header logo image


Page 272«..1020..271272273274..280290..»

BeiGene Announces the Approval in China of BLINCYTO (Blinatumomab) for Injection for Adult Patients with Relapsed or Refractory B-Cell Precursor Acute…

December 12th, 2020 7:56 am

BEIJING & CAMBRIDGE, Mass.--(BUSINESS WIRE)--BeiGene, Ltd. (NASDAQ: BGNE; HKEX: 06160), a commercial-stage biotechnology company focused on developing and commercializing innovative medicines worldwide, today announced that the China National Medical Products Administration (NMPA) has approved BLINCYTO (blinatumomab) for injection for the treatment of adult patients with relapsed or refractory (R/R) B-cell precursor acute lymphoblastic leukemia (ALL). The biologics license application (BLA) had been submitted by Amgen and received priority review by the Center for Drug Evaluation (CDE) of the NMPA. Developed by Amgen and licensed to BeiGene in China under a strategic collaboration commenced earlier this year, this is the first approval for BLINCYTO in China and BeiGenes first product licensed from Amgen to be newly approved. With this approval, BLINCYTO has become the first bispecific immunotherapy approved in China.

This approval of BLINCYTO provides us with an opportunity to offer adult patients in China with relapsed or refractory B-cell precursor ALL the first approved immunotherapy treatment for their disease. BLINCYTO is the first immunotherapy to demonstrate superior overall survival versus chemotherapy, more than doubling patients chances for survival, when used in first salvage R/R ALL in studies outside of China, commented Xiaobin Wu, Ph.D., General Manager of China and President of BeiGene. We are working to ensure BLINCYTO is available to patients in China as soon as possible. Our commercial organization of more than 1,500 people in China is excited to add BLINCYTO to our product portfolio, which now includes six approved cancer treatments.

The approval of BLINCYTO was based on results from the Phase 3 trial (NCT03476239) in China evaluating the efficacy and safety of BLINCYTO in adult patients with Philadelphia-negative R/R B-cell precursor ALL. Results of the interim analysis of 67 patients showed that the efficacy results in Chinese subjects were generally consistent with those in the global and Japan studies in subjects with Philadelphia-negative R/R ALL. The complete response/complete response with partial recovery of blood cells (CR/CRh) rate within two cycles of BLINCYTO treatment (the primary endpoint) was 47.8% (32 of 67 subjects; 95% CI: 35.4, 60.3). The median overall survival time was 9.6 months (95% CI: 6.4, not estimable). The safety profile observed for Chinese subjects in this study was consistent with that observed in the global studies evaluating BLINCYTO in R/R ALL. No new safety risks were identified based on these interim analyses of adverse events in Chinese subjects.

Our collaboration with BeiGene is advancing Amgens oncology pipeline for patients with significant unmet medical needs. We are confident the approval of BLINCYTO in China has the potential to make a meaningful difference to adult patients with R/R B-cell precursor acute lymphoblastic leukemia, said My Linh Kha, Vice President & General Manager, Amgen Japan Asia-Pacific (JAPAC). We are deeply committed to continuing to bring therapeutic options to treat debilitating cancers for patients in China, while also actively supporting the Governments focus on healthy aging through innovative products and initiatives designed to prevent chronic diseases, such as cardiovascular disease and fragility fracture.

About Acute Lymphoblastic Leukemia (ALL)

Acute lymphoblastic leukemia (ALL), also known as acute lymphocytic leukemia, is a rapidly progressing cancer of the blood and bone marrow that occurs in both adults and children1. ALL accounts for approximately 20% of all adult leukemia, and in China there were an estimated 82,607 new cases of leukemia in 20182,3. In children, the relapse rate of ALL is nearly 10%, while in adults the relapse rate is closer to 50%4.

About BLINCYTO (blinatumomab)

BLINCYTO is a bispecific CD19-directed CD3 T cell engager (BiTE) immuno-oncology molecule that binds specifically to CD19 expressed on the surface of cells of B-lineage origin and CD3 expressed on the surface of T cells.

BiTE molecules are a type of immuno-oncology therapy being investigated for fighting cancer by helping the body's immune system to detect and target malignant cells. The modified molecules are designed to engage two different targets simultaneously, thereby juxtaposing T cells (a type of white blood cell capable of killing other cells perceived as threats) to cancer cells. BiTE immuno-oncology molecules help place the T cells within reach of the targeted cell, with the intent of allowing T cells to inject toxins and trigger the cancer cell to die (apoptosis). BiTE immuno-oncology therapies are currently being investigated for their potential to treat a wide variety of cancers.

BLINCYTO was granted breakthrough therapy and priority review designations by the U.S. Food and Drug Administration and is approved in the U.S. for the treatment of:

In the European Union (EU), BLINCYTO is indicated as monotherapy for the treatment of:

In China, BLINCYTO is indicated for the treatment of adult patients with relapsed or refractory B-cell precursor ALL.

Important U.S. Safety Information

WARNING: CYTOKINE RELEASE SYNDROME and NEUROLOGICAL TOXICITIES

Contraindications

BLINCYTO is contraindicated in patients with a known hypersensitivity to blinatumomab or to any component of the product formulation.

Warnings and Precautions

Adverse Reactions

Dosage and Administration Guidelines

Please see full Prescribing Information and medication guide for BLINCYTO at http://www.BLINCYTO.com.

About BeiGene

BeiGene is a global, commercial-stage biotechnology company focused on discovering, developing, manufacturing, and commercializing innovative medicines to improve treatment outcomes and access for patients worldwide. Our 4,700+ employees in China, the United States, Australia, Europe, and elsewhere are committed to expediting the development of a diverse pipeline of novel therapeutics. We currently market two internally discovered oncology products: BTK inhibitor BRUKINSA (zanubrutinib) in the United States and China, and anti-PD-1 antibody tislelizumab in China. We also market or plan to market in China additional oncology products licensed from Amgen Inc., Celgene Logistics Srl, a Bristol Myers Squibb (BMS) company, and EUSA Pharma. To learn more about BeiGene, please visit http://www.beigene.com and follow us on Twitter at @BeiGeneUSA.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws, including statements regarding the commercialization and potential benefits of BLINCYTO; and BeiGenes plans and expectations for the commercialization of its and Amgens other oncology products and pipeline assets. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including BeiGene's ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; BeiGene's ability to achieve commercial success for its marketed products and drug candidates, if approved; BeiGene's ability to obtain and maintain protection of intellectual property for its technology and drugs; BeiGene's reliance on third parties to conduct drug development, manufacturing and other services; BeiGenes limited operating history and BeiGene's ability to obtain additional funding for operations and to complete the development and commercialization of its drug candidates; the impact of the COVID-19 pandemic on the Companys clinical development, commercial and other operations, as well as those risks more fully discussed in the section entitled Risk Factors in BeiGenes most recent quarterly report on Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in BeiGene's subsequent filings with the U.S. Securities and Exchange Commission. All information in this press release is as of the date of this press release, and BeiGene undertakes no duty to update such information unless required by law.

BLINCYTO and BiTE are registered trademarks of Amgen Inc.

1 Mayo Clinic. Acute lymphocytic leukemia. https://www.mayoclinic.org/diseases-conditions/acute-lymphocytic-leukemia/symptoms-causes/syc-20369077

2 Baljevic M, Jabbour E, O'Brien S, Kantarjian HM (2016). "Acute Lymphoblastic Leukemia".

3 Global Cancer Observatory. https://gco.iarc.fr/today/data/factsheets/populations/160-china-fact-sheets.pdf

4 Leukaemia Care. Relapse in Acute Lymphoblastic Leukaemia (ALL). https://media.leukaemiacare.org.uk/wp-content/uploads/Relapse-in-Acute-Lymphoblastic-Leukaemia-ALL-Web-Version.pdf

Read this article:
BeiGene Announces the Approval in China of BLINCYTO (Blinatumomab) for Injection for Adult Patients with Relapsed or Refractory B-Cell Precursor Acute...

Read More...

Flintshire youngster goes the extra mile to raise funds for Lymphoma Action | The Leader – LeaderLive

December 12th, 2020 7:56 am

A FLINTSHIRE superhero is raising hundreds of pounds for a cause close to her heart in a bid to 'turn a negative into something positive'.

In 2019, Lauren Claire Pringle was diagnosed with Non-Hodgkins Lymphoma and began a course of gruelling treatment.

However, since finding out it has not gone completely, Lauren must have more chemotherapy and eventually a stem cell transplant.

Daughter Lily Pringle-Purcell decided to play her part and raise funds for a charity that has helped their family, and others going through similar.

The seven-year-old set out a target to raise 1,000 for Lymphoma Action and after shaving her mother's hair off and completing a five-mile walk, she has since raised over 800 of her target.

But the fundraising will not stop there.

Mum Lauren told the Leader: "She's done really well, I'm so proud of her.

"She's a fabulous little girl, really caring and always thinking about other people."

Anyone wishing to donate can do so online at https://www.justgiving.com/fundraising/laurenandlily.

The fundraising page reads: "My daughter has been raising money for Lymphoma Action. She has raised 720 so far on her Just Giving page. She shaved my head to raise money and also we did sponsored walk today of 5 miles to raise more money. She wanted to do this after my diagnosis last year of lymphoma and ongoing treatment.

"My name is Lily and I am 7 and in September 2019 my mum Lauren was diagnosed with Non Hodgkins Lymphoma. She had to have 6 cycles of chemotherapy and 12 sessions of radiotherapy. Recently we found out it hasnt all gone and she needs to have more chemotherapy and eventually a stem cell transplant. This has been really hard on us as a family and we want to try and turn a negative situation into something positive and raise as much money and awareness as we can to hopefully find better treatments and help other families going through the same thing.

"I want to do a sponsored walk and a sponsored bike ride and I am thinking of other things I can do to try and raise as much money as I can.

"If anyone has any ideas then please let me know! Thankyou all so much! Lots of Love Lily and Lauren."

Read the original:
Flintshire youngster goes the extra mile to raise funds for Lymphoma Action | The Leader - LeaderLive

Read More...

Meat-Tech Agrees to Acquire Cultured Fat Pioneer ‘Peace of Meat’ – PRNewswire

December 12th, 2020 7:56 am

NESSZIONA,Israel, Dec. 8, 2020 /PRNewswire/ -- Meat-Tech 3D Ltd. (TASE: MEAT), today announced that it has signed an agreement to acquire 100% of the share capital of Peace of Meat PV, a pioneering Belgian producer of cultured avian products, for EUR 15 million in a combination of cash and Meat-Tech ordinary shares. The Company believes that it will be able to leverage Peace of Meat's technologies, including through novel hybrid food products, to expedite market entry while Meat-Tech develops an industrial process for cultivating and producing real meat using 3D bioprinting technology, without harming animals. The acquisition is expected to close in the coming weeks, subject to customary closing conditions.

Peace of Meat has developed a proprietary, stem-cell-based bioreactor technology for cultivating animal fats from chicken and ducks, without harming animals. It has conducted a number of taste tests, demonstrating the potential that its cultured fat has to enhance the taste of plant-based protein products. The technology's first expected application is in hybrid food products, combining plant-based protein with cultured animal fat, designed to provide meat analogues with qualities of "meatiness" (taste and texture) closer to that of conventional meat products. Meat-Tech estimates that the first hybrid products based on Peace of Meat technology could hit the market as early as 2022.

Pursuant to the acquisition agreement, Meat-Tech will pay half of the consideration immediately, with the payment of the balance subject to Peace of Meat complying with preset technological milestones over a period of two years, that were designed to scale up cultured fat production capabilities in preparation for market entry. To that end, it was agreed that Peace of Meat's management will continue in place to lead the development process.

This acquisition is consistent with Meat-Tech's growth strategy, aiming to streamline development processes and expand the Company's product range to penetrate cultured meat technology markets as quickly as possible. Meat-Tech is working to create synergy and added value for food manufacturers in the advanced production of cultured meat, while sustaining animal welfare and meeting the growing global demand for meat.

Sharon Fima, Meat-Tech's CEO: "Meat-Tech's novel technology for producing meat using 3D printing is gaining increasing international recognition. Boosted by our acquisition strategy, we believe we can turn Meat-Tech into a leading global center and home for innovative and groundbreaking cell-based food solutions that are both healthy and environmentally friendly. The combination of Peace of Meat's human capital and technology make this acquisition a significant step in that direction. I am pleased that both management teams share a common vision and strategy, and can join forces to advance the development of cultured food products with the potential to create real alternatives in the global meat market."

David Brandes and Dirk von Heinrichshorst, Co-Founders of Peace of Meat:"In an industry that is working towards a kinder, more sustainable planet, joining forces makes us stronger together. Peace of Meat has developed a powerful system for upscaled cultured biomass production and together with Meat-Tech we intend to accelerate product development toward commercialization.

"While Peace of Meat's core activity remains focused on the production of tasty, cultured fat as a B2B ingredient for meat alternatives, we see tremendous opportunity in jointly building a leading food-tech enterprise with Meat-Tech, based on a cellular platform.

"As entrepreneurs, we are excited about this acquisition as it poses a novel way of building and growing a company while significantly increasing the prospects of launching our product into the market."

About Peace of Meat:

Peace of Meat was established in Belgium in 2019 and is developing cultured chicken fat directly from animal cells without the need to grow or kill animals. The company believes that its innovative technology has the potential to support an industrial process for the production of cultured chicken fat. Peace Of Meat has entered into a number of scientific and commercial collaborations, in the process of positioning itself as a future B2B provider, with the potential to cover the entire value chain and to accelerate research and production processes in the industry, and has conducted taste tests for hybrid products it has developed.

About Meat-Tech:

Meat-Tech is developing a novel biological printing process designed to create living, edible meat tissue using cellular agriculture. Meat-Tech is developing technologies, processes and machines for cultivating, producing, and printing cultured meat. The company believes that it was the first in the world to use edible biological inks to 3D-print living tissue made up of various cells of bovine origin. The Company has the technology, knowledge and experience in applying tissue engineering practices for producing fat and muscle tissue for food consumption, as well as the ability to print, using a 3D bioprinter, a combination of live animal cells, growth factors and biological materials to produce living tissues that mimic the characteristics of natural tissue.

Forward-Looking Statements:

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, but not limited to, statements regarding the Company's development of the next generation of cultured meat food products by leveraging 3D digital printing technology, Peace of Meat's development of cultured fat products, the expected closing of the Company's acquisition of Peace of Meat and the expected post-closing synergies of the combined companies. These forward-looking statements include information about possible or assumed future results of the Company's business, financial condition, results of operations, liquidity, plans and objectives. In some cases, you can identify forward-looking statements by terminology such as "believe," "may," "estimate," "continue," "anticipate," "intend," "should," "plan," "expect," "predict," "potential," or the negative of these terms or other similar expressions. Forward-looking statements are based on information the Company has when those statements are made or management's current expectation and are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in or suggested by the forward-looking statements. Actual results could differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent management's estimates as of the date of this press release. Except as required by law, the Company undertakes no obligation to update publicly any forward-looking statements after the date of this press release to conform these statements.

COMPANY / INVESTOR CONTACT:Eran Gabay, Partner, Director of Strategy Gelbart-Kahana Investor Relations: [emailprotected]

SOURCE Meat-Tech 3D Ltd.

Read more here:
Meat-Tech Agrees to Acquire Cultured Fat Pioneer 'Peace of Meat' - PRNewswire

Read More...

Stem Cell Manufacturing Market Size, Overview with Detailed Analysis, Competitive landscape, Forecast to 2027 – Cheshire Media

December 12th, 2020 7:56 am

What are the emerging opportunities in the Stem Cell Manufacturing Market?

Currently, significant business sectors are going through changes. This has prompted huge benefits for a few and misfortunes for other people. To make the most out of the emerging chances, you can exploit the most granted Stem Cell Manufacturing market report. It offers nitty-gritty experiences into the market. This will doubtlessly manage their organizations in creating the following move over the impending industry quarters.

It must be noticed that the Stem Cell Manufacturing market is encountering unexpected ascent in reception by numerous new players (from MNCs to SMEs). It is because of the way that even with the market turbulences the Global market came out with solid numbers. With the new business running into the market, it is basic to stand apart from the group. The customers can undoubtedly accomplish this utilizing the means referenced in the Stem Cell Manufacturing market report.

What type of investigation is done in the Stem Cell Manufacturing market report?

Analysis of various socioeconomics for venturing into the market is important as it will hugely affect the development throughout the following coming years. The Stem Cell Manufacturing market report is planned subsequent to doing long periods of exploration and the information sifted through in the report was gathered from dependable sources, for example, government sites.

As the market is gigantic, it turns out to be imperative to comprehend the market from its underlying foundations. Get a superior perspective on the Stem Cell Manufacturing market through the data referenced in the committed areas of the report. With this, the customers likewise get a perspective on the business structure of the contenders.

What are the reasons that impact the growth of the Stem Cell Manufacturing Market?

As of late, the advanced transformation has pushed the associations in changing into a computerized business for coming to the intended interest group present over the globe. The Stem Cell Manufacturing market report shares the significance of neighborhood language, partners, and political situation that will drive the Global market higher than ever.

With the best possible comprehension of the Stem Cell Manufacturing market, the associations can hop onto the open doors that will bring productive outcomes. The customers can exploit the biggest in-house information base for taking the most effective actions. Likewise, the Stem Cell Manufacturing market report has committed segments covering the insights concerning the current market players. With the information on how they function and accomplish their objectives, your business can likewise be formed as needs be.

What type of analysis short-term or long-term is added in the Stem Cell Manufacturing Market report?

This is important to sidestep any negative circumstances that may affect the development of the organizations. In addition, the associations need to comprehend Porters five powers that shape the market elements. In the event that the customers wish to add or eliminate the names of the organizations, it tends to be done, to suit the desires for the clients, for accomplishing long-haul objectives. SWOT investigation helps in uncovering the qualities and shortcomings of the business. The PESTLE investigation helps in checking the outer elements that shape the market overall. Subsequently, for making a name in the Stem Cell Manufacturing market, it gets important to get thought from both SWOT and PESTLE investigations.

The Stem Cell Manufacturing market report likewise brushes over the significance of language and partners for the smooth working of the associations. Thusly, the customers are stacked with data and steps and are prepared to move into the market for accomplishing the ideal objectives.

About Us:

Verified Market Reports is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Reports provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768

Email: [emailprotected]

See original here:
Stem Cell Manufacturing Market Size, Overview with Detailed Analysis, Competitive landscape, Forecast to 2027 - Cheshire Media

Read More...

Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American…

December 12th, 2020 7:56 am

NEW YORK--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket), a clinical-stage company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders, today presents updated interim data from its Fanconi Anemia (FA) and Leukocyte Adhesion Deficiency-I (LAD-I) programs at the 62nd American Society of Hematology (ASH) Annual Meeting. The data are highlighted in two oral presentations.

We are highly pleased with the data presented at ASH demonstrating ongoing evidence of efficacy and durability using Process B in both FA and LAD-I as we move towards potential registration, said Gaurav Shah, M.D., Chief Executive Officer and President of Rocket. Follow-up data from the Phase 1 and 2 trials for FA continue to support RP-L102 as a potential hematologic treatment option in the absence of cytotoxic conditioning. In five of the seven patients treated as of October 2020, there was evidence of engraftment. In addition, stabilization of peripheral blood counts in two of the three patients with at least 12-month follow-up, which declined substantially in these patients prior to gene therapy, suggests a halt in bone marrow failure progression. We look forward to reporting longer-term follow-up on these patients in the first half of 2021.

Dr. Shah continued, Additionally, we continue to see encouraging evidence of efficacy for RP-L201 for the treatment of LAD-I. Patients have shown sustained CD18 expression of 23% to 40%, far exceeding the 4-10% threshold associated with survival into adulthood. These data, on top of our exciting results from our lentiviral program for PKD, show our steady progress across three of our five gene therapy programs. We are proud of this progress and are committed to advancing our investigational gene therapies through development for patients and families facing these devastating disorders.

Key findings and details for each presentation are highlighted below. To access the presentations at the conclusion of the oral presentation, please visit: https://www.rocketpharma.com/ash-presentations/

Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102The data presented in the oral presentation are from seven of the nine patients treated as of the cutoff date of October 2020 in both the U.S. Phase 1 and global Phase 2 studies of RP-L102 for FA. Seven patients had follow-up data of at least 2-months, and three of the seven patients had been followed for 12-months or longer. Key highlights from the presentation include:

Presentation Details:Title: Gene Therapy for Fanconi Anemia, Complementation Group A: Updated Results from Ongoing Global Clinical Studies of RP-L102Session Title: Gene Editing, Therapy and Transfer IPresenter: Agnieszka Czechowicz, M.D., Ph.D., Assistant Professor of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of MedicineSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:15 p.m. (Pacific Time)

Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1The data presented in the oral presentation are from three pediatric patients with severe LAD-I, as defined by CD18 expression of less than 2%. The patients were treated with RP-L201, Rockets ex-vivo lentiviral gene therapy candidate. Patient L201-003-1001 was 9-years of age at enrollment and had been followed for 12-months as of a cutoff date of November 2020. Patient L201-003-1004 was 3-years of age at enrollment and had been followed for over 6-months. Patient L201-003-2006 was 7-months of age at enrollment and was recently treated with RP-L201. Key highlights from the presentation include:

Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.

Presentation Details:Title: Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1Session Title: Gene Editing, Therapy and Transfer IPresenter: Donald Kohn, M.D., Professor of Microbiology, Immunology and Molecular Genetics, Pediatrics (Hematology/Oncology), Molecular and Medical Pharmacology, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los AngelesSession Date: Monday, December 7, 2020Session Time: 11:30 a.m. - 1:00 p.m. (Pacific Time)Presentation Time: 12:30 p.m. (Pacific Time)

Conference Call DetailsRocket management will host a conference call and webcast today December 7, at 6:00 p.m. EST. To access the call and webcast, please click here. The webcast replay will be available on the Rocket website following the completion of the call.

Investors may listen to the call by dialing (866) 866-1333 from locations in the United States or +1 (404) 260-1421 from outside the United States. Please refer to conference ID number 50038102

About Fanconi AnemiaFanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Leukocyte Adhesion Deficiency-ISevere Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

About Rocket Pharmaceuticals, Inc.Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) (Rocket) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, Pyruvate Kinase Deficiency (PKD) a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia and Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com.

Rocket Cautionary Statement Regarding Forward-Looking StatementsVarious statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding its guidance for 2020 in light of COVID-19, the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Quarterly Report on Form 10-Q for the quarter ended September 30, 2020, filed November 6, 2020 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

The rest is here:
Rocket Pharmaceuticals Presents Positive Clinical Data from its Fanconi Anemia and Leukocyte Adhesion Deficiency-I Programs at the 62nd American...

Read More...

Data Evaluating Tafasitamab with and without Lenalidomide in Combination with R-CHOP in Patients with DLBCL Presented at ASH 2020 – Business Wire

December 12th, 2020 7:56 am

WILMINGTON, Del. & PLANEGG/MUNICH, Germany--(BUSINESS WIRE)--Incyte (Nasdaq:INCY) and MorphoSys AG (FSE: MOR; Prime Standard Segment; MDAX & TecDAX; NASDAQ:MOR) announce that preliminary data from firstMIND, the ongoing Phase 1b, open-label, randomized study on the safety and efficacy of tafasitamab or tafasitamab plus lenalidomide in addition to R-CHOP for patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) were presented today during the 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Additionally, a long-term subgroup analysis of the L-MIND study investigating tafasitamab combined with lenalidomide in patients with relapsed or refractory DLBCL was also presented at ASH.

The preliminary results of firstMIND indicate that tafasitamab plus lenalidomide in addition to R-CHOP shows an acceptable tolerability profile. Toxicities appear to be similar to what is expected with R-CHOP alone or in combination with lenalidomide. Serious or severe neutropenia and thrombocytopenia events (grade 3 or higher) were more frequent in the tafasitamab plus lenalidomide arm. The incidence of febrile neutropenia was comparable between both arms and the average relative dose intensity of R-CHOP was maintained in both arms. Interim response assessments after three cycles were available for 45 patients. In both arms combined, 41/45 (91.1%) of patients had an objective response as per Lugano 20141.

The preliminary data from this ongoing study in first-line DLBCL warrant further investigation. To that end, MorphoSys and Incyte plan to initiate frontMIND, a Phase 3 trial evaluating tafasitamab plus lenalidomide in combination with R-CHOP compared to R-CHOP alone as first-line treatment for patients with newly diagnosed DLBCL.

The initial results of the firstMIND study, shared today at ASH, as well as the long-term analyses from L-MIND, underscore the potential of tafasitamab as a combination therapeutic for patients with DLBCL, where there remains a significant unmet need. Along with our partners at MorphoSys, we are pleased to be moving forward with the initiation of a Phase 3 study in 2021, said Steven Stein, M.D., Chief Medical Officer at Incyte.

The preliminary firstMIND study results mark another important step as we explore the potential of tafasitamab as a backbone therapy, said Dr. Malte Peters, Chief Research and Development Officer at MorphoSys. Given the data available to date, including data from the L-MIND study, we believe that the mechanism of action, efficacy and safety profile of tafasitamab have the potential to make it a preferred combination partner as we seek to transform the standard of care in DLBCL. We are committed to developing innovative therapies to battle this aggressive disease for the benefit of patients with DLBCL, and look forward to beginning the planned frontMIND in the first half of 2021.

In addition to the firstMIND data presented today, the long-term L-MIND analyses showed that treatment with tafasitamab plus lenalidomide resulted in durable responses after 2 years of follow-up. At the time of analysis, patients with complete responses (CR) continued to experience durable treatment responses, including long duration of response (DoR) and overall survival (OS). The data also showed that tafasitamab plus lenalidomide taken for 12 cycles, followed by tafasitamab until progression, did not result in any unexpected safety signals2.

In July 2020, the FDA approved Monjuvi (tafasitamab-cxix), a humanized Fc-modified cytolytic CD19-targeting monoclonal antibody, in combination with lenalidomide for the treatment of adult patients with relapsed or refractory DLBCL not otherwise specified, including DLBCL arising from low grade lymphoma, and who are not eligible for autologous stem cell transplant (ASCT). This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s)3.

The FDA decision represented the first approval of a second-line treatment for adult patients with DLBCL who progressed during or after first-line therapy.

About Diffuse Large B-cell Lymphoma (DLBCL)

DLBCL is the most common type of non-Hodgkin lymphoma in adults worldwide4, characterized by rapidly growing masses of malignant B-cells in the lymph nodes, spleen, liver, bone marrow or other organs. It is an aggressive disease with about one in three patients not responding to initial therapy or relapsing thereafter5. In the United States each year, approximately 10,000 patients are diagnosed with relapsed or refractory DLBCL who are not eligible for autologous stem cell transplant (ASCT)6,7,8.

About firstMIND

The firstMIND (NCT04134936) trial is a Phase 1b, randomized study of tafasitamab + R-CHOP (Arm A) or tafasitamab + lenalidomide + R-CHOP (Arm B) in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL). The study includes a safety run-in phase and a main phase. In the safety run-in phase, 24 patients were enrolled. The primary objective is to assess safety; secondary objectives include objective response rate, PET negative complete response (PET-CR) rate at end of treatment, progression-free survival, event-free survival, long-term safety, pharmacokinetics and immunogenicity of tafasitamab.

About Tafasitamab

Tafasitamab is a humanized Fc-modified cytolytic CD19 targeting monoclonal antibody. In 2010, MorphoSys licensed exclusive worldwide rights to develop and commercialize tafasitamab from Xencor, Inc. Tafasitamab incorporates an XmAb engineered Fc domain, which mediates B-cell lysis through apoptosis and immune effector mechanism including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).

Monjuvi (tafasitamab-cxix) is approved by the U.S. Food and Drug Administration in combination with lenalidomide for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) not otherwise specified, including DLBCL arising from low grade lymphoma, and who are not eligible for autologous stem cell transplant (ASCT). This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s).

In January 2020, MorphoSys and Incyte entered into a collaboration and licensing agreement to further develop and commercialize tafasitamab globally. Monjuvi is being co-commercialized by Incyte and MorphoSys in the United States. Incyte has exclusive commercialization rights outside the United States.

A marketing authorization application (MAA) seeking the approval of tafasitamab in combination with lenalidomide in the EU has been validated by the European Medicines Agency (EMA) and is currently under review for the treatment of adult patients with relapsed or refractory DLBCL, including DLBCL arising from low grade lymphoma, who are not candidates for ASCT.

Tafasitamab is being clinically investigated as a therapeutic option in B-cell malignancies in a number of ongoing combination trials.

Monjuvi is a registered trademark of MorphoSys AG.

XmAb is a registered trademark of Xencor, Inc.

Important Safety Information

What are the possible side effects of MONJUVI?

MONJUVI may cause serious side effects, including:

The most common side effects of MONJUVI include:

These are not all the possible side effects of MONJUVI.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

Before you receive MONJUVI, tell your healthcare provider about all your medical conditions, including if you:

You should also read the lenalidomide Medication Guide for important information about pregnancy, contraception, and blood and sperm donation.

Tell your healthcare provider about all the medications you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

Please see the full Prescribing Information for Monjuvi, including Patient Information, for additional Important Safety Information.

About Incyte

Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.

About MorphoSys

MorphoSys (FSE & NASDAQ: MOR) is a commercial-stage biopharmaceutical company dedicated to the discovery, development and commercialization of exceptional, innovative therapies for patients suffering from serious diseases. The focus is on cancer. Based on its leading expertise in antibody, protein and peptide technologies, MorphoSys, together with its partners, has developed and contributed to the development of more than 100 product candidates, of which 27 are currently in clinical development. In 2017, Tremfya, developed by Janssen Research & Development, LLC and marketed by Janssen Biotech, Inc., for the treatment of plaque psoriasis, became the first drug based on MorphoSys antibody technology to receive regulatory approval. In July 2020, the U.S. Food and Drug Administration (FDA) granted accelerated approval of MorphoSys proprietary product Monjuvi (tafasitamab-cxix) in combination with lenalidomide in patients with a certain type of lymphoma.

Headquartered near Munich, Germany, the MorphoSys group, including the fully owned U.S. subsidiary MorphoSys US Inc., has ~500 employees. More information at http://www.morphosys.com or http://www.morphosys-us.com.

Monjuvi is a registered trademark of MorphoSys AG.

Tremfya is a registered trademark of Janssen Biotech, Inc.

Incyte Forward-Looking Statements

Except for the historical information set forth herein, the matters set forth in this press release - including statements about: plans to initiate frontMIND, a Phase 3 trial evaluating tafasitamab plus lenalidomide in combination with R-CHOP compared to R-CHOP alone as first-line treatment for patients with newly diagnosed DLBC; whether the mechanism of action, efficacy and safety profile of tafasitamab have the potential to make it a preferred or ideal combination partner in the treatment of DLBCL and, whether it will change or become the standard of care for the treatment of DLBCL; whether and when, if ever, confirmatory trials of tafasitamab will result in the conditional FDA approval of tafasitamab in the conditionally approved indication described above becoming a final approval; whether and when, if ever, the EMA will approve the filed MAA for tafasitamab; and additional development of tafasitamab, including in B-cell malignancies - contain predictions, estimates and other forward-looking statements.

These forward-looking statements are based on the Incytes current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by the FDA or the EMA; clinical and commercial supply of products in development or being commercialized; Incytes dependence on its relationships with its collaboration partners; the efficacy or safety of Incytes products and the products of its collaboration partners; the acceptance of Incytes products and the products of its collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in Incytes reports filed with the Securities and Exchange Commission, including its quarterly report on Form 10-Q for the quarter ended September 30, 2020. Incyte disclaims any intent or obligation to update these forward-looking statements.

MorphoSys Forward-Looking Statements

This communication contains certain forward-looking statements concerning the MorphoSys group of companies, including the expectations regarding Monjuvis ability to treat patients with relapsed or refractory diffuse large B-cell lymphoma, the further clinical development of tafasitamab-cxix, including ongoing confirmatory trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi. The words anticipate, believe, estimate, expect, intend, may, plan, predict, project, would, could, potential, possible, hope and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The forward-looking statements contained herein represent the judgment of MorphoSys as of the date of this release and involve known and unknown risks and uncertainties, which might cause the actual results, financial condition and liquidity, performance or achievements of MorphoSys, or industry results, to be materially different from any historic or future results, financial conditions and liquidity, performance or achievements expressed or implied by such forward-looking statements. In addition, even if MorphoSys' results, performance, financial condition and liquidity, and the development of the industry in which it operates are consistent with such forward-looking statements, they may not be predictive of results or developments in future periods. Among the factors that may result in differences are MorphoSys' expectations regarding risks and uncertainties related to the impact of the COVID-19 pandemic to MorphoSys business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities, ability to conduct ongoing and planned clinical trials, clinical supply of current or future drug candidates, commercial supply of current or future approved products, and launching, marketing and selling current or future approved products, the global collaboration and license agreement for tafasitamab, the further clinical development of tafasitamab, including ongoing confirmatory trials, and MorphoSys ability to obtain and maintain requisite regulatory approvals and to enroll patients in its planned clinical trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi, MorphoSys' reliance on collaborations with third parties, estimating the commercial potential of its development programs and other risks indicated in the risk factors included in MorphoSys Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements. These forward-looking statements speak only as of the date of publication of this document. MorphoSys expressly disclaims any obligation to update any such forward-looking statements in this document to reflect any change in its expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements, unless specifically required by law or regulation.

1 Belada D, M.D., Ph.D., et al. A Phase 1b, Open-label, Randomized Study to Assess Safety and Preliminary Efficacy of Tafasitamab (MOR208) or Tafasitamab + Lenalidomide in Addition to R-CHOP in Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: Analysis of the Safety Run-In Phase. 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Abstract #3028.

2 Maddocks KJ, M.D., et al. Long-Term Subgroup Analyses from L-MIND, a Phase 2 Study of Tafasitamab (MOR208) Combined with Lenalidomide in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Abstract #3021.

3 Monjuvi (tafasitamab-cxix) Prescribing Information. Boston, MA, MorphoSys.

4 Sarkozy C, et al. Management of relapsed/refractory DLBCL. Best Practice Research & Clinical Haematology. 2018 31:20916. doi.org/10.1016/j.beha.2018.07.014.

5 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253265. doi.org/10.3747/co.26.5421.

6 DRG Epidemiology data.

7 Kantar Market Research (TPP testing 2018).

8 Friedberg, Jonathan W. Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Hematology Am Soc Hematol Educ Program 2011; 2011:498-505. doi: 10.1182/asheducation-2011.1.498.

Continued here:
Data Evaluating Tafasitamab with and without Lenalidomide in Combination with R-CHOP in Patients with DLBCL Presented at ASH 2020 - Business Wire

Read More...

Seagen Announces Multiple ADCETRIS (brentuximab vedotin) Presentations at the 2020 ASH Annual Meeting – Business Wire

December 12th, 2020 7:56 am

BOTHELL, Wash.--(BUSINESS WIRE)--Seagen Inc. (Nasdaq:SGEN) today announced multiple ADCETRIS (brentuximab vedotin) data presentations at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually December 5-8, 2020. Data presentations include five-year updates from the phase 3 ECHELON-1 and ECHELON-2 clinical trials evaluating ADCETRIS plus a chemotherapy combination regimen in frontline advanced stage classical Hodgkin lymphoma (HL) and CD30-expressing frontline peripheral T-cell lymphoma (PTCL), respectively. In addition, first results were presented from an ongoing phase 2 clinical trial evaluating ADCETRIS in combination with Opdivo (nivolumab) in relapsed or refractory mediastinal gray zone lymphoma (MGZL), a rare type of non-Hodgkin lymphoma that express CD30 with no standard of care. ADCETRIS is an antibody-drug conjugate (ADC) directed to CD30, a defining marker of classical HL and expressed on the surface of several types of non-Hodgkin lymphoma, including PTCL. ADCETRIS is being evaluated globally in more than 70 corporate- and investigator-sponsored clinical trials across multiple settings in lymphoma and other indications. ADCETRIS and Opdivo are not approved alone or in combination for the treatment of relapsed or refractory MGZL.

After five years of follow-up, an important clinical milestone, both the ECHELON-1 and ECHELON-2 clinical trials demonstrate that ADCETRIS plus chemotherapy resulted in superior and durable outcomes when compared with standard chemotherapy regimens, said Roger Dansey, M.D., Chief Medical Officer at Seagen. As most relapses in Hodgkin lymphoma occur within five years of frontline treatment, the results of the ECHELON-1 study suggest that patients treated with ADCETRIS plus chemotherapy are more likely to experience long-term remissions compared to those treated with the ABVD regimen.

Brentuximab Vedotin with Chemotherapy for Patients with Previously Untreated, Stage III/IV Classical Hodgkin Lymphoma: 5-Year Update of the ECHELON-1 Study (Abstract #2973, poster presentation on Monday, December 7, 2020)

The ECHELON-1 clinical trial is evaluating ADCETRIS in combination with AVD (Adriamycin [doxorubicin], vinblastine, dacarbazine) compared to ABVD (Adriamycin [doxorubicin], bleomycin, vinblastine, dacarbazine) in patients with Stage III or IV frontline classical HL. As previously reported, the ECHELON-1 trial achieved its primary endpoint with the combination of ADCETRIS plus AVD resulting in a statistically significant improvement in modified progression-free survival (PFS) compared to the control arm of ABVD as assessed by independent review facility (IRF; hazard ratio (HR), 0.77; p=0.035). A five-year exploratory analysis was conducted to examine PFS outcomes per investigator assessment in the intent-to-treat population of 1,334 patients. Results include:

The ECHELON-2 Trial: 5-Year Results of a Randomized, Double-Blind, Phase 3 Study of Brentuximab Vedotin and CHP (A+CHP) Versus CHOP in Frontline Treatment of Patients with CD30-Positive Peripheral T-Cell Lymphoma (Abstract #1150, poster presentation on Saturday, December 5, 2020)

The ECHELON-2 clinical trial is evaluating ADCETRIS in combination with CHP (cyclophosphamide, Adriamycin [doxorubicin], prednisone) compared to CHOP (cyclophosphamide, Adriamycin [doxorubicin], vincristine, prednisone) in frontline CD30-expressing PTCL. As previously reported, the ECHELON-2 trial met its primary endpoint with the combination of ADCETRIS plus CHP resulting in a statistically significant improvement in PFS versus the control arm of CHOP per blinded independent central review (HR, 0.71; p=0.0110). A five-year post-hoc exploratory analysis was conducted to examine PFS outcome and overall survival (OS) per investigator assessment in the intent-to-treat population of 452 patients. Key findings include:

Nivolumab Combined with Brentuximab Vedotin for Relapsed/Refractory Mediastinal Gray Zone Lymphoma: Primary Efficacy and Safety Analysis of the Phase 2 CheckMate 436 Study (Abstract #2045, poster presentation on Sunday, December 6, 2020)

Data from the ongoing CheckMate 436 phase 2 clinical trial of 10 patients with relapsed or refractory MGZL who received a combination of ADCETRIS plus Opdivo treatment after autologous stem cell transplant or two or more lines of multi-agent chemotherapy if ineligible for transplant will be presented for the first time. Patients were treated once every three weeks or until disease progression or unacceptable toxicity. The median age of patients was 35 years. Key findings include:

About ADCETRIS

ADCETRIS is an ADC comprising an anti-CD30 monoclonal antibody attached by a protease-cleavable linker to a microtubule disrupting agent, monomethyl auristatin E (MMAE), utilizing Seagens proprietary technology. The ADC employs a linker system that is designed to be stable in the bloodstream but to release MMAE upon internalization into CD30-expressing cells.

ADCETRIS for injection for intravenous infusion has received FDA approval for six indications in adult patients with: (1) previously untreated systemic anaplastic large cell lymphoma (sALCL) or other CD30-expressing peripheral T-cell lymphomas (PTCL), including angioimmunoblastic T-cell lymphoma and PTCL not otherwise specified, in combination with cyclophosphamide, doxorubicin, and prednisone, (2) previously untreated Stage III or IV classical Hodgkin lymphoma (cHL), in combination with doxorubicin, vinblastine, and dacarbazine, (3) cHL at high risk of relapse or progression as post-autologous hematopoietic stem cell transplantation (auto-HSCT) consolidation, (4) cHL after failure of auto-HSCT or failure of at least two prior multi-agent chemotherapy regimens in patients who are not auto-HSCT candidates, (5) sALCL after failure of at least one prior multi-agent chemotherapy regimen, and (6) primary cutaneous anaplastic large cell lymphoma (pcALCL) or CD30-expressing mycosis fungoides (MF) who have received prior systemic therapy.

Health Canada granted ADCETRIS approval with conditions in 2013 for patients with (1) HL after failure of autologous stem cell transplant (ASCT) or after failure of at least two multi-agent chemotherapy regimens in patients who are not ASCT candidates and (2) sALCL after failure of at least one multi-agent chemotherapy regimen. Non-conditional approval was granted for (3) post-ASCT consolidation treatment of patients with HL at increased risk of relapse or progression in 2017, (4) adult patients with pcALCL or CD30-expressing MF who have received prior systemic therapy in 2018, (5) for previously untreated patients with Stage IV HL in combination with doxorubicin, vinblastine, and dacarbazine in 2019, and (6) for previously untreated adult patients with sALCL, peripheral T-cell lymphoma-not otherwise specified (PTCL-NOS) or angioimmunoblastic T-cell lymphoma (AITL), whose tumors express CD30, in combination with cyclophosphamide, doxorubicin, prednisone in 2019.

ADCETRIS received conditional marketing authorization from the European Commission in October 2012. The approved indications in Europe are: (1) for the treatment of adult patients with previously untreated CD30-positive Stage IV Hodgkin lymphoma in combination with doxorubicin, vinblastine and dacarbazine (AVD), (2) for the treatment of adult patients with CD30-positive Hodgkin lymphoma at increased risk of relapse or progression following ASCT, (3) for the treatment of adult patients with relapsed or refractory CD30-positive Hodgkin lymphoma following ASCT, or following at least two prior therapies when ASCT or multi-agent chemotherapy is not a treatment option, (4) for the treatment of adult patients with previously untreated sALCL in combination with cyclophosphamide, doxorubicin and prednisone (CHP), (5) for the treatment of adult patients with relapsed or refractory sALCL, and (6) for the treatment of adult patients with CD30-positive cutaneous T-cell lymphoma (CTCL) after at least one prior systemic therapy.

ADCETRIS has received marketing authorization by regulatory authorities in more than 70 countries for relapsed or refractory Hodgkin lymphoma and sALCL. See U.S. important safety information, including Boxed Warning, below.

Seagen and Takeda are jointly developing ADCETRIS. Under the terms of the collaboration agreement, Seagen has U.S. and Canadian commercialization rights and Takeda has rights to commercialize ADCETRIS in the rest of the world. Seagen and Takeda are funding joint development costs for ADCETRIS on a 50:50 basis, except in Japan where Takeda is solely responsible for development costs.

ADCETRIS (brentuximab vedotin) U.S. Important Safety Information

BOXED WARNING

PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML): JC virus infection resulting in PML and death can occur in ADCETRIS-treated patients.

Contraindication

ADCETRIS concomitant with bleomycin due to pulmonary toxicity (e.g., interstitial infiltration and/or inflammation).

Warnings and Precautions

Administer G-CSF primary prophylaxis beginning with Cycle 1 for patients who receive ADCETRIS in combination with chemotherapy for previously untreated Stage III/IV cHL or previously untreated PTCL.

Monitor complete blood counts prior to each ADCETRIS dose. Monitor more frequently for patients with Grade 3 or 4 neutropenia. Monitor patients for fever. If Grade 3 or 4 neutropenia develops, consider dose delays, reductions, discontinuation, or G-CSF prophylaxis with subsequent doses.

Most Common (20% in any study) Adverse Reactions

Peripheral neuropathy, fatigue, nausea, diarrhea, neutropenia, upper respiratory tract infection, pyrexia, constipation, vomiting, alopecia, decreased weight, abdominal pain, anemia, stomatitis, lymphopenia, and mucositis.

Drug Interactions

Concomitant use of strong CYP3A4 inhibitors or inducers has the potential to affect the exposure to monomethyl auristatin E (MMAE).

Use in Specific Populations

Moderate or severe hepatic impairment or severe renal impairment: MMAE exposure and adverse reactions are increased. Avoid use.

Advise males with female sexual partners of reproductive potential to use effective contraception during ADCETRIS treatment and for at least 6 months after the final dose of ADCETRIS.

Advise patients to report pregnancy immediately and avoid breastfeeding while receiving ADCETRIS.

Please see the full Prescribing Information, including BOXED WARNING, for ADCETRIS here.

About Seagen

Seagen is a global biotechnology company that discovers, develops and commercializes transformative cancer medicines to make a meaningful difference in peoples lives. Seagen is headquartered in the Seattle, Washington area, and has locations in California, Canada, Switzerland and the European Union. For more information on the companys marketed products and robust pipeline, visit http://www.seagen.com and follow @SeagenGlobal on Twitter.

Forward Looking Statements

Certain of the statements made in this press release are forward-looking, such as those, among others, relating to the therapeutic potential of ADCETRIS plus chemotherapy combination regimens in frontline advanced stage Hodgkin lymphoma, and frontline peripheral T-cell lymphoma, and in combination with Opdivo (nivolumab) in relapsed or refractory mediastinal gray zone lymphoma (MGZL). Actual results or developments may differ materially from those projected or implied in these forward-looking statements due to factors such as unexpected adverse events, adverse regulatory actions, the degree of utilization and adoption of an approved treatment regimen by prescribing physicians, the difficulty and uncertainty of pharmaceutical product development, negative or disappointing clinical trial results and risks related to the duration and severity of the COVID-19 pandemic. More information about the risks and uncertainties faced by Seagen is contained under the caption Risk Factors included in the Companys Quarterly Report on Form 10-Q for the quarter ended September 30, 2020 filed with the Securities and Exchange Commission. Seagen disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

More:
Seagen Announces Multiple ADCETRIS (brentuximab vedotin) Presentations at the 2020 ASH Annual Meeting - Business Wire

Read More...

ASH: UniQure/CSL hem B gene therapy curbs bleeding in phase 3even in patients with anti-AAV antibodies – FierceBiotech

December 11th, 2020 2:56 pm

People with hemophilia B lack a protein that helps their blood clot, so they rely on lifelong infusions of that protein to manage their disease. UniQure and CSL Behrings hemophilia B gene therapy could transform chronic care into a one-time treatmentand its latest data suggest it could work for patients considered unsuitable for gene therapy.

The treatment, etranacogene dezaparvovec, curbed bleeding episodes and nearly eliminated the need for infusions of clotting Factor IX (FIX) in a phase 3 study testing it in severe or moderately severe hemophilia B. The study, HOPE-B, found that 26 weeks after treatment, the gene therapy had reduced bleeds that needed treatment by 91%, with 87% of 54 patients reporting such bleeds. Eighty-three percent of the patients reported no bleeds at all, including suspected bleeds that did not require treatment.

RELATED: BioMarin's hemophilia gene therapy 'Roc solid' after 4 years

Benefits of 5KL When Outsourcing Late-phase Biologics Drug Substance Manufacturing

During this webinar, attendees will learn about Thermo Fisher Scientifics new 5KL bioreactor and how it benefits clients who outsource late-phase biologics drug substance manufacturing. An introduction of the 5KL bioreactor will be provided, as well as application data around performance and scalability, process economy comparison with traditional stainless steel bioreactors, and decision criteria that could be helpful in choosing between different cell culture strategies. Register Today!

The treatment also boosted FIX activity to an average of 37.2%, up from less than 2% at the start of the trial, meeting its primary endpoint.

The study, to be presented virtually Tuesday at the annual meeting of the American Society of Hematology, found that nearly all the patients52 out of 54, or 98%no longer needed infusions of FIX to prevent bleeding episodes. Of the remaining two patients, one suffered an infusion reaction during treatment and did not get the full gene therapy dose, while the other had very high levels of antibodies that neutralize the adeno-associated virus (AAV) used to deliver the treatment.

Many people have a natural immunity to AAVs because theyre exposed to them in the environment. Though useful for fighting off infection, this immunity can render gene therapies ineffective. That appears not to be the case with uniQure and CSLs treatment. The patient for whom the gene therapy did not work was an outlier, with antibody levels nearly five times as high as the level expected in more than 95% of the general population. In patients with more typical antibody levels, investigators saw no correlation between the presence of those antibodies and FIX activity, the company said in a statement.

Importantly, these data also show that those patients in the trial who may not have been eligible for other gene therapies because they had pre-existing neutralizing antibodies (NAbs) have achieved results with etranacogene dezaparvovec that are comparable to the results of patients who did not have pre-existing NAbs, Steven Pipe, M.D., a professor of pediatrics and pathology at the University of Michigan and the studys lead investigator, said in a statement.

RELATED: CSL to pay $450M to buy uniQure's hemophilia B gene therapy

This is an important distinction as this is the only known clinical trial that has maximized patient eligibility in this way. The initial data also show that etranacogene dezaparvovec has been generally well tolerated to date, he said.

Most of the side effects were mild (82%). The most common treatment-related side effect was elevated liver enzymes, which affected 17% of patients but was treated effectively with steroids. Infusion reactions and flu-like symptoms each affected 13% of patients.

The data come five months after CSLpicked up the global rights to etranacogene dezaparvovec for $450 million upfront. These latest data set up the companies in a battle to bring a new hemophilia B gene therapy to market, pitting them against the likes of Pfizer and Spark/Roche.

The rest is here:
ASH: UniQure/CSL hem B gene therapy curbs bleeding in phase 3even in patients with anti-AAV antibodies - FierceBiotech

Read More...

Bayer strengthens cell and gene therapy focus with new platform – PMLiVE

December 11th, 2020 2:56 pm

Bayer has established a new strategic platform focused on cell and gene therapy, following its AskBio acquisition in October.

The new cell and gene therapy platform will house both AskBio and another of Bayers recently acquired firms, BlueRock Therapeutics, under one roof.

Bayer will seek to strengthen its own internal cell and gene therapy capabilities, with the newly established platform also enabling it to pursue external opportunities to bolster its presence in this area.

This is a defining moment for Bayer. Cell and gene therapies are leading innovation in healthcare, and it is our goal to be at the forefront of this revolution in science, said Stefan Oelrich, a member of the board of management, Bayer AG and president Pharmaceuticals Division.

Bayer paid an initial $2bn to gain full rights to AskBios gene therapy platform, which included an intellectual property portfolio and an established contract development and manufacturing organisation (CDMO).

AskBios adeno-associated gene therapy platform has already shown promise in a number of diseases, with the companys lead research programmes focused on Pompe disease, Parkinsons and congestive heart failure.

The German pharma company also bought out its private equity partner Versant Venture and founders in its cell therapy joint venture BlueRock Therapeutics for $240m.

BlueRock was established in late 2016 with $225m in start-up funding from Bayer and investment firm Versant, shortly after Bayer backed gene-editing specialist Casebia via its Leaps by Bayer investment arm.

The goal [of the platform] is to build robust platforms with broad application across different therapeutic areas, Bayer added in a statement.

The company also said that it has a vibrant cell and gene therapy pipeline with five advanced assets, as well as over 15 preclinical candidates.

The emerging bio revolution represents a once-in-a-lifetime opportunity and a new era for Bayer, said Wolfram Carius, head of Bayers new cell and gene therapy platform.

A dedicated C> Platform is vital to accelerate innovation at its source, and to ensure its translation into tangible therapies for patients who have no time to wait, he added.

Go here to read the rest:
Bayer strengthens cell and gene therapy focus with new platform - PMLiVE

Read More...

After boosting gene therapy focus, Bayer signs up to new cell therapy pact with Atara – FierceBiotech

December 11th, 2020 2:56 pm

German pharma Bayer is moving into cell therapy R&D with its latest pact focusing on tough-to-treat lung cancers with Atara Biotherapeutics.

Bayer has been moving deeply into gene therapies over the past few years, but it's now entering the CAR-T research space in its Atara deal. CAR-T has been focused heavily on blood cancers, where there have been some amazing successes (but also serious safety worries), but this pact is focusing on a tougher area for cell therapy, namely solid tumors.

The deal focuses on off-the-shelf T-cell immunotherapy ATA3271 for high mesothelin-expressing tumors, with a focus on more rare and tough-to-treat high mesothelin-expressing tumors such as malignant pleural mesothelioma and non-small cell lung cancer.

Benefits of 5KL When Outsourcing Late-phase Biologics Drug Substance Manufacturing

During this webinar, attendees will learn about Thermo Fisher Scientifics new 5KL bioreactor and how it benefits clients who outsource late-phase biologics drug substance manufacturing. An introduction of the 5KL bioreactor will be provided, as well as application data around performance and scalability, process economy comparison with traditional stainless steel bioreactors, and decision criteria that could be helpful in choosing between different cell culture strategies. Register Today!

The financials break down like this: Atara gets $60 million upfront, with up to $610 million on the table in biobucks. The biotech will lead IND-enabling studies and process development for ATA3271, while Bayer will be responsible for submitting the IND and then will take over R&D and sales work.

Atara will continue to be responsible for the ongoing ATA2271 phase 1 study, for which an IND filing has been accepted and a test already started.

RELATED: Bayer creates cell and gene therapy platform to support partners

For a limited time, Bayer also has a nonexclusive right to negotiate a license for additional Atara CAR-T product candidates.

This transaction is a fundamental element of Bayers new Cell & Gene Therapy strategy. It strengthens our development portfolio through allogeneic cell therapies and consolidates our emerging leadership in the field, said Wolfram Carius, head of Bayers Cell & Gene Therapy Unit.

We look forward to collaborating with Atara to develop off-the-shelf CAR T-cell therapies for patients with difficult-to-treat cancers.

Germanys Bayer has moved into cell and gene therapies on multiple fronts in recent years, buying up induced pluripotent stem cell specialist BlueRock Therapeutics and adeno-associated virus gene therapy player Asklepios BioPharmaceutical while investing in a clutch of other biotechs. The deals have given Bayer a pipeline of five advanced assets and more than 15 preclinical prospects.

It has backed other CAR-T players over the years, including CAR alternative player Triumvira and Century Therapeutics, but the Atara deal takes it further into directly working on a cell therapy.

This exciting collaboration between Atara and Bayer will accelerate the development of mesothelin-targeted CAR T-cell therapies for multiple solid tumors and helps us advance the power of our allogeneic cell therapy platform to patients as quickly as possible, added Pascal Touchon, president and CEO of Atara.

Bayers proven track record in oncology global development and commercialization, and growing presence in cell and gene therapy, enhances Ataras capabilities and complements our leading allogeneic T-cell platform.

View original post here:
After boosting gene therapy focus, Bayer signs up to new cell therapy pact with Atara - FierceBiotech

Read More...

Single gene therapy injection surprisingly boosts vision in both eyes – New Atlas

December 11th, 2020 2:56 pm

One of the ways scientists hope to offer better treatments for vision loss is through gene therapy, where carefully selected genetic material is injected into the eyes to address mutations. Researchers have been left surprised by the effectiveness of an experimental form of this treatment, which involved an injection into one eyeball yet improved vision across both.

Gene therapies have the potential to treat all kinds of health conditions, ranging from cancer, to diabetes in dogs, to obesity and damaged spinal cords. One area where we're seeing some really exciting progress is in hereditary vision loss, with studies demonstrating the potential of gene therapy to treat color blindness, progressive retinal diseases and glaucoma, with some recently receiving approval from the FDA.

This latest study was conducted by scientists at the University of Cambridge, the University of Pittsburgh and Paris Institut de la Vision, and focuses on a form of inherited vision loss called Leber hereditary optic neuropathy (LHON). This affects around one in 30,000 people and usually occurs in young folks aged in their 20s and 30s, destroying their retinal ganglion cells and in turn the optic nerve. Once the condition takes hold, vision can deteriorate to the point where the subject is considered legally blind in just a matter of weeks, with recovery occurring in less than 20 percent of cases.

The majority of patients suffer from the same mutation affecting the MT-ND4 gene, so the researchers were hopeful of targeting this mutation as a way of improving treatment outcomes for sufferers of LHON. They trialed their gene therapy as part of a study involving 37 patients who had suffered vision loss in the preceding six to 12 months. This meant injecting a viral vector packed with a modified complementary DNA called rAAV2/2-ND4 into the vitreous cavity at the back of just one eye, with a sham treatment injected into the other eye.

We expected vision to improve in the eyes treated with the gene therapy vector only, says study author Dr Yu-Wai-Man. Rather unexpectedly, both eyes improved for 78 percent of patients in the trial following the same trajectory over two years of follow-up.

To investigate the reasons behind this unexpected outcome, the team studied the gene therapys effects in macaques, which have a similar vision system to humans. This enabled them to analyze the tissues from different parts of the eye to see how the viral vector DNA had spread. This provided evidence of interocular diffusion, with the viral vector DNA turning up in the retina, optic nerve and anterior segment of the untreated eye.

As someone who treats these young patients, I get very frustrated about the lack of effective therapies, says senior investigator Dr Sahel, from the University of Pittsburgh. These patients rapidly lose vision in the course of a few weeks to a couple of months. Our study provides a big hope for treating this blinding disease in young adults.

The research was published in the journal Science Translational Medicine.

Source: University of Cambridge

See more here:
Single gene therapy injection surprisingly boosts vision in both eyes - New Atlas

Read More...

Gene Therapy for Hemophilia B Found Safe and Effective in First Phase III Trial – PRNewswire

December 11th, 2020 2:56 pm

WASHINGTON, Dec. 8, 2020 /PRNewswire/ --The gene therapy etranacogene dezaparvovec substantially increased production of the blood clotting protein factor IX among 52 patients in the largest and most inclusive hemophilia B gene therapy trialto date. The trial is also the first to include patients with certain immune system markers and found that they did not appear to confer any increased risks, a finding that could significantly broaden the number of patients who may be eligible for gene therapy.

A majority of trial participants (96%) successfully discontinued factor IX replacement therapy after receiving the gene therapy and have been producing their own factor IX for six months. The findings suggest gene therapy could, with a single treatment, give patients the ability to maintain factor IX levels and reduce or eliminate the need for additional factor IX replacement therapy, according to researchers.

"Most patients with hemophilia B are bound to a prophylactic factor regimen of one to two intravenous infusions per week from birth through the rest of their life," said senior study authorSteven W. Pipe, MD,of the University of Michigan, Ann Arbor. "Gene therapy offers the chance to liberate patients from the burden of their prior treatments, allowing for spontaneity and the freedom to do more in day-to-day life."

Hemophilia B, which accounts for about one-fifth of hemophilia cases, is caused by an inherited mutation of the gene for factor IX. Lacking the ability to produce the blood clotting factor IX, patients with hemophilia B can suffer uncontrolled bleeding, including internal and joint bleeding that leads to joint deterioration and chronic pain.

Factor IX replacement therapy can reduce bleeding associated with hemophilia B, but it requires weekly or biweekly infusions to maintain factor IX levels, a burdensome regimen that costs several hundred thousand dollars per year. In gene therapy, viral particles are used to shuttle engineered genes to cells in the liver. These genes replace the patient's faulty factor IX gene, allowing the patient's own body to produce factor IX on an ongoing basis. While several gene therapies for hemophilia have shown promise in early phase trials, the study is the first phase III trial to test the approach in a large and diverse array of patients, said Dr. Pipe.

Fifty-four patients enrolled in the study; all were dependent on factor IX replacement therapy, and 70% had bleeding episodes in the six months prior to the study despite this prophylactic treatment. After receiving the etranacogene dezaparvovec gene therapy via a single infusion lasting roughly one hour, factor IX activity increased rapidly from a baseline of up to 2% (moderate to severe hemophilia) to a mean of 37% (very mild hemophilia) at 26 weeks, meeting the trial's primary endpoint. At that level, a patient's bleeding risk is essentially the same as someone without hemophilia, Dr. Pipe noted.

Seventy-two percent of patients reported no bleeding events in the 26 weeks after receiving the gene therapy. "This tells us that the bleeding phenotype can be corrected through this treatment, which is a remarkable achievement," said Dr. Pipe. Fifteen patients experienced some bleeding, which the researchers indicate is not unexpected given that many of the patients had severely affected joints entering the trial.

"What we've seen from patients in the study is that they really don't have to think about their hemophilia anymore," said Dr. Pipe. "The transformative nature that we hear from the patient stories is, to me, the most important outcome from this study."

The trial is also the first to attempt gene therapy in patients with neutralizing antibodies, a component of the immune system that helps the body fight pathogens. About 40% of trial participants had antibodies to adeno-associated virus serotype 5, or AAV5, the viral vector used in etranacogene dezaparvovec. "In any other trial protocol, these patients would not have been eligible to participate," Dr. Pipe noted.

Previous trials have excluded such patients from gene therapies that use viral vectors under the assumption that antibodies could either block the uptake of the viral vectors in the liver or trigger a dangerous immune response to the therapy. The trial found no evidence of either problem, suggesting neutralizing antibodies do not preclude successful gene therapy.

Two patients did not respond to the gene therapy. One did not receive a full dose because the infusion was stopped after the patient showed signs of a reaction to the infusion. The other had a level of neutralizing antibodies about five times higher than any other patient. Since other patients with neutralizing antibodies responded well to the therapy regardless of their level of antibodies, this finding suggests antibodies may pose a problem only at extremely high levels.

No treatment-related serious adverse events were reported. Adverse events were relatively common, occurring in 68% of patients, but most were mild and related to the infusion itself. Nine patients showed evidence of an immune response to the therapy, which was resolved in all cases with a course of corticosteroids.

The researchers will continue to follow patients for five years. Patients will be assessed for sustained factor IX production and effective bleed control over 52 weeks, as well as patient-reported outcome measures to assess impact on quality of life.

Steven W. Pipe, MD, University of Michigan, Ann Arbor, will present this study during the Late-Breaking Abstracts session on Tuesday, December 8 at 7:00 a.m. Pacific time on the ASH annual meeting virtual platform.

For the complete annual meeting program and abstracts, visit http://www.hematology.org/annual-meeting. Follow ASH and #ASH20 on Twitter, Instagram, LinkedIn, and Facebook for the most up-to-date information about the 2020 ASH Annual Meeting.

The American Society of Hematology (ASH) (www.hematology.org) is the world's largest professional society of hematologists dedicated to furthering the understanding, diagnosis, treatment, and prevention of disorders affecting the blood. For more than 60 years, the Society has led the development of hematology as a discipline by promoting research, patient care, education, training, and advocacy in hematology. ASH publishes Blood (www.bloodjournal.org), the most cited peer-reviewed publication in the field, and Blood Advances (www.bloodadvances.org), an online, peer-reviewed open-access journal.

SOURCE American Society of Hematology

http://www.hematology.org

Go here to read the rest:
Gene Therapy for Hemophilia B Found Safe and Effective in First Phase III Trial - PRNewswire

Read More...

Rocket Pharmaceuticals in orbit after gene therapy read-out – – pharmaphorum

December 11th, 2020 2:56 pm

Shares in Rocket Pharmaceuticals have been living up to their name, shooting up following encouraging early-stage clinical trial results from a gene therapy for a serious inherited rare heart disease.

Results came from a phase 1 trial of RP-A501 for treatment of Danon Disease and sent shares up 75% on the Nasdaq to more than $56, a five-year high.

The surging stock price indicates the markets confidence in gene therapy products after the successful launch of products such as Roche/Spark Therapeutics Luxturna, a gene therapy for a rare inherited eye disease.

Danon Disease is a rare X-linked disorder caused by genetic mutations in the LAMP2 gene and the therapy works by instructing the body to express a healthy copy of the LAMP2B protein in order to correct the condition.

The disease that affects boys and men more severely causes accumulation of autophagosomes tiny structures that cause cells internal structures to break down in the heart muscle and other tissues.

Together with a build-up of glycogen this can lead to severe and frequently fatal degradation of the heart muscle.

RP-A501 could be the first gene therapy for the disease and the early data showed a positive increase in cardiac protein expression.

As of November, three patients have been treated with a low dose of the therapy and two have been treated with a high dose.

An early trial readout showed two patients with LAMP2B expression that was 50% more than normal, measured nine and 12 months after treatment.

A 15%-20% increase could lead to clinically meaningful improvements in cardiac function and the trial reported a 50% decrease in a key biomarker of heart failure.

There was also a reduction in myocardial cell disarray and a visible reduction in autophagic vacuoles, a hallmark of the disease.

The company also noted stabilisation of three other measures a heart failure biomarker known as BNP, plus levels of transaminases and creatine kinase that also indicate skeletal and heart muscle damage.

However one patient who received the highest dose and had a degree of immunity to the adeno-associated virus used in the therapy had an immune reaction classified as a serious adverse event.

Rocket said the event was likely due to complement activation, resulting in reversible thrombocytopenia and acute kidney injury requiring a short round of haemodialysis.

The patient returned to baseline within three weeks and regained normal kidney function.

DrBarry Greenberg, director of the Advanced Heart Failure Treatment Program atUC San Diego Health, Professor of Medicine atUC San Diego School of Medicine, and the principal investigator said: Children with Danon Disease live with a heavy disease burden. Young boys are often severely afflicted.

They show evidence of early onset skeletal muscle weakness and heart disease that can progress rapidly to end-stage with death occurring on the average before age 20. A heart transplant can be performed but is not curative and is associated with its own significant problems.

The results-to-date for this first investigational gene therapy for monogenic heart failure show the potential for direct clinical benefit without emergence of unanticipated side effects of therapy.

The company has also begun a stock offering of $175 million in shares to fund further development following the results.

View original post here:
Rocket Pharmaceuticals in orbit after gene therapy read-out - - pharmaphorum

Read More...

ASH 2020: Novel Gene Therapy Found to be Safe and Effective in Treatment of Hemophilia B – OncoZine

December 11th, 2020 2:56 pm

Study results from an open-label, single-dose, multi-center, multinational phase III trial, presented during the late-breaking abstract session of the all-virtual 62nd American Society of Hematology (ASH) Annual Meetings show that etranacogene dezaparvovec (previously known was AAV5-hFIXco-Padua; AMT-061; uniQure/CSL Behring), an investigational gene therapy for hemophilia B, is safe and effective.

The two most common types of hemophilia are hemophilia A, in which patients is lack of clotting Factor VIII, and hemophilia B, caused by a lack of the ability to produce the blood clotting factor IX as the result of an inherited mutation of the gene for factor IX.

Both types of hemophilia can lead to spontaneous and uncontrolled bleeding into muscles, organs, and joints as well as prolonged bleeding following injuries or surgery, which leads to joint deterioration and chronic pain.

Hemophilia B, which accounts for about one-fifth of hemophilia cases.

Clinical trialThe study of etranacogene dezaparvovec recruited adult male patients with severe or moderate-severe hemophilia B.

The results of the study demonstrated that a single administration of the gene therapy etranacogene dezaparvovec led to sustained increases of Factor IX to functionally curative levels capable of eliminating the need for regular infusions to control and prevent bleeding episodes. As a result, most patients were able to stop intensive intravenous regimens. The studys authors believe that the results may open doors for patients previously not included in gene therapy trials.

Blood clotting proteinIn the trial included 52 patients and is the largest and most inclusive hemophilia B gene therapy trial to date. The trial is also the first to include patients with certain immune system markers and found that they did not appear to confer any increased risks, a finding that could significantly broaden the number of patients who may be eligible for gene therapy.

A majority of trial participants (96%) successfully discontinued factor IX replacement therapy after receiving the gene therapy and have been producing their own factor IX for six months. The findings suggest gene therapy could, with a single treatment, give patients the ability to maintain Factor IX levels and reduce or eliminate the need for additional factor IX replacement therapy, according to researchers.

Most patients with hemophilia B are bound to a prophylactic factor regimen of one to two intravenous infusions per week from birth through the rest of their life, said senior study author Steven W. Pipe, M.D., of the University of Michigan, Ann Arbor, Michigan, who presented the result of the study during the Late-Breaking Abstracts session on Tuesday, December 8 at 7:00 a.m. Pacific time.

Gene therapy offers the chance to liberate patients from the burden of their prior treatments, allowing for spontaneity and the freedom to do more in day-to-day life, Pipe added.

Replacement therapyFactor IX replacement therapy can reduce bleeding associated with hemophilia B, but it requires weekly or biweekly infusions to maintain factor IX levels, a burdensome regimen that costs several hundred thousand dollars per year.

In gene therapy, viral particles are used to shuttle engineered genes to cells in the liver. These genes replace the patients faulty factor IX gene, allowing the patients own body to produce factor IX on an ongoing basis. While several gene therapies for hemophilia have shown promise in early phase trials, the study is the first phase III trial to test the approach in a large and diverse array of patients, Pipe said.

Fifty-four patients enrolled in the study; all were dependent on factor IX replacement therapy, and 70% had bleeding episodes in the six months prior to the study despite this prophylactic treatment.

After receiving the etranacogene dezaparvovec gene therapy via a single infusion lasting roughly one hour, factor IX activity increased rapidly from a baseline of up to 2% (moderate to severe hemophilia) to a mean of 37% (very mild hemophilia) at 26 weeks, meeting the trials primary endpoint.

At that level, a patients bleeding risk is essentially the same as someone without hemophilia, Pipe noted.

Seventy-two percent of patients reported no bleeding events in the 26 weeks after receiving the gene therapy.

This tells us that the bleeding phenotype can be corrected through this treatment, which is a remarkable achievement, Pipe said.

Fifteen patients experienced some bleeding, which the researchers indicate is not unexpected given that many of the patients had severely affected joints entering the trial.

What weve seen from patients in the study is that they really dont have to think about their hemophilia anymore. The transformative nature that we hear from the patient stories is, to me, the most important outcome from this study, Pipe said.

Neutralizing antibodiesThe trial is also the first to attempt gene therapy in patients with neutralizing antibodies, a component of the immune system that helps the body fight pathogens. About 40% of trial participants had antibodies to adeno-associated virus serotype 5, or AAV5*, the viral vector used in etranacogene dezaparvovec.

In any other trial protocol, these patients would not have been eligible to participate, Pipe noted.

Previous trials have excluded such patients from gene therapies that use viral vectors under the assumption that antibodies could either block the uptake of the viral vectors in the liver or trigger a dangerous immune response to the therapy. The trial found no evidence of either problem, suggesting neutralizing antibodies do not preclude successful gene therapy.

Two patients did not respond to gene therapy. One did not receive a full dose because the infusion was stopped after the patient showed signs of a reaction to the infusion. The other had a level of neutralizing antibodies about five times higher than any other patient. Since other patients with neutralizing antibodies responded well to the therapy regardless of their level of antibodies, this finding suggests antibodies may pose a problem only at extremely high levels.

No treatment-related serious adverse events were reported. Adverse events were relatively common, occurring in 68% of patients, but most were mild and related to the infusion itself. Nine patients showed evidence of an immune response to the therapy, which was resolved in all cases with a course of corticosteroids.

The researchers will continue to follow patients for five years. Patients will be assessed for sustained factor IX production and effective bleed control over 52 weeks, as well as patient-reported outcome measures to assess the impact on health-related Quality of Life (hrQoL).

Note* Adeno-associated virus serotype 5- (AAV5-) based gene therapies have been demonstrated to be safe and well-tolerated in a multitude of clinical trials. Etranacogene dezaparvovec consists of an AAV5 viral vector carrying a gene cassette with the patent-protected Padua variant of Factor IX (FIX-Padua). The investigational agent has been granted Breakthrough Therapy Designation by the U.S. Food and Drug Administration and access to the Priority Medicines (PRIME) regulatory initiative by the European Medicines Agency.

Clinical trialsHOPE-B: Trial of AMT-061 in Severe or Moderately Severe Hemophilia B Patients NCT03569891

Reference[1] Pipe SW, Recht M, Key NS, Leebeek FWG, Castaman G, Lattimore SU, Van der Valk P, Peerlinck K, et al. LBA-6 First Data from the Phase 3 HOPE-B Gene Therapy Trial: Efficacy and Safety of Etranacogene Dezaparvovec (AAV5-Padua hFIX variant; AMT-061) in Adults with Severe or Moderate-Severe Hemophilia B Treated Irrespective of Pre-Existing Anti-Capsid Neutralizing Antibodies [Abstract LBA-6]

Original post:
ASH 2020: Novel Gene Therapy Found to be Safe and Effective in Treatment of Hemophilia B - OncoZine

Read More...

Bluebird trumpets long-term data from beta-thalassaemia gene therapy – – pharmaphorum

December 11th, 2020 2:56 pm

bluebird bio has presented long-term data from its Zynteglo one-time gene therapy for the blood disorder beta-thalassaemia, as the company continues talks with payers in Europe to bring the ultra-pricey treatment to market.

The European Medicines Agency (EMA) has granted a conditional marketing authorisation for the drug that will be marketed as Zynteglo (betibeglogene autotemcel), meaning its licence must be renewed each year until confirmatory data is available.

Results announced at the American Society of Hematology could help bluebird make the case for the long-term use of the therapy as the treatment approaches the market in Europe.

In the US, Zynteglo has hit a speed-bump with the FDA, which is asking for more information about production facilities before a review of clinical data can begin.

Of the 10 patients enrolled in the ongoing long-term study (LTF-303) from a phase 3 programme, 9/10 (90%) were transfusion independent (TI) and all these patients remain transfusion independent.

David Davidson, chief medical officer at bluebird, said: All of the patients in our phase 3 studies who achieved transfusion independence have maintained it, with the durability of the treatment effect underscored by patients from our earlier studies reaching their five-year anniversaries of freedom from transfusions.

In a group of patients aged under 18 from the Northstar-2 and Northstar-3 phase 3 studies, 87% (13 out of 15) achieved TI and remained so.

In a long-term follow-up 53% of patients who achieved TI and restarted iron chelation have since stopped and 30% who achieved TI now receive phlebotomy to reduce iron levels.

Davidson added: Transfusion independence has been observed in paediatric, adolescent and adult patients and across genotypes suggesting outcomes with this gene therapy may be consistent regardless of age or genotype.

In Europe bluebird has set a price of up to $1.58 million euros for a single shot.

This is paid in instalments, with 315,000 euros paid up front and four additional payments due only if the treatment continues to be effective.

Zynteglo is already launched in Germany and is nearing the end of its year of free pricing.

But its fair to say that the therapy wont come cheaply even though most member states will likely end up negotiating a lower price.

In England, cost-effectiveness body NICE is reviewing Zynteglo and is due to publish draft document early in the new year.

Although its too early to say how the review will go, NICE will be looking for more certainty on the long-term effects of the therapy.

The latest data wont be part of the submission to NICE, but the company hopes that an ongoing review of the cost-effectiveness bodys methodology will help novel gene therapies get to market.

Nicola Redfern, general manager of bluebird bio UK, is hopeful that NICE will refine its existing Quality Adjusted Life Year (QALY) and find better ways to deal with uncertainties in clinical data.

How we deal with uncertainties is going to be fundamentally important, she said.

Another issue to address is the discount rate NICE uses to calculate the value of medicines and their long-term impact on patients lives.

The 3.5% discount rate currently used means that these benefits reduce quickly over time in the view of NICE and Redfern agrees with NICEs own proposals to adopt the 1.5% discount rate used by the Treasury.

We agree with NICE that there is already evidence to bring it in line with the rate in the Treasury Green Book.

Read more:
Bluebird trumpets long-term data from beta-thalassaemia gene therapy - - pharmaphorum

Read More...

Gene Therapy, Absolutely and For Real | In the Pipeline – Science Magazine

December 11th, 2020 2:56 pm

This weekend brought some really significant news in the long-running effort to use gene editing to treat human disease. As most readers will have heard, Boston Childrens Hospital and a Vertex/CRISPR effort both published papers in the NEJM addressing sickle-cell anemia and beta-thalassemia. (Update: edit to fix attribution).

These diseases have long been linked when it comes to gene therapy ideas, because both of them have defects in the hemoglobin protein as their cause. And its long been thought that both could be treated by getting adults to re-express the fetal hemoglobin protein its on a different gene entirely, and thus does not have any of the genetic problems that affect the adult hemoglobin gene. The normal course of events is for babies to stop expressing the fetal form and switch over to regular hemoglobin, and its been worked out that a particular transcription factor called BCL11a is a key player in that transcriptional repression of the fetal hemoglobin gene. That plays right into the usual way that we tend to think about therapeutic possibilities: whether its enzymes, receptors, or expression of whole proteins, we have a lot more tools to mess things up and interrupt processes than we have to make them run faster or better. So the possibility of interrupting BCL11as function has been a tempting one for many years.

Its hard to do by traditional means, though. (Full disclosure: I have, at different times in my career, been involved with such efforts, but none have ever come near the clinic.) Transcription factors are notoriously hard to get a handle on with small molecule therapeutics, and many unsuccessful runs have been taken at BCL11a ligands to try to interrupt its functions in one way or another. My general impression is that the protein doesnt much care about recognizing small-molecule ligands (and its far from the only one in that category, for sure). Youd think that if you ran a few hundred thousand (or a few million) various molecules past any given protein that youd find a few of them that bind to it, but that assumption is too optimistic for most transcription factors. Youre also going to have a hard row to hoe (to use an old Arkansas expression) if you try to break up their interactions with their DNA binding sites: a significant amount of capital has gone down the chute trying to get that to work, with (as far as I can tell) not much to show for it.

Theres another complication: BCL11a has a lot of other functions. Every protein has a lot of other functions, but for transcription factors, the issue can be especially fraught. If you had a small molecule that really did interfere with its activity, what would happen if you just took a stiff dose of it? Probably a number of things, including some interesting (and not necessarily welcome) surprises. There have been a number of ideas about how to get around this problem, but a problem it is.

So its on to biological mechanisms. The BCH team reports on using RNA interference to do the job they get cells to express a short hairpin RNA that shuts down production of BCL11a protein, with some microRNA work to target this to the right cell lines. And the Vertex/CRISPR team, naturally, uses CRISPR itself to go in and inactivate the BCL11a gene directly. Both approaches take (and have to take) a similar pathway, which is difficult and expensive, but still the best shot at such therapies that we have. You want the fetal hemoglobin expressed in red blood cells, naturally, and red blood cells come from CD34+ stem cells in the bone marrow. Even if you havent thought about this, you might see where its going: you take a bone marrow sample, isolate these cells, and then do your genetic manipulation to them ex vivo. Once youve got a population of appropriately re-engineered cells ready to go, you go kill off the bone marrow in the patient and put the reworked cells back in, so theyre the only source there for red blood cells at all. A bone marrow transplant, in other words a pretty grueling process, but definitely not as much as having some sort of blood-cell-driven cancer (where the therapy uses compatible donor cells from someone else without such a problem), or as much as having full-on sickle cell disease or tranfusion-dependent thalassemia.

You can also see how this is a perfect setup for gene therapy: theres a defined population of cells that you need to treat, which are available in a specific tissue via a well-worked-out procedure. The problem youre trying to correct is extremely well understood in fact, it was the first disease ever characterized (by Linus Pauling in 1949) as purely due to a genetic defect . And the patients own tissue is vulnerable to chemotherapy agents that will wipe out the existing cell population, in another well-worked-out protocol, giving the newly reworked cells an open landscape to expand in. You have the chance for a clean swap on a defined target, which is quite rare. In too many other cases the problem turns out to involve a fuzzy mass of genetic factors and environmental ones, none of which by themselves account for the disease symptoms, or the tissue doesnt allow you to isolate the defective cells easily or doesnt allow you to clear them out for any new ones you might generate, and so on.

Both the Vertex/CRISPR and BCH techniques seem to work and in fact, to work very well. There are now people walking around, many months after these treatments, who were severely ill but now appear to be cured. Thats not a word we get to use very often. They are producing enough fetal hemoglobin, more than enough to make their symptoms completely disappear no attacks, no transfusions, just normal life. And so far there have been no side effects due to the altered stem cells. An earlier strategy from Bluebird (involving addition of a gene for a modified adult hemoglobin) also seems to be holding up.

These are revolutionary proofs of concept, but at the same time, they are not going to change the course of these diseases in the world not right now, anyway. Bone marrow transfusion is of course a complex process that costs a great deal and can only be done in places with advanced medical facilities. But what weve established is that anything that can cause fetal hemoglobin to be expressed should indeed cure these diseases that idea has been de-risked. As has the general idea of doing such genetic alteration in defined adult tissues (either RNA interference or CRISPR). From here, we try to make these things easier, cheaper and more general, to come up with new ways of realizing these same goals now that we know that they do what we hoped that they would. This work is already underway new ways to target the affected cell populations rather than flat-out chemotherapy assault, new ways to deliver the genetically altered cells (or to produce them on site in the patients), ways to make the switchover between the two more gradual, and so on. There are lot of possible ways, and we now know where were going.

See the article here:
Gene Therapy, Absolutely and For Real | In the Pipeline - Science Magazine

Read More...

Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…

December 11th, 2020 2:56 pm

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from Group C of its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy (bb1111) for adult and adolescent patients with sickle cell disease (SCD) show a complete elimination of severe VOEs and VOEs between six and 24 months of follow-up. These data are being presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020.

Now with more than two years of data, we continue to observe promising results in our studies of LentiGlobin for SCD that further illustrate its potential to eliminate the symptoms and devastating complications of sickle cell disease. Consistently achieving the complete resolution of severe vaso-occlusive events (VOEs) and VOEs between Month 6 and Month 24 follow-up is unprecedented other than with allogeneic stem cell transplantation. Importantly, our data show the potential for LentiGlobin for SCD to produce fundamentally disease-modifying effects with sustained pancellular distribution of gene therapy-derived anti-sickling HbAT87Q and improvement of key markers of hemolysis that approach normal levels, said David Davidson, M.D., chief medical officer, bluebird bio. In addition to these clinical outcomes, for the first time with a gene therapy we now have patient-reported outcomes through the validated PROMIS-57 tool, showing reduction in pain intensity at 12 months after treatment with LentiGlobin for SCD. These results provide insight into the potential real-life impact LentiGlobin for SCD may offer patients.

SCD is a serious, progressive and debilitating genetic disease. In the U.S., the median age of death for someone with sickle cell disease is 43 46 years. SCD is caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOEs.

In the HGB-206 study of LentiGlobin for SCD, VOEs are defined as episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than two hours and severe enough to require care at a medical facility. This includes acute episodes of pain, acute chest syndrome (ACS), acute hepatic sequestration and acute splenic sequestration. A severe VOE requires a 24-hour hospital stay or emergency room visit or at least two visits to a hospital or emergency room over a 72-hour period, with both visits requiring intravenous treatment.

LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.

As a hematologist, I regularly see the debilitating effects of pain events caused by sickle cell disease. Pain has an overwhelmingly negative impact on many facets of my patients lives and can lead to prolonged hospitalizations, said presenting study author Alexis A. Thompson, M.D., professor of pediatrics at Northwestern University Feinberg School of Medicine and head of hematology at Ann and Robert H. Lurie Childrens Hospital of Chicago. The results observed with LentiGlobin gene therapy for SCD include the complete elimination of severe vaso-occlusive pain episodes, which is certainly clinically meaningful, but also for the first time, we have documented patients reporting that they are experiencing improved quality of life. This degree of early clinical benefit is extraordinarily rewarding to observe as a provider."

As of the data cut-off date of August 20, 2020, a total of 44 patients have been treated with LentiGlobin for SCD in the HGB-205 (n=3) and HGB-206 (n=41) clinical studies. The HGB-206 total includes: Groups A (n=7), B (n=2) and C (n=32).

HGB-206: Group C Updated Efficacy Results

The 32 patients treated with LentiGlobin for SCD gene therapy in Group C of HGB-206 had up to 30.9 months of follow-up (median of 13.0; min-max: 1.1 30.9 months).

In patients with six or more months of follow-up whose hemoglobin fractions were available (n=22), median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin at Month 6. At last visit reported, total hemoglobin ranged from 9.6 15.1 g/dL and HbAT87Q levels ranged from 2.7 8.9 g/dL. At Month 6, the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin; median HbS was 50% and remained less than 60% at all follow-up timepoints. All patients in Group C were able to stop regular blood transfusions by three months post-treatment and remain off transfusions as of the data cut-off.

Nineteen patients treated in Group C had a history of severe VOEs, defined as at least four severe VOEs in the 24 months prior to informed consent (annualized rate of severe VOE min-max: 2.0 10.5 events) and at least six months follow-up after treatment with LentiGlobin for SCD. There have been no reports of severe VOEs in these Group C patients following treatment with LentiGlobin for SCD. In addition, all 19 patients had a complete resolution of VOEs after Month 6.

Hemolysis Markers

In SCD, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells, called hemolysis, occurs normally in the body. However, in sickle cell disease, hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.

Patients treated with LentiGlobin for SCD in Group C demonstrated near-normal levels in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 25 patients with 6 months of follow-up.

The medians for reticulocyte counts (n=23), lactate dehydrogenase (LDH) levels (n=21) and total bilirubin (n=24) continued to improve compared to screening values and stabilized by Month 6. In patients with Month 24 data (n=7), these values approached the upper limit of normal by Month 24. These results continue to suggest that treatment with LentiGlobin for SCD may improve biological markers to near-normal levels for SCD.

Pancellularity

As previously reported, assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells, as well as to assess if HbAT87Q was pancellular, or present throughout all of a patients red blood cells. In 25 patients with at least six months of follow-up, on average, more than 80% of red blood cells contained HbAT87Q, suggesting near-complete pancellularity of HbAT87Q distribution and with pancellularity further increasing over time.

HGB-206: Improvements in Health-Related Quality of Life

Health-related quality of life (HRQoL) findings in Group C patients treated with LentiGlobin for SCD in the HGB-206 study were generated using the Patient Reported Outcomes Measurement Information System 57 (PROMIS-57), a validated instrument in SCD.

Data assessing pain intensity experienced by nine Group C patients were analyzed according to baseline pain intensity scores relative to the general population normative value: 2.6 on a scale of 0-10, where 10 equals the most intense pain. Data were assessed at baseline, Month 6 and Month 12.

Of the five patients with baseline scores worse than the population normative value average, four demonstrated clinically meaningful reductions in pain intensity at Month 12; the group had a mean score of 6.0 at baseline and a mean score of 2.4 at Month 12. Of the four patients with better than or near population normative values at baseline, two reported improvement and two remained stable with a mean score of 2.3 at baseline and 0.8 at Month 12.

HGB-206: Group C Safety Results

As of August 20, 2020, the safety data from Group C patients in HGB-206 remain generally consistent with the known side effects of hematopoietic stem cell collection and myeloablative single-agent busulfan conditioning, as well as underlying SCD. One non-serious, Grade 2 adverse event (AE) of febrile neutropenia was considered related to LentiGlobin for SCD. There were no serious AEs related to LentiGlobin for SCD.

One patient with significant baseline SCD-related and cardiopulmonary disease died 20 months post-treatment; the treating physician and an independent monitoring committee agreed his death was unlikely related to LentiGlobin for SCD and that SCD-related cardiac and pulmonary disease contributed.

LentiGlobin for SCD Data at ASH

The presentation of HGB-206 Group C results and patient reported outcomes research are now available on demand on the ASH conference website:

About HGB-206

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=32). A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

About LentiGlobin for SCD (bb1111)

LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.

The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.

LentiGlobin for SCD is investigational and has not been approved in any geography.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for LentiGlobin for Sickle Cell Disease to treat SCD; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials; the risk that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidates, resulting in delay to our anticipated timelines for regulatory submissions, including our applications for marketing approval; and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Follow this link:
Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe...

Read More...

Gene Therapy Global Market Insights, Analysis and Forecasts, 2015-2019 & 2020-2025 – Lentivirus, Non-viral Plasmid Vector, AAV, Retrovirus &…

December 11th, 2020 2:56 pm

DUBLIN--(BUSINESS WIRE)--The "Gene Therapy Global Market Insights 2020, Analysis and Forecast to 2025, by Manufacturers, Regions, Technology, Product Type" report has been added to ResearchAndMarkets.com's offering.

This report describes the global market size of Gene Therapy from 2015 to 2019 and its CAGR from 2015 to 2019, and also forecasts its market size to the end of 2025 and its CAGR from 2020 to 2025. For the geography segment, regional supply, demand, major players, price is presented from 2015 to 2025.

The key countries for each region are also included such as the United States, China, Japan, India, Korea, ASEAN, Germany, France, UK, Italy, Spain, CIS, and Brazil etc.

For the competitor segment, the report includes global key players of Gene Therapy as well as some small players.

The information for each competitor includes:

Types Segment:

Companies Covered:

Key Topics Covered:

Chapter 1 Executive Summary

Chapter 2 Abbreviation and Acronyms

Chapter 3 Preface

3.1 Research Scope

3.2 Research Sources

3.2.1 Data Sources

3.2.2 Assumptions

3.3 Research Method

Chapter 4 Market Landscape

4.1 Market Overview

4.2 Classification/Types

4.3 Application/End-users

Chapter 5 Market Trend Analysis

5.1 Introduction

5.2 Drivers

5.3 Restraints

5.4 Opportunities

5.5 Threats

Chapter 6 Industry Chain Analysis

6.1 Upstream/Suppliers Analysis

6.2 Gene Therapy Analysis

6.2.1 Technology Analysis

6.2.2 Cost Analysis

6.2.3 Market Channel Analysis

6.3 Downstream Buyers/End-users

Chapter 7 Latest Market Dynamics

7.1 Latest News

7.2 Merger and Acquisition

7.3 Planned/Future Project

7.4 Policy Dynamics

Chapter 8 Trading Analysis

8.1 Export of Gene Therapy by Region

8.2 Import of Gene Therapy by Region

8.3 Balance of Trade

Chapter 9 Historical and Forecast Gene Therapy Market in North America (2015-2025)

9.1 Gene Therapy Market Size

9.2 Gene Therapy Demand by End Use

9.3 Competition by Players/Suppliers

9.4 Type Segmentation and Price

9.5 Key Countries Analysis

9.5.1 US

9.5.2 Canada

9.5.3 Mexico

Chapter 10 Historical and Forecast Gene Therapy Market in South America (2015-2025)

10.1 Gene Therapy Market Size

10.2 Gene Therapy Demand by End Use

10.3 Competition by Players/Suppliers

10.4 Type Segmentation and Price

10.5 Key Countries Analysis

10.5.1 Brazil

10.5.2 Argentina

10.5.3 Chile

10.5.4 Peru

Chapter 11 Historical and Forecast Gene Therapy Market in Asia & Pacific (2015-2025)

11.1 Gene Therapy Market Size

11.2 Gene Therapy Demand by End Use

11.3 Competition by Players/Suppliers

11.4 Type Segmentation and Price

11.5 Key Countries Analysis

11.5.1 China

11.5.2 India

11.5.3 Japan

11.5.4 South Korea

11.5.5 Asean

11.5.6 Australia

Chapter 12 Historical and Forecast Gene Therapy Market in Europe (2015-2025)

12.1 Gene Therapy Market Size

12.2 Gene Therapy Demand by End Use

12.3 Competition by Players/Suppliers

12.4 Type Segmentation and Price

12.5 Key Countries Analysis

12.5.1 Germany

12.5.2 France

12.5.3 UK

12.5.4 Italy

12.5.5 Spain

12.5.6 Belgium

12.5.7 Netherlands

12.5.8 Austria

12.5.9 Poland

12.5.10 Russia

Chapter 13 Historical and Forecast Gene Therapy Market in MEA (2015-2025)

13.1 Gene Therapy Market Size

13.2 Gene Therapy Demand by End Use

13.3 Competition by Players/Suppliers

13.4 Type Segmentation and Price

13.5 Key Countries Analysis

13.5.1 Egypt

13.5.2 Israel

13.5.3 South Africa

13.5.4 Gcc

13.5.5 Turkey

See more here:
Gene Therapy Global Market Insights, Analysis and Forecasts, 2015-2019 & 2020-2025 - Lentivirus, Non-viral Plasmid Vector, AAV, Retrovirus &...

Read More...

Navigating the Complexities of AAV Scale-Up and Manufacturing – Genetic Engineering & Biotechnology News

December 11th, 2020 2:56 pm

View Supplement

The global viral vectors and plasmid DNA manufacturing market was valued at $319.01 million in 2019 and is expected to reach over $1.3 billion by 2027, according to a report from Precedence Research, which points out that viral vectors have become ideal for gene transfer due to their efficient gene delivery, high transfection efficiency, and stable gene expression. Further, an upsurge in the registration of clinical trials on viral vectormediated gene therapy is stimulating demand for viral vectors in gene transfer.

The growing pervasiveness of target disorders and diseases, the accessibility of funding for gene therapy development, current research into viral vectorbased cell and gene therapies, and efficacy of viral vectors in gene therapy delivery are together supporting the marketgrowth, notes the Precedence Research study.

The adeno associated virus (AAV) vector is the platform of choice for delivering gene therapeutics. But, as Nice Insight reports, the biggest challenges facing gene therapy lie in the areas of process development, manufacturing, and analytical technologies.

To address these issues we put together this special supplement entitled Navigating the Complexities of AAV Scale-Up and Manufacturing. Inside you will find ideas and advice on choosing the right starting material, ensuring the right scalable platform technology for maximizing titer, optimizing the AAV downstream purification process, and carrying out approved product process, characterization and QC testing for lot release. Leading gene therapy scientists in academia and experts in industry have been interviewed for critical insights on these topics. They will also give their thoughts on the future of the gene therapy industry, its trajectory over the next 5 to 10 years and the technologies that will accelerate further development of this field.

Sponsored by:

More:
Navigating the Complexities of AAV Scale-Up and Manufacturing - Genetic Engineering & Biotechnology News

Read More...

Global Gene Therapy Market Report 2020: Market is Expected to Recover and Reach $6.84 Billion in 2023 – Forecast to 2030 – GlobeNewswire

December 11th, 2020 2:56 pm

Dublin, Dec. 08, 2020 (GLOBE NEWSWIRE) -- The "Gene Therapy Global Market Report 2020-30: COVID-19 Growth and Change" report has been added to ResearchAndMarkets.com's offering.

Gene Therapy Global Market Report 2020-30: COVID-19 Growth and Change provides the strategists, marketers and senior management with the critical information they need to assess the global gene therapy market market.

Major players in the gene therapy market are Novartis AG, Bluebird Bio, Inc., Spark Therapeutics, Inc., Audentes Therapeutics, Voyager Therapeutics, Applied Genetic Technologies Corporation, UniQure N.V., Celgene Corporation, Cellectis S.A. and Sangamo Therapeutics.

The global gene therapy market is expected to decline from $3.22 billion in 2019 to $3.18 billion in 2020 at a compound annual growth rate (CAGR) of -1.30%. The decline is mainly due to the COVID-19 outbreak that has led to restrictive containment measures involving social distancing, remote working, and the closure of industries and other commercial activities resulting in operational challenges. The market is then expected to recover and reach $6.84 billion in 2023 at a CAGR of 29.09%.

The gene therapy market consists of sales of gene therapy related services by entities (organizations, sole traders and partnerships) that manufacture gene therapy drugs. Gene therapy is used to replace faulty genes or add new genes to cure disease or improve the body's ability to fight disease. Only goods and services traded between entities or sold to end consumers are included.

North America was the largest region in the gene therapy market in 2019.

The gene therapy market covered in this report is segmented by gene type into antigen; cytokine; suicide gene; others. It is also segmented by vector into viral vector; non-viral vector; others, by application into oncological disorders; rare diseases; cardiovascular diseases; neurological disorders; infectious diseases; others, and by end users into hospitals; homecare; specialty clinics; others.

In December 2019, Roche, a Switzerland-based company, completed its acquisition of Spark Therapeutics for $4.3 billion. With this deal, Roche is expected to strengthen its presence in the gene therapy segment, support transformational therapies and increase its product portfolio. Spark Therapeutics is a US-based company involved in gene therapy.

The high prices of gene therapy medicines are expected to limit the growth of the gene therapy market. The pressure to contain costs and demonstrate value is widespread. Political uncertainty and persistent economic stress in numerous countries are calling into question the sustainability of public health care funding. In less wealthy countries, the lack of cost-effective therapies for cancer and other diseases has influenced the health conditions of the population and has led to a low average life expectancy.

Luxturna, a one-time treatment for acquired retinal eye disease, costs $850,000 in the US and 613,410 in the UK, despite a markdown that is applied through Britain's National Health Service. Zolgensma, for spinal muscular atrophy, is valued at $2.1 million in the US and Zynteglo, which focuses on a rare genetic blood disorder, costs $1.78 million, thus restraining the growth of the market.

The use of machine learning and artificial intelligence is gradually gaining popularity in the gene therapy market. Artificial intelligence (AI) is the simulation of human intelligence in machines, which are programmed to display their natural intelligence. Machine learning is a part of AI.

Machine learning and AI help companies in the gene therapy market to conduct a detailed analysis of all relevant data, provide insights between tumor and immune cell interactions, and offer a more accurate evaluation of tissue samples often conflicted between different evaluators. For instance, since January 2020, GlaxoSmithKline, a pharmaceutical company, has been investing in AI to optimize gene therapy and develop off-the-shelf solutions for patients. It is also expected to reduce turnaround time and also the cost of gene therapies.

Key Topics Covered:

1. Executive Summary

2. Gene Therapy Market Characteristics

3. Gene Therapy Market Size And Growth 3.1. Global Gene Therapy Historic Market, 2015 - 2019, $ Billion 3.1.1. Drivers Of The Market 3.1.2. Restraints On The Market 3.2. Global Gene Therapy Forecast Market, 2019 - 2023F, 2025F, 2030F, $ Billion 3.2.1. Drivers Of The Market 3.2.2. Restraints On the Market

4. Gene Therapy Market Segmentation 4.1. Global Gene Therapy Market, Segmentation By Gene Type, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

4.2. Global Gene Therapy Market, Segmentation By Vector, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

4.3. Global Gene Therapy Market, Segmentation By Application, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

4.4. Global Gene Therapy Market, Segmentation By End Users, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

5. Gene Therapy Market Regional And Country Analysis 5.1. Global Gene Therapy Market, Split By Region, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion 5.2. Global Gene Therapy Market, Split By Country, Historic and Forecast, 2015-2019, 2023F, 2025F, 2030F, $ Billion

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/y5rj2q

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

See the original post here:
Global Gene Therapy Market Report 2020: Market is Expected to Recover and Reach $6.84 Billion in 2023 - Forecast to 2030 - GlobeNewswire

Read More...

Page 272«..1020..271272273274..280290..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick