important risk factors that significantly contribute to the morbidity and mortality of patients with COPD. In terms of regenerative functions, UC-MSCs were reported to be able to differentiate into type 2 alveolar epithelial cells in vitro and alleviate the development of pulmonary fibrosis via -catenin-regulated cell apoptosis.400 Furthermore, UC-MSCs enhanced alveolar epithelial cell migration and proliferation by increasing matrix metalloproteinase-2 levels and reduced their endogenous inhibitors, tissue inhibitors of matrix metalloproteinases, providing a potential mechanism underlying their anti-pulmonary-fibrosis effects.401,402

In ARDS, especially that associated with COVID-19, the proinflammatory state is initiated by increases in plasma concentrations of proinflammatory cytokines, such as IL-1 beta, IL-7, IL-8, IL-9, IL-10, bFGF, granulocyte colony-stimulating factor (G-CSF), GM-CSF, IFN-, and TNF-. The significant increases in the concentrations of these cytokines in patient plasma suggest the development of a cytokine storm, which is a leading cause of COVID-induced mortality. In addition to the immunomodulatory functions regulated via cell-to-cell interactions between UC-MSCs and immune cells, such as macrophages, monocytes, and T cells, UC-MSCs exert their functions via paracrine effects through the secretion of growth factors, cytokines, and exosomes (Fig. ). The most relevant immunomodulatory function of UC-MSCs is considered to be their inhibition of effector T cells via the induction of T-cell apoptosis and cell cycle arrest by the production of indoleamine 2,3- dioxygenase (IDO), prostaglandin E2 (PGE-2), and TGF-. Elevated levels of PGE-2 in patients with COVID-19 are reported to be a crucial factor in the initiation of inflammatory regulation by UC-MSCs post administration and prevent the development of cytokine storms by direct inhibition of T- and B lymphocytes.403 UC-MSCs exert these inhibitory activities through a PGE-2-dependent mechanism.404 It was reported that UC-MSCs confer the ability to secrete tolerogenic mediators, including TGF-1, PGE-2, nitric oxide (NO), and TNF-, which are directly involved in their immunoregulatory mechanism. The secretion of NO from UC-MSCs is reported to be associated with the desensitization of T cells via the IFN-inducible nitric oxide synthase (iNOS) pathways and to stimulate the migration of T cells in close proximity to MSCs that subsequently suppress T-cell sensitivities via NO.405 Lung infection with viruses usually leads to impairments in alveolar fluid clearance and protein permeability. The administration of UC-MSCs enhances alveolar protection and restores fluid clearance in patients with COVID-19. UC-MSCs secrete growth factors associated with angiogenesis and the regeneration of pulmonary blood vessels and micronetworks, including angiotensin-1, VEGF, and HGF, which also reduce oxidative stress and prevent fibrosis formation in the lungs. These trophic factors have been identified as key players in the modulation of the microenvironment and promote pulmonary repair. Additionally, UC-MSCs are more effective than BM-MSCs in the restoration of impaired alveolar fluid clearance and the permeability of airways in vitro, supporting the use of UC-MSCs in the treatment of patients with pulmonary pneumonia.406 In the context of pulmonary regeneration, UC-MSCs were shown to inhibit apoptosis and fibrosis in pulmonary tissue by activating the PI3K/AKT/mTOR pathways via the secretion of HGF, which also acts as an inhibitory stimulus that blocks alveolar epithelial-to-mesenchymal transition.407,408 Moreover, UC-MSCs can reverse the process of fibrosis via enhanced expression of macrophage matrix-metallopeptidase-9 for collagen degradation and facilitate alveolar regeneration via Toll-like receptor-4 signaling pathways.409 UC-MSCs were shown to communicate with CD4+ T cells through HGF induction not only to inhibit their differentiation into Th17 cells, reducing the secretion of IL-17 and IL-22 but also to switch their differentiation into regulatory T cells.410,411 In addition, UC-MSCs conferred the ability to facilitate the number of M2 macrophages and reduce M1 cells via the control of the macrophage polarization process.412

There are several potential mechanisms of UC-MSCs in the treatment of patients with pulmonary diseases and pneumonia, including the regulation of immune cell function, immunomodulation, the enhancement of alveolar fluid clearance and protein permeability, the modulation of endoplasmic reticulum stress, and the attenuation of pulmonary fibrosis. Hence, based on these discussions, UC-MSCs are recommended as suitable candidates for the treatment of pulmonary disease both in pediatric and adult patients.

Human AT was first viewed as a passive reservoir for energy storage and later as a major site for sex hormone metabolism, the production of endocrine factors (such as adipsin and leptin), and a secretion source of bioactive peptides known as adipokines.413 It is now clear that AT functions as a complex and highly active metabolic and endocrine organ, orchestrating numerous different biological features414 (Fig. ). In addition to adipocytes, AT contains hematopoietic-derived progenitor cells, connective tissue, nerve tissue, stromal cells, endothelial cells, MSCs, and pericytes. AT-MSCs and pericytes mobilize from their perivascular locations to aid in healing and tissue regeneration throughout the body. As AT is involved directly in energy storage and metabolism, AT-MSCs are also mediated and regulated by growth factors related to these pathways. In particular, interleukin-6 (IL-6), IL-33, and leptin regulate the maintenance of metabolic activities by increasing insulin sensitivity and preserving homeostasis related to AT. Nevertheless, in the development of obesity and diabetes, omental and subcutaneous AT maintains a low-grade state of inflammation, resulting in the impairment of glucose metabolism and potentially contributing to the development of insulin resistance.415 In normal AT, direct regulation of Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) by leptin and thyroid growth factor-beta 1 (TGF-1) in AT-MSCs and mature adipocytes is involved in the protective function and maintenance of AT homeostasis. However, under diabetic conditions, the balance between the expression of leptin and the secretion of TGF-1 is compromised, resulting in the malfunction of AT-MSC metabolic activity and the proliferation, differentiation, and maturation of adipocytes. Therefore, the use of autologous AT-MSCs in the treatment of diabetic conditions is not a suitable option, as the functions of AT-MSCs are directly altered by diabetic conditions, which reduces their effectiveness in cell-based therapy (Fig. ).

Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are good candidates for the treatment of pulmonary diseases. a Lung immaturity and fibrosis are the major problems of patients with bronchopulmonary dysplasia and lead to increased levels of SDF-1, the development of fibrosis, the induction of the inflammatory response, and the impairment of alveolarization. UC-MSCs are attracted to the damaged lung via the chemoattractant SDF-1, which is constantly released from the immature lung via SDF-1 and CXCR4 communication. Moreover, UC-MSCs reduce the level of proinflammatory cytokines (TGF-, INF-, macrophage MIF, and TNF-) via a cell-to-cell contact mechanism. The ability of UC-MSCs to produce and secrete VEGF also involves in the regeneration of the immature lung through enhanced angiogenesis. b Upon an exacerbation of chronic obstructive pulmonary disease (COPD), UC-MSCs respond to the surrounding stimuli by reducing IL-8 and TNF- levels, resulting in the inhibition of the inflammatory response but an increase in the secretion of growth factors participating in the protection of alveoli, fluid clearance and reduced oxidative stress and lung fibrosis, including HGF, TGF-, IGF-1, and exosomes. c In a similar manner, UC-MSCs prevent the formation of cytokine storms in coronavirus disease 2019 (COVID-19) by inhibiting CD34+ T-cell differentiation into Th17 cells and enhancing the number of regulatory T cells. Moreover, UC-MSCs also have antibacterial activity by secreting LL-3717 and lipocalin. Figure was created with BioRender.com

Preclinical studies and clinical trials have revealed the therapeutic effects of MSCs, in general, and AT-MSCs, in particular, in the management of POF, with relatively high efficacy and enhanced regeneration of the ovaries. Understanding the molecular and cellular mechanisms underlying these effects is the first step in the development of suitable MSC-based therapies for POF. One of the mechanisms by which MSCs exert their therapeutic effects is their ability to migrate to sites of injury, a process known as homing. Studies have shown that MSCs from different sources have the ability to migrate to different compartments of the injured ovary. For example, BM-MSCs administered through IV routes migrated mostly to the ovarian hilum and medulla,416 whereas a significant number of UC-MSCs were found in the medulla.417 Interestingly, AT-MSCs were found to be engrafted in the theca layers of the ovary but not in the follicles, where they acted as supportive cells to promote follicular growth and the regeneration of thecal layers.418 The structure and function of the thecal layer have a great impact on fertility, which has been reviewed elsewhere.419 In brief, the thecal layer consists of two distinct parts, the theca interna, which contains endocrine cells, and the theca externa, which is an outer fibrous layer. The thecal layer contains not only endocrine-derived cells but also vascular- and immune-derived cells, whose functions are to maintain the structural integrity of the follicles, transport nutrients to the inner compartment of the ovary and produce key reproductive hormones such as androgens (testosterone and dihydrotestosterone) and growth factors (morphogenic proteins, e.g., BMPs and TGF-).420 As AT-MSCs originate from an endocrine organ, their ability to sense signals and migrate to the thecal layer is anticipated. Additionally, secretome analysis of AT-MSCs showed a wide range of growth factors, including HGF, TBG-, VEGF, insulin-like growth factor-1 (IGF-1), and EGF,421 that are directly involved in the restoration of the structure and function of damaged ovaries by stimulating cell proliferation and reducing the aging process of oocytes via the activation of the SIRT1/FOXO1 pathway, a key regulator of vascular endothelial homeostasis.422,423 In POF pathology, autophagy and its correlated oxidative stress contribute to the development of POF throughout a patients life. Recently, AT-MSCs were shown to be able to improve the structure and function of mouse ovaries by reducing oxidative stress and inflammation, providing essential data supporting the mechanism of AT-MSCs in the treatment of POF.424 Several studies have illustrated that AT-MSCs secrete biologically active EVs that regulate the proliferation of ovarian granulosa cells via the PI3K/AKT pathway, resulting in the enhancement of ovarian function.425 Direct regulation of ovarian cell proliferation modulates the state of these cells, which in turn restores the ovarian reserve.426 Other mechanisms supporting the effectiveness of MSCs have been carefully reviewed, confirming the therapeutic potential of MSCs derived from different sources426 (Fig. ).

In the last decade, the number of clinical trials using AT-MSCs in the treatment of chronic skin wounds and skin regeneration has exponentially increased, with data supporting the enhancement of the skin healing processes, the reduction of scar formation, and improvements in skin structure and quality. Several mechanisms are directly linked to the origin of AT-MSCs, including differentiation ability, neovascularization, anti-apoptosis, and immunological regulation. AT is a connective and supportive tissue positioned just beneath the skin layers. AT-MSCs have a strong ability to differentiate into adipocytes, endothelial cells,427 epithelial cells428 and muscle cells.429 The adipogenic differentiation of AT-MSCs is one of the three mesoderm lineages that defines MSC features, and AT-MSCs are likely to be the best MSC type harboring this ability compared to BM- and UC-MSCs. Recent reports detailed that AT-MSCs accelerated diabetic wound tissue closure through the recruitment and differentiation of endothelial cell progenitor cells into endothelial cells mediated by the VEGF-PLC-ERK1/ERK2 pathway.430 Upon injury, the skin must be healed as quickly as possible to prevent inflammation and excessive blood loss. The reparation process occurs through distinct overlapping phases and involves various cell types and processes, including endothelial cells, keratinocyte proliferation, stem cell differentiation, and the restoration of skin homeostasis.431 Hence, the differentiation ability of AT-MSCs plays a critical role in their therapeutic effect on skin wound regeneration and healing processes. AT-MSCs accelerate wound healing via the production of exosomes that serve as paracrine factors. It was reported that AT-MSCs responded to skin wound injury stimuli by increasing their expression of the lncRNA H19 exosome, which upregulated SOX9 expression via miR-19b, resulting in the acceleration of human skin fibroblast proliferation, migration, and invasion.432 In addition, the engraftment of AT-MSCs supported wound bed blood flow and epithelialization processes.433 Anti-apoptosis plays a critical role in AT-MSC-based therapy, as without a microvascular supply network established within 4 days post injury, adipocytes undergo apoptosis and degenerate. Exogenous sources of AT-MSCs mediate anti-apoptosis via IGF-1 and exosome secretion by triggering the activation of PI3K signaling pathways.434 Another mechanism supporting the therapeutic potential of AT-MSCs is their anti-inflammatory function, which results in the reduction of proinflammatory factors, such as tumor necrosis factor (TNF) and interferon- (IFN-), and increases the production of the anti-inflammatory factors IL-10 and IL-4. Exosomes from AT-MSCs in response to a wound environment were found to contain high levels of Nrf2, which downregulated wound NADPH oxidase isoform 1 (NOX1), NADPH oxidase isoform 4 (NOX4), IL-1, IL-6, and TNF- expression. The anti-inflammatory functions of AT-MSCs are also regulated by their immunomodulatory ability, partially through the inhibition of NF-B activation in T cells via the PD-L1/PD-1 and Gal-9/TIM-3 pathways, providing a novel target for the acceleration of wound healing435 (Fig. ).

Therefore, as an endocrine organ in the human body, AT and its derivative stem cells, including AT-MSCs, have shown great potential in the treatment of reproductive disorders and skin diseases. Their potential is supported by mechanisms that are directly related to the nature of AT-MSCs in the maintenance of tissue homeostasis, angiogenesis, anti-apoptosis, and the regulation of inflammatory responses.

Over the past decades, MSC-based research and therapy have made tremendous advancements due to their advantages, including immune evasion, diverse tissue sources for harvesting, ease of isolation, rapid expansion, and cryopreservation as off-the-shelf products. However, several important challenges have to be addressed to further enhance the safety profile and efficacy of MSC-based therapy. In our opinion, the most important challenge of MSC-based therapy is the fate of these cells post administration, especially the long-term survival of allogeneic cells in the treatment of certain diseases. Although reported data confirm that the majority of MSCs are trapped in the lung and rapidly removed from the circulation, caution has been raised related to the occurrence of embolism events post infusion, which was proven to be related to MSC-induced innate immune attack (called instant blood-mediated inflammatory reaction).436 Another related challenge is the homing ability of infused cells, as successful homing at targeted tissue might result in long-term benefits to patients. Other concerns related to MSC-based therapy are the number of dead cells infused into the patients. An interesting study reported that dead MSCs alone still exerted the same immunomodulatory property as live MSCs by releasing phosphatidylserine.437 This is an interesting observation, as there is always a certain number of dead cells present in the cell-based product, and concerns are always raised related to their effects on the patients health. Finally, the hypothesis presented in this review is also a great challenge of the field, which has been proposed for future studies to answer the question: What is the impact of MSC sources on their downstream application?. Tables and illustrate the comparative studies that were conducted in preclinical and clinical settings to address the MSC source challenge. Other challenges of MSC-based therapies have been discussed in several reviews and systematic studies,135,185,438,439 which are highly recommended.

Comparative analysis of the effectiveness of MSC sources in a preclinical setting

Increase BDNF levels in the injured spinal cord, reduce lesion cavity volume and microglia/macrophage infiltration

Induce angiogenesis, axonal regeneration

Read more here:
Stem cell-based therapy for human diseases - PMC

Read More...

Bone marrow mesenchymal stem cells in treatment of peripheral nerve …

September 4th, 2024 2:42 am

Abstract

Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.

Keywords: Bone marrow mesenchymal stem cells, Peripheral nerve injury, Schwann cells, Myelin sheath, Tissue engineering

Core Tip: Bone marrow mesenchymal stem cells (BMSCs) have become ideal seed cells for the treatment of peripheral nerve injury (PNI) due to their strong differentiation potential and the possibility of autologous transplantation. In this review, we introduce the biological characteristics of BMSCs related to PNI, outline the current mechanisms by which BMSCs promote the regeneration and repair of PNI, and summarize the various application methods of BMSCs in PNI, confirming the potential of BMSCs in the treatment of PNI and providing great support for the development of new treatment strategies for nerve regeneration and repair in PNI.

Peripheral nerve injury (PNI) refers to damage that occurs to the peripheral nerve trunk or its branches due to direct or indirect trauma from external sources. It is characterized by sensory, motor, and autonomic dysfunction in the trunk or limbs, representing one of common neurological disorders in clinical practice[1]. PNI is a global issue, with an annual incidence rate of approximately 13/100000 to 23/100000 in developed countries[2-5]. While peripheral nerve axons can regenerate after injury, achieving complete functional recovery is often challenging in cases of proximal nerve injuries or large nerve defects[6]. Currently, autologous nerve transplantation is considered the gold standard for PNI repair[7]. However, even under ideal conditions, this approach does not fully restore impaired motor and sensory functions[8]. Additionally, it has significant drawbacks, such as prolonged surgical time, high economic costs, insufficient donor areas for reconstruction of long or multiple nerve defects, and potential donor site damage (painful neuroma, scarring, and sensory deficits)[9]. In recent years, several new methods for PNI repair have emerged, showing positive effects on restoring the continuity of injured neuroanatomy. However, their ability to restore nerve function is not ideal, and they all have varying degrees of limitations[10].

Tissue engineering is an emerging discipline in the field of biotechnology and has gained significant attention in PNI research. Previous studies have demonstrated that transplantation of Schwann cells (SCs) can promote nerve regeneration and accelerate nerve function recovery[11]. However, obtaining a large number of SCs in a short period is challenging, and it may cause irreversible damage to the donor area, thus limiting the clinical application of SCs transplantation[12]. Recent research has found that adult mesenchymal stem cells (MSCs) can also promote nerve regeneration and show potential for treating PNI, making them a more ideal alternative to SCs. Bone marrow MSCs (BMSCs) are one type of adult MSC with strong differentiation potential and advantages in autologous transplantation. Numerous studies have indicated that BMSCs can differentiate into nerve-like cells during the PNI treatment process and play a crucial role in nerve growth factor (NGF) secretion, endogenous stem cell migration and differentiation, and neovascularization[13-15]. These findings suggest that BMSCs effectively promote the repair of neurological deficits, which makes them ideal seed cells for PNI repair. Researchers are also striving to translate preclinical research findings into practical clinical applications for PNI patients. BMSCs can be applied to PNI therapy through a variety of techniques, such as cell transplantation, tissue engineering, gene engineering, and cell therapy, including the use of BMSC-derived exosomes. These approaches have the potential to improve the effectiveness of PNI regeneration and offer new hope for PNI patients.

Through literature search and analysis (Figure ), in this review, we present the biological properties of BMSCs associated with PNI. We summarize the current mechanisms by which BMSCs promote nerve regeneration and repair in PNI, as well as various application methods in PNI. Moreover, based on these findings, we identify the existing problems and limitations in order to deepen our understanding of BMSCs, optimize treatment strategies, address their shortcomings in clinical application in PNI, and promote their use in PNI clinical practice.

Flow chart of literature search and selection criteria. The initial search resulted in 344 articles. Out of 344 full-texts assessed, 251 articles were excluded. Thus, 93 articles that met the eligibility criteria were included.

BMSCs are a type of pluripotent stem cell that, under specific conditions, can differentiate not only into tissue cells from the mesodermal lineage, such as osteocytes, chondrocytes, and cardiomyocytes[16,17], but also undergo transdifferentiation across germ layers to form neurons, glial-like cells from the ectoderm, and hepatocytes, among others[18]. Silva et al[19] discovered that BMSCs express genes associated with both epithelial tissues and mesenchymal tissues, providing a theoretical basis for their multi-lineage differentiation potential at the gene level. Additionally, BMSCs possess self-renewal capacity. Tamir et al[20] found that approximately 90% of BMSCs are in the G0/G1 phase, which confirms their robust self-renewal capabilities.

BMSCs have no specific surface markers and generally exhibit low expression of major histocompatibility complex (MHC)-I molecules and do not express MHC-II molecules. They also do not express molecules required for T lymphocyte activation, such as Fas ligand and co-stimulatory molecules like B7-1, B7-2, and CD40 L[21]. This characteristic gives BMSCs low immunogenicity and strong immune-suppressive properties. Therefore, studies have shown that when co-cultured with allogeneic and xenogeneic T lymphocytes, BMSCs do not induce significant T cell proliferation but rather inhibit T cell proliferation[22]. In addition to being non-immunogenic, BMSCs are not targeted by CD8+ T cells, which allows them to evade cytotoxic T cell and natural killer cell killing, making them beneficial for successful autologous and allogeneic transplantations[23]. Furthermore, the antigenicity of BMSCs does not increase with their differentiation[24].

Indeed, it is evident that BMSCs possess the potential for multi-lineage differentiation and robust self-renewal capacity. Moreover, when transplanted into the body, they do not trigger significant rejection responses and can be allografted without causing immune rejection reactions[25,26]. The fact that BMSCs do not require the use of immunosuppressive drugs further adds to their appeal as seed cells for treating PNI, making them a promising candidate for potential applications in PNI therapy.

After PNI, if neurons have not died, their axons can undergo regeneration. SCs play a critical role in the repair of the peripheral nervous system. Following Wallerian degeneration of the peripheral nerve, SCs rapidly and massively proliferate, forming Bngner bands. They are involved not only in the formation, synthesis, and secretion of various NGFs but also in the synthesis and secretion of various extracellular matrix (ECM) components and other cell adhesion molecules. The above-mentioned NGFs, ECM, and cell adhesion molecules form gaps or tight junctions with adjacent axons, creating direct channels for the transfer of small molecules and information. These play an essential role in nerve injury regeneration and repair. Under specific conditions, BMSCs can differentiate into neural cells, including SC-like cells, and exert corresponding effects. In this section, we will explore the various functions of BMSCs in PNI repair and list the involved molecular mechanisms.

BMSCs are one of the most widely used sources of cells for nerve regeneration. After transplantation, they can differentiate into different cells, such as neurons, astrocytes, and SC-like cells, under the influence of different physiological microenvironments and express corresponding antigen markers. In vitro studies have found that BMSCs can be induced to differentiate into neural-like cells by antioxidants (such as dimethyl sulfoxide and -mercaptoethanol), cytokines [retinoic acid, basic fibroblast growth factor (bFGF), and epidermal growth factor], traditional Chinese medicine preparations (tetramethylpyrazine and baicalin), gene transfection, and other methods[27,28]. However, whether these induced neural-like cells possess the functional characteristics of normal neurons remains controversial. For instance, Hofstetter et al[29] successfully induced rat BMSCs to differentiate into neural cells using butylated hydroxyanisole but did not record the electrophysiological activity of mature neuronal cells. Some researchers believe that this phenomenon is not related to cell differentiation but rather cytotoxic changes[27]. On the other hand, other studies have shown successful induction of rat BMSCs into neural-like cells using a combination of bFGF, dimethyl sulfoxide, and butylated hydroxyanisole, with the capture of excitatory electrophysiological characteristics[27,28]. Wislet-Gendebien et al[30], through co-culturing, induced rat BMSCs to differentiate into neural cells that produced single action potentials and responded to neurotransmitters such as -aminobutyric acid, glycine, and glutamate. These findings suggest that BMSCs can differentiate into excitable neural-like cells in vitro.

In in vivo studies, Cuevas et al[31] injected 50000 bone MSCs (pre-labelled with bromodeoxyuridine BrdU) in 5 L of culture medium solution into the distal stump of transected sciatic nerve of the rats, and found that after 33 d of implantation, almost 5% of BrdU cells express Schwann cell-like phenotype. Dezawa et al[32] obtained GFP-expressing BMSCs (GFP-MSCs) by retroviral vectors, adjusted the concentration of GFP-MSCs to (1-2) 107 cells/mL, and then injected them into hollow fibres to make an artificial graft. The artificial graft was anastomosed to the cut end of the proximal nerve segment of the sciatic nerve in rats, and a large number of newly formed fibers were observed after 3 wk. They found that BMSCs had a myelination effect in regenerating nerve fibers through immunoelectron microscopy and confocal microscopy, indicating that BMSCs can differentiate into neuron-like cells and secrete a large amount of NGFs to induce axon growth. Additionally, BMSCs can directly transform into SCs to repair injured nerves, which has attracted considerable attention[33]. Furthermore, inflammatory cytokines such as tumor necrosis factor-alpha (TNF-) and interleukin (IL)-1 have been reported to affect the differentiation of MSCs, possibly driving MSCs toward specific cell phenotypes, such as astrocytes. Elevated levels of such pro-inflammatory cytokines can inhibit neuronal differentiation and promote the differentiation of BMSCs into astrocytes[34]. In conclusion, under specific conditions, BMSCs can differentiate into SCs and neural-like cells both in vitro and in vivo, facilitating nerve repair through cell replacement.

Neurotrophic factors have the function of promoting nerve growth and inducing cell differentiation into neural cells, and they can be used to induce the differentiation of BMSCs into neural cells. BMSCs can secrete a variety of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), NGF, vascular endothelial growth factor (VEGF), bFGF, and insulin-like growth factor (IGF)[14]. They upregulate the expression of VEGF receptor (VEGFR) and IGF1 receptor (IGF-1R) and promote the secretion of endogenous neurotrophic factors in the central nervous system. These neurotrophic factors are synthesized and retrogradely transported to nerve cells, transmitting information or paracrine signals to proximal and distal nerves. They bind to their specific receptors, such as NGF with NGF receptor A, BDNF with tyrosine receptor kinase B, and neurotrophin-3 (NT-3) and neurotrophin-4/5 with neurotrophic tyrosine receptor kinase 3. Activation or inhibition of signaling pathways such as PI3K/Akt, Ras-ERK, cAMP/PKA, and PLC--dependent pathways occurs, thereby promoting neuron survival, accelerating axonal and vascular growth, stimulating nerve fiber regeneration, preventing cell apoptosis, inducing SCs migration, proliferation, and myelination formation, and slowing down muscle atrophy, thus reversing the negative effects of PNI (such as preventing cell death caused by axonal injury)[5,35-37]. This improves the supportive microenvironment for neuron survival and regeneration[38] and exerts a neuroprotective effect on nerve cells[39]. Neuhuber et al[40] suggested that the neurotrophic factors produced by human BMSCs are essential for mediating axonal growth and functional recovery after spinal cord injury.

Wang et al[41] conducted a study and reported that using BMSCs transplantation in rats with PNI achieved results similar to autologous nerve transplantation, possibly due to the release of a large number of neurotrophic factors by BMSCs. Isele et al[42] found that the growth condition medium of BMSCs significantly reduced cross-cell-induced apoptosis in fetal rat hippocampal neurons, demonstrating a significant neuroprotective effect. During this process, they observed an increase in phosphorylation of MAPK/ERK and Akt. Blocking this protective effect occurred when using MAPK/ERK and PI3K/Akt specific inhibitors, suggesting that the neurotrophic factors secreted by BMSCs counteracted apoptosis stress response by activating these survival pathways and exerting a neuroprotective effect. They also discovered that stressed neuronal cells stimulated BMSCs to increase the secretion of trophic factors. In another study by Yang et al[43], they used BMSCs as support cells and injected them into a silk fibroin-based nerve conduit. This approach increased the expression of the SCs marker molecule S100 and enhanced the secretion of various neurotrophic growth factors such as BDNF, bFGF, and ciliary neurotrophic factor (CNTF). This, in turn, facilitated histological and functional recovery in rats with sciatic nerve injuries.

The ECM is a complex reticular structure composed of large molecules such as proteins and polysaccharides secreted by cells. It includes laminin, fibronectin, collagen, and other components. The ECM plays a crucial role in promoting cell proliferation and differentiation, supporting the transmission of important signals in the peripheral nervous system[44], which, together with neurotrophic factors and cell adhesion molecules, provides a favorable microenvironment for the survival of nerve cells and the formation of nerve connections[45-47]. Chen et al[48] mixed BMSCs cultured in vitro with gelatin and transplanted them into a 15 mm defect model of the rat sciatic nerve using silicone conduits. Compared to the gelatin-only control group, the experimental group showed improved walking behavior in rats, reduced atrophy of the gastrocnemius muscle, and decreased reduction in compound motor action potential amplitude, with a significant amount of regenerated axons observed. Both in vitro and in vivo, BMSCs synthesize and secrete various ECM components, including NGF, CNTF, BDNF, glial cell-derived neurotrophic factor (GDNF), as well as type I and type IV collagen, fibronectin, laminin, and other ECM molecules. After transplantation, both early and late stages of nerve regeneration are accompanied by high expression of neurotrophic factors. Wright et al[49] reported that BMSCs can stimulate neuronal development and mediate nerve regeneration by modulating the expression of ECM components such as chondroitin sulfate proteoglycans, myelin-associated glycoproteins, and Nogo-A.

Cell adhesion molecules are also critical for axon guidance, including integrins, neural cell adhesion molecules, and calcium-binding proteins such as N-cadherin. Among them, neural cell adhesion molecules may preferentially promote the growth of sensory axons[50]. BMSCs can express various factors related to cell adhesion, such as Ninjurins 1 and 2, Netrin 4, Robo 1, and Robo 4[51-53]. These factors are recognized as neuroregenerative factors and effectively promote axonal growth and cell migration. In summary, BMSCs improve the microenvironment for neuron survival and regeneration through paracrine secretion of neurotrophic factors, ECM factors, adhesion molecules, and various other mechanisms. By promoting the regeneration of damaged neurons, BMSCs contribute to the repair of neural functions.

After PNI occurs, the blood vessels within the nerves are damaged. Therefore, promoting vascular regeneration and restoring blood circulation are essential for the recovery of the normal neural tissue environment. Peripheral nerve regeneration is closely related to angiogenesis, which is a crucial process in the repair of peripheral nerves. VEGF is considered an effective factor for both angiogenesis and neuron generation, and it has long been recognized for its importance in promoting neuron survival and SCs proliferation. Popovich et al[54] reported that BMSCs can secrete various neuroprotective trophic factors such as BDNF, NGF, and VEGF in an autocrine and/or paracrine manner, which can upregulate the expression of these factors, thereby promoting local microvascular regeneration, nerve regeneration, and reconstruction, and ultimately facilitating the repair of injured cells. Induced SCs-like cells from BMSCs have been found to exhibit enhanced immunostaining for VEGF, suggesting that BMSCs may also promote blood vessel formation[55]. BMSCs can also increase the expression levels of endogenous VEGF and its receptor VEGFR2 in the ischemic penumbra, thereby promoting neovascularization[15]. Zurita and Vaquero[56] also observed that blood vessel wall cells in newly regenerated neural tissue at the site of spinal cord injury were differentiated from injected BMSCs. These studies indicate that BMSCs can promote angiogenesis through paracrine secretion of VEGF, and the newly formed blood vessels can, in turn, facilitate the repair of peripheral nerve injuries.

Myelination is another essential process in the regeneration of PNI, determining the quality and functional recovery of nerve regeneration[5,35,47]. Typically, myelination can be achieved by promoting endogenous repair mechanisms or providing an exogenous source of myelinating cells, leading to subsequent nerve function restoration[47]. In a study conducted by Kizilay et al[57], the systemic application of BMSCs was explored in a PNI compression model. Wistar albino rats were used, and the sciatic nerve was compressed for 5 min to create the model. Approximately 5 105 BMSCs were injected intravenously. The results showed that animals treated with BMSCs exhibited higher nerve conduction velocity, compound action potential, and axon numbers compared to the control group. In addition, myelin damage was less severe in the BMSC-treated group, suggesting that systemic application of BMSCs has a positive impact on both myelination and axon survival in the peripheral nerve compression model.

SCs and various types of adult stem cells (in the form of SCs-like cells) have the ability to form myelinating neuronal cells and regenerate nerves. During the regeneration process after PNI, intracellular cAMP levels are elevated when SCs or SCs-like cells further differentiate into myelin-forming cells. This leads to the synthesis and secretion of abundant myelin proteins, such as myelin basic protein, myelin protein zero, peripheral myelin protein 22 (PMP22), and other proteins that are crucial for myelin structure and function. This promotes remyelination during and after regeneration[5,47] and increased expression of IGF-1R and neurofilament type 1 and type 3 enhances axon alignment and myelination gene expression, resulting in increased myelin thickness and internodal length[35,50]. BMSCs also provide various cytokines and growth factors for nerve regeneration[58], including NGF, NT-3, VEGF, PMP22[59-62], and more. Zhao et al[63] also demonstrated that exosomes from BMSCs upregulate the expression of PMP22, VEGF, NGF receptors, and S100 protein, promoting increased neuronal length and axon diameter in the dorsal root ganglion. These protein factors play crucial roles in peripheral nerve regeneration. During the repair process, BMSCs not only directly affect SCs through their neurotrophic functions[64] but may also differentiate towards SCs directionally.

BMSCs, in addition to their ability to differentiate into neuron-like cells[65], also stimulate and induce axonal growth[66], and play an important role in maintaining the normal structure and function of myelin sheaths[67,68]. BMSCs can promote the repair of damaged nerves by regulating the expression of myelination-related genes. For instance, differentiation of BMSCs into SC-like cells can enhance the mRNA expression of myelin-associated factors, significantly increasing the number of myelinated axons, thereby promoting the functional recovery of the facial nerve[69]. In conclusion, MSCs promote myelination and axonal regeneration through various mechanisms, including the secretion of neurotrophic factors, direct interactions with neurons, and upregulation of genes involved in myelination. These combined effects contribute to enhanced axonal growth and improved functional recovery after PNI.

After PNI, various immune cells and cytokines are present, and the coordination of local inflammatory response is essential for the recovery of PNI. BMSCs possess significant immunomodulatory properties, which can promote neural tissue regeneration and alleviate inflammation, therefore making them valuable in PNI treatment. BMSCs can exert immunomodulatory effects by regulating the expression of various cytokines. IL-6 is a multifunctional cytokine produced by macrophages and fibroblasts during PNI[70]. IL-17 is produced by activated CD4+ T cells and can increase the production of pro-inflammatory cytokines and neutrophil chemoattractants, showing elevated levels after PNI[71]. Studies by Ge et al[72] found that BMSCs can secrete high levels of IL-6 to modulate the balance of CD4+ T cell subgroups, promote the proliferation and differentiation of T helper type 17 (Th17) cells that secrete IL-17, and subsequently stimulate prostaglandin E2 secretion. Elevated prostaglandin E2 levels then inhibit Th17 cell secretion of IL-17, achieving therapeutic effects for facial nerve injury. The increased expression of IL-10 protein is associated with regeneration of myelin protein. Research by Cui et al[73] revealed that IL-10-stimulated BMSCs can inhibit the expression of the pro-inflammatory cytokines TNF- and IL-1. Fan et al[74] suggested that this may be achieved by reducing the release of the pro-inflammatory cytokines IL-2, interferon-, and TNF- and increasing the secretion of IL-10 in lymphocyte supernatant and serum, thereby promoting neural regeneration.

BMSCs can modulate the polarization of macrophages, promoting their transition from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. This shift in macrophage polarization is crucial for controlling inflammation and establishing an environment for tissue repair and regeneration. Zhong et al[75] reported that BMSCs secrete GDNF, which converts the damaging M1 phenotype in microglia to the regenerative M2 phenotype, thereby suppressing neural inflammation. This process may be related to inhibiting the nuclear factor-kappaB signaling pathway and promoting the PI3K/AKT signaling pathway.

Another important aspect of MSC-mediated immune regulation is the release of extracellular vesicles (EVs), including apoptotic bodies, exosomes, microvesicles, etc.[76], which contain bioactive components. These EVs are considered an intriguing non-cellular therapy due to their low immunogenicity and ability to mediate cell-to-cell communication and modulate the function of recipient immune cells, contributing to the overall immunomodulatory effects of BMSCs. BMSCs EVs may exhibit similar anti-inflammatory functions as BMSCs themselves by decreasing the levels of inflammatory cytokines and enhancing anti-inflammatory responses. For instance, Schfer et al[77] found that BMSCs can release soluble mediators such as TNF- and IL-1 to alleviate inflammation after PNI. It is evident that BMSCs can exert their immunomodulatory effects through various mechanisms, including regulating the expression of various cytokines, regulating macrophage polarization, releasing EVs, and secreting soluble factors. These effects can help control inflammation, prevent autoimmune reactions, and create a more favorable environment for nerve repair and regeneration following PNI.

In summary, BMSCs play a crucial role in promoting PNI repair and regeneration through various mechanisms (Table ). First, BMSCs are able to differentiate into nerve cells (such as neurons and SCs) to replace damaged nerve cells and facilitate nerve regeneration. Second, they secrete neurotrophic factors, ECM molecules, and adhesion molecules, while also exerting immunomodulatory effects, creating a supportive microenvironment for the growth, differentiation, and survival of nerve cells. Third, BMSCs promote the formation of new blood vessels to ensure the necessary blood supply for the repair and accelerated regeneration of damaged nerves. Lastly, by synthesizing and releasing of proteins related to myelination and axon regeneration, BMSCs enhance the growth of myelinated axons and ultimately promote neuron regeneration. BMSCs utilize these different mechanisms to promote the repair and regeneration of damaged nerve cells and enhance the functional recovery after PNI. Utilizing these pathways can significantly enhance the therapeutic potential of BMSCs in PNI treatment.

Mechanisms of bone marrow mesenchymal stem cell therapy for peripheral nerve injury

The unique mechanisms of action of BMSC make them promising candidates for the treatment of PNI. In this section, we will explore the various application methods of MSCs in PNI treatment (Figure ), analyzing the advantages and disadvantages of each approach in order to comprehensively explore their potential in PNI treatment.

Application of bone marrow-derived mesenchymal stem cells in the treatment of peripheral nerve injury. Bone marrow-derived mesenchymal stem cells can be isolated from bone marrow, expanded in vitro, and directly transplanted into damaged nerve tissue. They can be loaded onto nerve conduits, which provide structural support, using tissue engineering techniques. Additionally, bone marrow-derived mesenchymal stem cells can be genetically modified with neurotrophic factors before being applied to the treatment of peripheral nerve injury to promote neuronal repair and regeneration. PNI: Peripheral nerve injury; MSC: Mesenchymal stem cell.

BMSCs have self-renewal and multi-lineage differentiation capabilities that make neuronal regeneration and nerve function recovery possible, rendering them one of the best choices for stem cell therapy in PNI treatment. Apart from their regenerative potential, BMSCs have been shown to migrate to the injury site and home to the injured area, exhibiting potential for targeted therapy[78,79]. Furthermore, BMSCs do not significantly stimulate the proliferation of T cells nor serve as a target for CD8+ T cells. Thus, when applied in autologous or allogeneic transplantation, they can evade the killing and clearance by immune cells in the body, further exerting their reparative effects. Cuevas et al[31] and Cuevas et al[80] cultured BMSCs from adult rats, labeled them with BrdU, and then injected them into the distal stump of the 5 mm-deficient sciatic nerve in rats. At 18 d and 33 d post-surgery, footprint analysis showed significant improvement in the motor function of the rat limbs compared to the control group injected with only culture medium. Immunofluorescence double-labeling showed that BrdU-labeled cells survived for at least 33 d after surgery, and nearly 5% of the cells expressed the S100 phenotype of SCs. In March 2004, they conducted a similar study on the long-term recovery of rat limbs 180 d after BMSC transplantation, finding that BMSCs continued to have a promoting effect on long-term recovery after surgery[80]. This experiment proves the great potential of BMSCs in peripheral nerve regeneration and lays the foundation for their application in the field of peripheral nerve regeneration. Wang et al[41] investigated the reparative effects of BMSCs by injecting them into the muscles after sciatic nerve injury in rats, and the results showed that the number of regenerating nerve fibers and spinal cord ventral horn neurons increased significantly, as well as a significant increase in regenerated myelin sheath thickness, which indicated that transplantation of BMSCs in PNI rats can achieve similar results as autologous nerve transplantation. Hu et al[81] transplanted BMSCs to repair a 50 mm midline nerve injury in monkeys and found that the healing process was similar to that of autologous transplantation, showing good functional and morphological outcomes. Another study found that when BMSCs were directly transplanted around the sciatic nerve stump, they induced axonal growth by differentiating into neuron-like cells and secreting neurotrophic factors[32]. They also differentiated into SCs to repair the injured nerves[33] and promoted remyelination of regenerating nerve fibers. From this, it can be seen that direct transplantation of BMSCs has played a positive role in repairing various PNI-damaged nerves. However, the invasive procedures required for obtaining BMSCs and the limited quantity of cells obtained, as well as the reduced proliferative and differentiation abilities with increasing patient age, have restricted the research and application of BMSCs in clinical settings.

Scaffold technology has become a hot topic in tissue engineering research in recent years, and nerve conduits are a type of artificial tubular scaffold. BMSCs can simulate the structure and function of the human nervous system when loaded onto nerve conduits and connecting on both sides of the nerve stump. Nerve conduits can be made from natural materials such as chitosan and collagen or synthetic materials such as polyglycolic acid and polylactic acid. Each material has its own characteristics, generally inducing nerve axon regeneration and preventing infiltration of surrounding tissues to interfere with nerve repair. By loading BMSCs onto nerve conduits, not only does it achieve the neurotrophic guidance function of the nerve conduit, but it also provides a space for BMSCs and nerve axon regeneration induction, which helps to promote the effects of BMSCs in promoting nerve growth and regulating the microenvironment of the injury site[82]. In the process of repairing injured nerves using tissue engineering methods, comparing the transplantation effects of nerve conduits with and without BMSCs, it was found that the number and diameter of nerve axons in the experimental group significantly increased, and the improvement of nerve function was significantly better than that in the control group[83].

Costa et al[84] inplanted BMSCs into poly(L-lactic acid) nerve conduit scaffolds for repairing facial nerve defects in rats. The results showed that BMSCs could successfully integrate into the conduit, survive within the nerve tissue, and maintain their phenotype for up to 6 wk. In another study, researchers loaded BMSCs into chitosan nerve conduits and observed cell survival and proliferation within the conduit for 8-16 wk, which effectively promoted the repair of an 8 mm nerve defect[85]. Subsequent research by this team demonstrated that BMSC-loaded chitosan nerve conduits not only accelerated the efficiency of nerve repair but also improved the quantity and quality of regenerated nerve fibers, achieving therapeutic effects comparable to autologous nerve transplantation[86]. The degradation products of nerve conduit materials often trigger local immune reactions, leading to an inflammatory state at the site of injury, which can affect the repair outcome. However, in a study by Hsu et al[87], researchers modified chitosan nerve conduits with laminin to enhance the adhesion capability of BMSCs within the conduit. They observed that BMSCs successfully inhibited the local inflammatory response caused by chitosan degradation, resulting in improved promotion of nerve repair. Other experimental studies have also used BMSCs implanted in nerve conduits made of different materials, such as fibroin gel conduits[88], polylactic-co-glycolic acid conduits with ECM gel[89], and polyglycolic acid conduits[90], to intervene in PNI animal models, and all achieved favorable results.

Although encouraging results have been obtained in animal experiments, further research is still needed to optimize the design of nerve conduits, determine the optimal combination of BMSCs and biomaterials[91], and assess the long-term safety and efficacy of nerve conduits in clinical settings[92]. By addressing these issues, the use of BMSCs in tissue engineering approaches may have a more significant impact on PNI treatment, providing new strategies to promote neural functional recovery and improve the quality of life for patients.

Gene-modified BMSCs have also gained increasing attention in tissue engineering research. In the field of neural repair tissue engineering, the main purpose of gene modification is to design target cells to overexpress growth factors, migration molecules, and adhesion molecules, as well as to inhibit the expression of defective genes. NT-3, NT-4, BDNF, NGF, CNTF, bFGF, and others are major neural growth factors suitable for peripheral nerve gene delivery, as they can provide a suitable microenvironment for the survival and axonal growth of BMSCs. In a study by Zhang et al[93] in 2015, BMSCs transfected with BDNF and CNTF were used for the treatment of rat sciatic nerve injuries. The results showed that BDNF- and CNTF-transfected BMSCs combined with nerve transplantation significantly improved the sciatic nerve function index, promoted the recovery of muscle activity, and increased the thickness of regenerating nerve myelin sheaths. This indicates that this approach is effective in promoting axonal growth and facilitates nerve repair in PNI. In another study[94], BDNF was successfully transfected into BMSCs using gene engineering technology, and the transfected BMSCs were combined with decellularized allogeneic nerve grafts to repair peripheral nerve defects. The results showed a significant improvement in the repair effectiveness of the nerve grafts and the morphology of the injured nerves. Gene-modified MSCs have multiple potentials in the treatment of PNI. However, since gene therapy is still in the experimental stage, its application in clinical settings requires addressing numerous challenges, such as the selection of diverse target genes, stable expression of target genes in the host, combination therapy with multiple genes, and ethical considerations.

Unlike the central nervous system, the peripheral nervous system has the ability for self-regeneration and repair after injury. However, this endogenous repair is limited, and extensive nerve damage cannot be fully repaired. Cell therapy is considered to be an important direction for future medical development, and in recent years, the field of PNI neural regeneration and repair has made vigorous progress, with enormous market potential and clinical application value. BMSCs have the advantages of abundant sources, easy and simple procurement, being easy to isolate and cultivate, and the potential for rapid expansion under certain conditions. Additionally, autologous BMSCs transplantation avoids ethical issues and immune rejection, offering broad prospects for PNI treatment. In this paper, we have reviewed the current biological characteristics of BMSCs related to PNI, summarized the mechanisms by which BMSCs promote PNI neural regeneration and repair, and explored various application methods of BMSCs in PNI, confirming the potential of BMSCs in treating PNI.

However, most research on BMSCs transplantation for PNI intervention is still in the pre-clinical stage and has not yet had significant implications for clinical practice, and there are also certain limitations, such as the lack of specific surface markers on BMSCs[21], which poses some difficulties in identifying cultured BMSCs, and the lack of standardized treatment regimens, where many times after BMSC transplantation, the survival rate is not high, and the proportion of differentiation into neurons is low, resulting in unsatisfactory nerve repair effects. There are also safety issues with BMSC transplantation, where inducers transplanted into the human body along with BMSCs can cause varying degrees of damage to the human body, and there is a possibility of BMSCs transforming into malignant tumors[95]. These issues that need to be resolved point to a certain direction for future research, such as establishing standardized procedures for the extraction, identification, and cultivation of BMSCs; further clarifying the therapeutic mechanisms of BMSCs; and observing the safety of BMSCs applications. The choice of BMSCs application methods in PNI, such as direct transplantation, tissue engineering, and gene engineering, also requires further investigation. In conclusion, BMSCs transplantation offers broad prospects for PNI treatment, but significant theoretical and experimental research are needed before its clinical application can be fully developed and perfected.

Xiong-Fei Zou, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.

Bao-Zhong Zhang, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China. nc.hcmup@hzbgnahz.

Wen-Wei Qian, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.

Florence Mei Cheng, College of Nursing, The Ohio State University, Ohio, OH 43210, United States.

Visit link:
Bone marrow mesenchymal stem cells in treatment of peripheral nerve ...

Read More...

Stem Cell Therapy Mexico: R3 Stem Cell Unveils Innovative and Affordable Non-Invasive Solutions – openPR

September 4th, 2024 2:42 am

Stem Cell Therapy Mexico: R3 Stem Cell Unveils Innovative and Affordable Non-Invasive Solutions  openPR

The rest is here:
Stem Cell Therapy Mexico: R3 Stem Cell Unveils Innovative and Affordable Non-Invasive Solutions - openPR

Read More...

Inhibitor Therapeutics, Inc. Provides Update on its Clinical Development Plan

August 25th, 2024 2:46 am

TAMPA, Fla., Aug. 22, 2024 (GLOBE NEWSWIRE) -- Inhibitor Therapeutics, Inc. ("Inhibitor") (OTCQB: INTI) today provided an update on development efforts for its itraconazole formulation for the treatment of Basal Cell Carcinomas in patients with Basal Cell Carcinoma Nevus Syndrome, otherwise known as Gorlin Syndrome. Inhibitor has allied with The Gorlin Syndrome Alliance and sought supportive guidance from the accomplished and highly-experienced members of its Scientific Advisory Board in efforts to pursue an expeditious path to acceptance by the U.S. Food and Drug Administration (FDA).

Go here to read the rest:
Inhibitor Therapeutics, Inc. Provides Update on its Clinical Development Plan

Read More...

Firefly Neuroscience, an AI-Driven Brain Health Company, to Host Shareholder Update Call on September 4th

August 25th, 2024 2:46 am

TORONTO, Aug. 22, 2024 (GLOBE NEWSWIRE) -- Firefly Neuroscience, Inc. (“Firefly,” “we,” or the “Company”) (NASDAQ: AIFF), an Artificial Intelligence (“AI”) technology company developing innovative neuroscientific solutions that improve brain health outcomes for patients with mental illnesses and neurological disorders, today announced management will host a shareholder update call on Wednesday, September 4, 2024 at 5:00 PM Eastern Time.

View original post here:
Firefly Neuroscience, an AI-Driven Brain Health Company, to Host Shareholder Update Call on September 4th

Read More...

Tevogen Bio Secures $6 Million Series C Preferred Stock Investment

August 25th, 2024 2:46 am

WARREN, N.J., Aug. 22, 2024 (GLOBE NEWSWIRE) -- Tevogen Bio Holdings Inc. (“Tevogen” or “Tevogen Bio”) (Nasdaq: TVGN), a clinical-stage specialty immunotherapy biotech pioneer developing off-the-shelf, genetically unmodified T cell therapeutics in oncology, neurology, and virology, has entered into a definitive agreement for a $6.0 million Series C Preferred Stock investment with The Patel Family, LLP.

Here is the original post:
Tevogen Bio Secures $6 Million Series C Preferred Stock Investment

Read More...

PharmAla Launches MDMA Clinical Trial Tool for Researchers

August 25th, 2024 2:46 am

TORONTO, Aug. 22, 2024 (GLOBE NEWSWIRE) -- PharmAla Biotech Holdings Inc. (“PharmAla” or the “Company”) (CSE: MDMA) (OTC:MDXXF), a biotechnology company focused on the research, development, and manufacturing of LaNeo™ MDMA and novel derivatives of MDMA (MDXX class molecules), is pleased to announce that it has created a new tool for researchers, providing direct access to its Chemistry, Manufacturing and Control (CMC) data – as well as its investigator’s brochure – to qualified researchers.

Visit link:
PharmAla Launches MDMA Clinical Trial Tool for Researchers

Read More...

Pfizer and BioNTech Receive U.S. FDA Approval & Authorization for Omicron KP.2-adapted COVID-19 Vaccine

August 25th, 2024 2:46 am

NEW YORK and MAINZ, GERMANY, August 22, 2024 — Pfizer Inc. (NYSE: PFE, “Pfizer”) and BioNTech SE (Nasdaq: BNTX, “BioNTech”) today announced that the U.S. Food and Drug Administration (“FDA”) has approved the supplemental Biologics License Application for individuals 12 years of age and older (COMIRNATY® (COVID-19 Vaccine, mRNA)), and granted emergency use authorization for individuals 6 months through 11 years of age (Pfizer-BioNTech COVID-19 Vaccine) of the companies’ Omicron KP.2-adapted 2024-2025 Formula COVID-19 vaccine. This season’s vaccine is for use as a single dose for most individuals 5 years of age and older. Individuals 5 years of age and older with certain kinds of immunocompromise previously vaccinated with Pfizer and BioNTech COVID-19 vaccines or children under the age of 5 who have not already completed a three-dose series with previous formulas of a COVID-19 vaccine may be eligible to receive additional doses.

Read more here:
Pfizer and BioNTech Receive U.S. FDA Approval & Authorization for Omicron KP.2-adapted COVID-19 Vaccine

Read More...

Page 30«..1020..29303132..4050..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick