header logo image


Page 216«..1020..215216217218..230240..»

Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology – Sci-News.com

June 24th, 2021 1:50 am

The banks of the artificial water reservoirs in Tikal, a major city of the ancient Maya world in what is now northern Guatemala, were primarily fringed with trees and wild vegetation, according to an analysis of ancient environmental DNA.

Tikal was a flourishing seat of power, religion and trade for Mesoamerica in what is now northern Guatemala; at its zenith around 830 CE the population reached somewhere between 40,000 and 62,000 inhabitants. Image credit: David Lentz.

Almost all of Tikals city center was paved. That would get pretty hot during the dry season, said Professor David Lentz, a paleoethnobotanist in the Department of Biological Sciences at the University of Cincinnati.

So it would make sense that they would have places that were nice and cool right along the reservoir.

It must have been beautiful to look at with the water and trees and a welcome place for the kings and their families to go.

Previously, scientists learned about the crops and wild plants that grew in Tikal by studying ancient pollen or charcoal.

For the new study, Professor Lentz and his colleagues developed a novel system to analyze ancient plant DNA in the sediment of Tikals Temple and Palace water reservoirs.

They were able to amplify small strands of DNA from chloroplasts, the plant structures where photosynthesis takes place.

Then they could match the ancient Tikal samples with the DNA of known plant species in much the same way scientists amplify ribosomal DNA to identify species of bacteria.

The analysis was quite challenging because we were the first to do this, said Professor Alison Weiss, a microbiologist in the Department of Molecular Genetics, Biochemistry and Microbiology at the University of Cincinnati.

Bacterial ribosomal DNA has a database. There was no database for this. We had to take sequences one by one and search the general database to find the best match.

The team identified more than 30 species of trees (like cabbage bark and ramn), grasses, vines and flowering plants that lived along the banks of Tikals reservoirs.

Ramn is a dominant rainforest species in Guatemala, Professor Lentz said.

Why you would find ramn around the reservoir is a curiosity. The answer is they left this forest intact.

Tikal has a harsh climate. Its pretty tough to survive when you dont get rain for five months of the year. This reservoir would have been the font of their lives. So they sometimes would protect these places by not cutting down the trees and preserving a sacred grove.

Among dozens of plants native to the region, the authors found evidence of wild onion, fig, wild cherry and two types of grasses.

Grass seeds might have been introduced to the reservoir by visiting waterfowl. Grass would have proliferated at the edges of the reservoirs during dry seasons and droughts, Professor Lentz said.

Tikal had a series of devastating droughts. As the water levels dropped, they saw blue green algae blooms, which produce toxic substances.

The droughts were great for the grass but not so much for the forest plants that lived along the reservoirs banks.

Were these wild areas the equivalent of a park? I think they were. I dont know how public they would have been, he added.

This was a sacred area of the city surrounded by temples and palaces. I dont know if the commoners would have been that welcome.

A paper on the findings was published in the journal Scientific Reports.

_____

D.L. Lentz et al. 2021. Environmental DNA reveals arboreal cityscapes at the Ancient Maya Center of Tikal. Sci Rep 11, 12725; doi: 10.1038/s41598-021-91620-6

Link:
Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com

Read More...

Local foundation awards $1.25 million to MIND Institute to study rare genetic condition – UC Davis Health

June 24th, 2021 1:50 am

The RDM Positive Impact Foundation is funding an ambitious $1.25 million research project at the UC Davis MIND Institute to study SYNGAP1. The rare genetic condition causes seizures (epilepsy), intellectual disability and developmental delays. It is also highly associated with autism; about half of all SYNGAP1 patients have an autism diagnosis.

A staff member conducts research in the Segal Lab.

Ron Mittelstaedt and his wife, Darin, who live in El Dorado Hills, run the foundation. Hes the executive chairman of Waste Connections, a solid waste and recycling company with 20,000 employees in North America, and his family operates Toogood Estate Winery in Somerset. The Mittelstaedts have donated millions of dollars to organizations that help children over the past 15 years.

This time, its personal.

About three and-a-half years ago, Ron Mittelstaedts best friend died, leaving behind three sons and their families. Ive become sort of a surrogate dad, and now a surrogate grandfather, explained Mittelstaedt. One of those grandsons was diagnosed with a SYNGAP1 mutation a year and-a-half ago. With the familys support, Mittelstaedt is providing meaningful funding to the MIND Institute to advance research about the syndrome.

The reality is, like many rare conditions, there arent a lot of great options. So, were trying to find potentially life-changing treatment that hopefully may impact the lives of people with SYNGAP1, he said.

Mittelstaedt was previously on the MIND Institutes inaugural National Council of Visitors (then called the MIND Institute Advisory Council), and funded a successful research project that developed a blood test for Tourette syndrome.

A staff member in the Silverman lab conducts behavioral neuroscience research.

We are grateful to the Mittelstaedts for their generosity, said MIND Institute Director Leonard Abbeduto. As a collaborative hub for preclinical and clinical research on neurodevelopmental disability, the MIND Institute is uniquely suited to build on past successes and tackle the complexities of SYNGAP1 to provide help for families.

The funding also supports UC Davis' $2 billion fundraising campaign, Expect Greater: From UC Davis, For the World, the largest philanthropic endeavor in university history. Together, donors and UC Davis are advancing work to prepare future leaders, sustain healthier communities, and bring innovative solutions to today's most urgent challenges.

SYNGAP1-related non-syndromic intellectual disability is a rare neurodevelopmental condition caused by a variation in one gene. The gene, SYNGAP1, contains instructions for making a protein (SynGAP). This protein is located at the junctions between nerve cells, called synapses, and helps regulate changes important for memory and learning. The protein also helps regulate communication between neurons.

When the variation is present, the SYNGAP1 protein in cells is reduced which causes an increase in the excitability in the synapses. This makes it difficult for neurons to communicate and increases the likelihood of seizure events. This can lead to a variety of symptoms:

Jill Silverman

SYNGAP1 syndrome affects 1-4 out of 10,000 people. The first patient was identified in 2009.

The MIND Institutes interventional genetics team includes faculty who specialize in multiple research areas.

Ron Mittelstaedt

Each of us is a world expert in our particular discipline, so bringing us all together means the chances of success are much more likely, said Jill Silverman, associate professor in the Department of Psychiatry and Behavioral Sciences and an internationally recognized expert in the use of rodent models for therapeutic development. Silvermans Lab is known for its expertise in behavioral neuroscience research.

In addition to Silverman, the SYNGAP1 team includes three other MIND Institute faculty members:

The sum of the group is going to be much greater than anything we could have done alone, said Fink, whose lab focuses on therapeutic development for neurodevelopmental conditions and neurodegenerative diseases. The fact that the foundation has funded us as a team, across multiple centers and programs is really unique. This funding brings us all together for an important project.

Kyle Fink in his lab, which focuses on therapeutic development for neurodevelopmental conditions and neurodegenerative diseases.

The researchers will work on parallel tracks, each contributing a piece of the puzzle.

Silverman will conduct specialized behavioral tests on mouse models of SYNGAP1, using tools with corresponding metrics in humans, such as EEGs (a type of brain scan) to determine clinically relevant outcomes.

Nord and Fink will create a new mouse model that contains the mutated human SYNGAP1 gene, while Segal and Fink will create new molecular therapies to counter that mutated gene. Theyll also figure out how to deliver those therapies to the brain.

Were not just trying to treat the symptoms of the disease with a drug, explained Segal, whose lab specializes in molecular analysis. We are trying to change the underlying genetic condition, and our particular approach is to do that in a way that does not change the DNA sequence. We use tools to change the gene expression instead, which we think will make safer therapies. Its really a state-of-the-art approach. Its molecular therapy.

David Segal working in his lab, which specializes in molecular analysis.

The collaborative approach, often called team science, coupled with the RDM Positive Impact Foundations support, allows for an ambitious, fast-tracked research program. The $1.25 million frees the researchers from the need to apply for multiple federal grants and enables them to focus immediately on SYNGAP1.

The team excels in whats often called bench to bedside research, translating results from the lab directly into therapies for patients.

We see these patients, we meet with them, were on Zoom calls with them and I want to find something that works for them. I want to change their lives. Thats what Im driven by, Silverman said.

Silverman, Fink and Segal have had previous success with their work on another rare genetic condition, Angelman syndrome, which causes developmental delay, speech and balance challenges and intellectual disability.

David Segal

Their labs helped to create and characterize the first rat model of Angelman syndrome last year. The Segal lab also created a protein therapeutic that could increase the level of the affected gene in mouse models of Angelman syndrome, a major discovery.

All three labs are still working on a wide range of therapeutics for Angelman, including molecular therapies delivered with viruses or stem cells and novel small molecule compounds.

Ron Mittelstaedt is hoping for another success story, this time with SYNGAP1, but hes also realistic about the research process.

We are all very aware that going down this path doesnt guarantee anything except the ability to get up to bat, and we could get a hit or strike out. But doing nothing guarantees you dont get a hit, so its important for us to take action, and were hopeful well hit a home run.

UC Davis researchers get $3 million FAST grant to find treatment for Angelman syndrome

The UC Davis MIND Institute in Sacramento, Calif. was founded in 1998 as a unique interdisciplinary research center where families, community leaders, researchers, clinicians and volunteers work together toward a common goal: researching causes, treatments and potential prevention of neurodevelopmental disabilities. The institute has major research efforts in autism, fragile X syndrome, chromosome 22q11.2 deletion syndrome, attention-deficit/hyperactivity disorder (ADHD) and Down syndrome. More information about the institute and its Distinguished Lecturer Series, including previous presentations in this series, is available on the Web at mindinstitute.ucdavis.edu.

See original here:
Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health

Read More...

Xlife Sciences AG: Collaboration with the University of Marburg – Yahoo Finance

June 24th, 2021 1:50 am

Inventum Genetics GmbH and Universitt Marburg agree on a collaboration

The project company of Xlife Sciences AG Inventum Genetics GmbH has signed a collaboration agreement with the Philipps-University of Marburg. In this way, Inventum Genetics has the exclusive opportunity to develop new therapeutic targets using high-quality genetic data.

ZUERICH, SWITZERLAND / ACCESSWIRE / June 22, 2021 / The cooperation between Inventum Genetics and the University of Marburg is a long-term agreement. In a first projects, new therapeutic targets and biomarkers for oncological, neurodegenerative and age-related diseases are be identified using the latest genetic and molecular biological processes. Oliver R. Baumann, CEO der Xlife Sciences, is delighted with the additional prospects for drug development: "All common diseases, like the majority of all oncological, neurodegenerative and age-associated diseases, are multifactorial in cause, not just caused by a singular genetic defect. Rather, multifactorial diseases are characterized by the fact that they are based on (exogenous) environmental factors and (endogenous) genetic risk factors. In this particular project with the University of Marburg, cellular disease mechanisms of multifactorial diseases are to be elucidated. For this purpose, cells are stimulated with exogenous risk factors. It will then be examined how the cells react to it depending on their genetic makeup."

The agreement with the Philipps-University of Marburg gives the university the right to pursue the results achieved in its own research and to industrialize them, provided Inventum Genetics does not use the results itself. In this case, Inventum Genetics would benefit from the royalties generated by the university.

About the Philipps-University MarburgThe Institute for Human Genetics at the Faculty of Medicine at the Philipps-University of Marburg, under the leadership of Professor Dr. Johannes Schumacher is well recognized by high-ranking publications in research in the field of human genetics. The institute operates a molecular laboratory with high quality equipment and is therefore able to deal with complex issues in the context of molecular genetic research.

Story continues

About Inventum Genetics GmbHInventum Genetics GmbH is a subsidiary of Xlife Sciences AG, which is active in research, development, manufacturing and the sale of medical and biotechnological products, especially in the field of genetics. For more information, please visit: https://www.inventumgenetics.com

About Xlife Sciences AGXlife Sciences AG is a Swiss company with focus on investing in promising technologies in the life science industry. Xlife Sciences AG is building the bridge from research and development to healthcare markets by supporting researchers and entrepreneurs in positioning, structuring, developing and implementing their concepts. Together with industrial partners or universities, Xlife Sciences AG leads projects through the proof-of-concept phase after an invention disclosure or start-up. Subsequently, the firm focuses on out-licensing or selling the company, often with a combination of a strategic partnership. Xlife Sciences AG offers its investors direct access to the further development of innovative and future-oriented technologies at a very early stage. For more information, please visit: http://www.xlifesciences.ch

For media inquiries:Dennis Lennartz, Head Investor Relations, Xlife Sciences AG, Tel. +41 44 385 84 60, dennis.lennartz@xlifesciences.ch

For scientific inquiries:Dr. Frank Plger, Chief Scientific Officer, Xlife Sciences AG, Tel. +41 44 385 84 62,frank.ploeger@xlifesciences.ch

SOURCE: Xlife Sciences AG

View source version on accesswire.com: https://www.accesswire.com/652623/Xlife-Sciences-AG-Collaboration-with-the-University-of-Marburg

More here:
Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance

Read More...

Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me – The Financial Express

June 24th, 2021 1:50 am

'If genetic testing is done at the appropriate stage, some diseases can be prevented, cured or managed better.'

The Indian diagnostics industry has been rapidly evolving over the years and its emerged to be a key component of the healthcare segment. The arrival of Covid-19 pandemic pushed the healthcare industry to the sting worldwide by throwing many challenges, and therefore the diagnostic sector too witnessed a large transition during this phase. Whether its about keeping pace with the concept of telemedicine or addressing the change within the consumer psyche, the diagnostic sector has been facing different challenges with the increase of covid cases. As COVID-19 has spread, Indias diagnostic sector has been battling the virus at the forefront. In conversation with Financial Express Neeraj Gupta, Founder and CEO of Genes2me shared his experience and threw light on the challenges, learnings, and therefore the road ahead for the diagnostic businesses in India. Excerpts:

How has the diagnostic sector evolved since the arrival of Covid-19? Being an industry leader, what were some initial challenges you faced?Previously, the molecular diagnostic sector was not harnessed. We have seen that pandemic pushed the healthcare industry to the edge, but Indias diagnostic sector rose to meet the challenges. As COVID-19 has spread, Indias diagnostic sector has been combating the virus at the forefront. Initially, the Indian health care system was not fully prepared for such a massive crisis like COVID-19. We faced challenges regarding imports for raw materials and logistics due to global supply chain disruptions. This is also one of the reasons why we decided to use our expertise in molecular diagnostics and expand the portfolio into IVD manufacturing.

How has Genes2me come to the forefront during the pandemic? Tell us about your journey of delivering 40 Million covid test kits in India to date.

We take pride in the fact that Genes2Me has been working at the front line from the very first day of the pandemic. We developed several IVD kits, including Real-Time PCR Kits, VTM Kit, RNA Extraction Kits, NGS Kits and multiplexed genotyping assays for COVID-19 detection in a quick turnaround time.

Our ViralDtect-II Real-Time PCR Kit for COVID-19 has been a real turning point. It was the first Made in India Real-Time PCR Kit with comprehensive coverage of three genes that are specific to SARS-COV-2.

Also, there have been reports of new strains of SARS-COV-2 being detected. Genes2Me has developed a Unique Mutation Classifier assay that can rapidly differentiate 40 variants between 16 SARS-CoV-2 strains. This can help in the quick genetic screening of large sections of the population.

Genes2Me have been working tirelessly and have delivered more than 40 million COVID-19 testing kits to date. Also, to meet the sudden demand surge of the second Covid wave, we ramped our manufacturing facility from 9million per month to 6 million per week. In fact, during this time, Genes2Me contributed over 20% of the entire Indian testing needs for RT-PCR.

From where the idea of stepping into manufacturing IVD kits came under the Make in India initiative? What have been the challenges and opportunities?

When the pandemic hit us, not many diagnostic labs had the necessary infrastructure or accreditations to offer Covid testing facilities. As the pandemic gathered force, there was not only demand for faster testing but also testing in much higher volumes. The response to that struggle was the idea behind IVD kits under the Make in India initiative.The Indian government has taken progressive steps to boost the capacities of the domestic IVD sector. Genes2Me is also working to collaborate with the government and prestigious medical institutes to offer services on the innovative classifier panel of SARS-COV-2. In this manner, we can all be better prepared to face the challenges posed by this virus frequently changing genetic makeup.

What changes should diagnostic companies bring to fight the pandemic and meet the current market demand?

Post Covid-19, we have seen the entry of many companies into the Molecular Diagnostics Testing and Kit Manufacturing segment. Unfortunately, not many companies have been able to deliver quality genetic solutions in a fast turnaround time. This is evident from the fact that around 10-15 players used to compete in the Tender queries of IVD products till last year. But now, only 4-5 bidders are participating in the Tender queries as most of the companies have failed to satisfy customer expectations of Quality Product.

If you want to build a sustainable diagnostic company, you should maintain Quality Manufacturing and Testing Standards. Genes2Me has responded by building capacities and training faster to keep up with the surge without compromising the sensitivity of Genetic Solutions.

What have been some recent developments and future plans of Genes2me?

Genes2Me is vigorously working to leverage the large installed base of molecular testing platforms across the globe. With the help of our expertise and access to advanced technologies, we have developed several assays for Infectious diseases, Oncology and Reproductive Health in India. In the past, most of these test panels were import-dependent from other countries.

In addition, under the Make in India initiative, we are working to develop diverse nucleic acid research and diagnostics solutions along with NGS reagents for genome sequencing. Again, these solutions were dependent on import from different nations.

Genes2Me has also ramped up Covid-19 testing facilities by installing more infrastructure, hiring manpower and training them meticulously to ensure smooth functioning. Our advanced high throughput Real-Time PCR testing Lab at Gurgaon, Haryana, has an unmatched capacity to perform 8K-10K tests per day.

How do you see the future of Genetic Diagnostics in India?

India has a population of more than 1.26 billion people, with 26 million births occurring every year. This means that the burden of a genetic disease is very high. With the help of genetic diagnostics, many diseases can be predicted with great accuracy. If genetic testing is done at the appropriate stage, some diseases can be prevented, cured or managed better.

Genetics diagnostics in India is on the verge of transformation. There has been widespread awareness and recognition of the increasing incidence of congenital and hereditary genetic diseases in urban India. More and more people are seeking genetic testing and counselling services. Genetic diagnostic in India will evolve from a niche speciality to a wide scope of applications for complex diseases and personal use.

Get live Stock Prices from BSE, NSE, US Market and latest NAV, portfolio of Mutual Funds, Check out latest IPO News, Best Performing IPOs, calculate your tax by Income Tax Calculator, know markets Top Gainers, Top Losers & Best Equity Funds. Like us on Facebook and follow us on Twitter.

Financial Express is now on Telegram. Click here to join our channel and stay updated with the latest Biz news and updates.

Read the original post:
Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express

Read More...

Precision Medicine: Improving Health With Personalized Solutions – BioSpace

June 24th, 2021 1:50 am

Cancer treatments are improving as scientists are finding ways to develop new techniques and treatments. One of which is precision medicine, where they have focused on improving patients health using personalized solutions.

RELATED: Oxfords Genomics Pushing the Boundaries of Personalized Medicine

Precision medicine, in the simplest definition, is the way a patient is treated, diagnosed, or prevent disease by checking his/her genetics, environment, or lifestyle.

This type of treatment is related to pharmacogenomics. Where pharmacogenomics is the study of how a persons gene affects his/her response to a drug, it is used to treat a person through effective and safe medication tailored to their genes.

Precision medicine is now commonly used on patients treated with pancreatic cancer, lung cancer, melanoma/skin cancer, and colon cancer. It is also used to detect and treat HIV and cystic fibrosis.

Slowly, it is also seen in treatments for heart diseases, Alzheimers disease, rheumatoid arthritis, and multiple sclerosis.

In cancer patients, most medical facilities treat every patient the same way. However, studies suggest that not everyone responds to treatments the same way. One persons body may react differently with medicines as compared to another person.

Genetics plays a role in treating tumors, and precision medicine promise to tailor treatments based on a persons genes. It is seeing how a tumor would react to certain treatments that may work for other people.

Precision medicine can be used in the prevention and prediction of disease and management and treatment. Here are some examples of how it is used to treat, prevent, or treat people in a practical setting.

Checking your familys history of diseases and illnesses can somehow determine what you are capable of acquiring. If a family member has a history of cancer, heart diseases, diabetes, high blood pressure, or other chronic diseases, there is a high chance of you getting it.

With this data and information, a doctor can create treatment plans to prevent these from happening to you.

For example, when the doctor finds out that any of your family members had breast cancer, then the chances of you having it is likely. The doctor will then decide for you to have regular mammograms to check for any signs.

Newborns (usually right after theyre conceived) are screened where blood samples are taken. This test will check if they have any pre-existing conditions acquired from their parents, check hearing capabilities or heart defects, among others.

This way, the baby will be treated accordingly if any crucial or life-threatening conditions are seen.

For example, the newborn screening shows Baby Mary has severe combined immunodeficiency (SCID), she will receive a bone marrow transplant immediately to battle her condition. SCID is life-threatening to babies since its responsible for fighting off infections.

Personal trackers such as smartwatches or other mobile devices that check on your health can be lifesavers and be tools for precision medicine.

For example, a person is notified by his smart device that he is experiencing abnormal heart rates even if he has no family history of any heart condition. He then goes to see a doctor because of this and has been diagnosed with atrial fibrillation. This device could have saved his life because that condition can lead to a stroke. Now, he can treat his condition before it worsens.

Genomic sequencing can be used to control and track-out infectious diseases. Similar to whats been used to track COVID-19, this approach shows a DNA of a germ or virus where scientists have the opportunity to learn more about it and find a treatment a cure for it.

An example of this is the COVID-19, where scientists were able to extract samples from those infected with the virus and learn about it and find vaccines and cures for it, which is now slowly happening to us.

As a treatment, tumor profiling is genetic testing of a tumor. It is a way for doctors to choose which kind of treatment they would use for a condition. They would know from this process if cancer will return or would need radiation or chemotherapy.

For example, Jennys breast cancer returned and is diagnosed again. But her tumor profiling reveals she has triple-negative breast cancer. Her approach to this, along with her doctors, is a more aggressive one, including chemotherapy, radiation, and mastectomy.

RELATED: FDA Approves GSKs Checkpoint Inhibitor Jemperli for Endometrial Cancer

As mentioned above, pharmacogenomics studies how a person reacts to a certain treatment based on their genes. Doctors using this treatment can gauge if a certain medicine can be effective or not based on a patients history. They can also determine if the patient will experience any serious side effects.

For example, John needs to undergo Fluorouracil (5-FU), which is a type of chemotherapy. But if John has a low level of an enzyme called dihydropyrimidine dehydrogenase (DPD), which helps metabolize fluorouracil in the body, the doctors would need to check on him using pharmacogenomics. If he has a low dose of fluorouracil, an oncologist will decrease the dosage in the chemotherapy to prevent any serious side effects.

With these examples revealed, some facilities and companies provide precision medicine to improve the living conditions of patients treated with different diseases.

ExactCure is a French start-up that combines artificial intelligence with precision medicine to create flawless software for the use of drugs to be used by patients depending on their kidney status, genotype, gender, or age.

Patients use this service by inputting their data, and ExactCure will give the necessary medications based on the information provided.

Tepthera is a Swiss start-up that focuses on cancer immunotherapy, infectious and auto-immune diseases.

Their focus concerning precision medicine is on identifying T cell antigens for better and personalized therapies and treatment.

Caris Life Sciences is a molecular science company that focuses on precision medicine in oncology. They are working on the development of innovative therapeutics and advance potential treatments for cancer in the clinic.

They develop profiling assays for oncology that scan DNA, RNA and proteins to reveal a molecular blueprint to help physicians determine the best course of treatment for cancer patients.

Precigen is a Maryland-based company that is advancing its UltraCAR-T cell therapy approach to treating cancer.

They are now developing next-generation gene and cell therapies that can change the treatment paradigm in immuno-oncology, autoimmune disorders and infectious diseases.

There are numerous ways to treat diseases and medical conditions with the use of precision medicine. Scientists are continually finding out ways to improve patients lives by using their traits.

Read more:
Precision Medicine: Improving Health With Personalized Solutions - BioSpace

Read More...

Half of Portland areas 22 top National Merit winners hail from just 2 schools – OregonLive

June 24th, 2021 1:50 am

Across metro Portland, 22 students from 10 public and private high schools have won the coveted $2,500 National Merit scholarships given to students who show exceptional promise.

Half of those 2021 winners attended just two high schools: Sunset and Westview, both in the Beaverton School District.

Three other high schools had two winners each: the private Jesuit and Catlin Gabel schools and Lake Oswego High.

Winners of the $2,500 scholarships are judged the best of the best among National Merit Scholars, with what the scholarship organization says are the strongest combination of accomplishments, skills and potential for success in college. Panels of high school counselors and college admission officers pick them based on grades, difficulty of courses taken, standardized test scores, an essay and recommendations from a teacher and their high school.

Normally, as happened this year, National Merit officials limit that to 26 students across Oregon. In addition to the 22 winners from the Portland area, students in Ashland, Bend, Eugene and Silverton also made the elite achiever list.

The National Merit Corporation provides extremely limited information about winners, and The Oregonian/OregonLive found most of this information through independent research. Some school officials, including those at Sunset High, did not respond to requests for information about their winning students.

Here are the winning Portland-area students with additional information as available:

Catlin Gabel

Sophie Kruse, senior class president at Catlin Gabel, is headed to Columbia University to study engineering.

Sophia Kruse

She was a state leader in the Students Demand Action office, which mobilizes and educates voters about gun violence, and was elected senior class president at Catlin Gabel. She competed for four years as a member of Lincoln Highs varsity lacrosse team and was named player of the year in Portland Public Schools her senior year. She competed on Catlins cross country team and its soccer team, which won two state championships. She worked on her schools environmental action team all four years of high school. She will attend Columbia University, where she plans to study engineering.

Tiffany Toh, a standout in debat and robotics, is headed to Yale University.

Tiffany Toh

During high school, she was interested in music and debate and was known for being extremely energetic, according to the Catlin website. She served as a three-year member and eventual co-leader of the winning robotics team, The Flaming Chickens. She was a member of the varsity swim team and served as a school ambassador. As a senior, she was named one of 10 Deans List students among 90,000 who competed in events leading to the international high school robotics competition. She is headed to Yale University and told National Merit officials she is likely to major in biomedical engineering.

Krishna Home school

Gopal Goel, who placed fourth in the nation's oldest and most prestigious math and science competition for high school seniors, is headed to MIT to study math and physics.

Gopal Goel

He won $100,000 the nations oldest and most prestigious science and math competition for high school seniors for math research that made connections between two subjects regarding randomness and probability. He told contest organizers he hopes his work will aid in the search for the true nature of quantum gravity, more commonly known as the theory of everything. He can solve a Rubiks cube even while blindfolded. He won a silver medal at the 2020 International Math Olympiad. He mentored students on the U.S. Physics Olympiad team. He is headed to the Massachusetts Institute of Technology, better known as MIT, and plans to study math and physics.

Jesuit

Eliza Daigle, who reveled in lacrosse, science and volunteerism during high school, is headed to Whitman College, where she plans to study biochemistry and related fields.

Eliza Daigle

She earned class academic achievement awards in science and Spanish. She served as co-captain of the womens varsity lacrosse team, which won its first state championship in 2019 and won again this year. She took part in Oregon Health & Science Universitys partnership in scientific inquiry program, which introduces high school students to the scientific process and laboratory research. In turn, she served as a co-leader of Jesuits junior scientists program, which aims to encourage a love of science through fun experiments that develop problem solving and critical thinking skills. She volunteered at Trinity Episcopal Cathedral and contributed more than 100 hours of service to Good Samaritan Medical Center. She is headed to Whitman College, where she will play lacrosse and plans to major in biochemistry, biophysics and molecular biology.

Passionate about computer science, problem solving and research, Marissa Kuo is headed to Santa Clara University to study computer science and engineering.

Marissa Kuo

She received the outstanding applied chemistry award from the Portland chapter of the American Chemical Society at the Northwest Science Fair for her research on green chemistry methods for degrading neurotoxic herbicides. She interned at Portland State University in a computer science lab where she studied computer algorithms for night vision. She helped lead her schools Asian Student Union and research club. She competed on the Jesuit swim team. Passionate about computer science, problem solving, and research, she is headed to Santa Clara University to study computer science and engineering.

Lakeridge

Roselyn Dai

She volunteered as a peer intervention specialist at the Portland-based teen crisis hotline YouthLine and was honored by the Oregon Chinese Coalition for her volunteerism. She also volunteered at two local medical centers and was a multi-year member of her schools speech and debate team. She told National Merit officials she is likely to study medicine.

Lake Oswego

Jackie Booth, who played varsity tennis and taught younger students math for three years, is headed to the University of Southern California.

Jaqueline Jackie Booth

She competed all four years on the varsity tennis team and volunteered regularly at Portland Rescue Mission and other community organizations. She co-led the schools fellowship club and worked as a math instructor at Mathnasium Learning Center since her sophomore year. She is headed to the University of Southern California, where she plans to major in philosophy, politics and law.

George Danzelaud, a poet, violin player, singer-songwriter and varsity sprinter, is headed to the University of Southern California to study business and computer science.Randal Leitch Photography

George Danzelaud

A varsity sprinter who loves both science and the arts, he was elected president of his senior class. He performed a virtual concert with his brother to raise money for the Oregon Humane Society in the wake of last summers deadly wildfires. He performed solo violin at Carnegie Hall, won a gold award for his poetry and is a self-taught guitarist and singer who published three songs on iTunes and Spotify. He is headed to the University of Southern California and plans to double major in computer science and business.

Oregon Episcopal School

Lila Schweinfurth

She was the state winner of U.S. Stockholm Junior Water Prize. Her research on predicting harmful algal blooms to improve water quality also put her among the five Oregon students named semifinalists in the nations oldest and most prestigious math and science compeitions for high school seniors. She plays violin and plans to study science and prepare for a career involving research, according to National Merit officials.

Sunset

Anika Gupta is passionate about the real-world applications of science and technology and has deeply researched aquaponics in pursuit of sustainably growing food. She will attend the University of Southern California, where she plans to double major in business and computer science.

Anika Gupta

Anika Gupta is passionate about equity and real-world applicability of science and technology. Four years ago, she started a classroom aquaponics project that shes since grown into a bioengineering syllabus used by more than 700 student researchers. Shes working alongside the NASA Ames Research Center to learn to grow food sustainably. Anika also co-founded Project Portland Carry, a nonprofit to support students during COVID through educational helplines and accessible lunch delivery. As president of the Sunset speech and debate club, Anika rebuilt her club amid what she called existential challenges and led Sunset to a state championship victory this spring. She personally was named Oregons top extemporaneous speaker. She is also a recipient of the prestigious Coca-Cola Scholarship. She is headed to the University of Southern California, where she plans to study business and computer science.

Amuthan Amu Ilavarasan

He won a scholarship for winning an art competition. He designs and sells t-shirts. He told National Merit officials he was likely to study environmental science.

Eric Kim conducted two years of research on bioinformatics at Oregon Health & Science University, plays clarinet and is a competitive Taekwondo sparring athlete. He is headed to Columbia University.

Eric Kim

He founded and led the Sunset Science Ambassadors program that matches high school science scholars with fifth-graders to mentor them through hands-on science projects. He is one of five Oregon students named a Regeneron Scholar for his biology research as part of the nations oldest and most prestigious science and math competitions for high school seniors. A longtime volunteer for hard-of-hearing individuals, he designed see-through face masks to aid their communication during the pandemic and helped people all over the country get materials and instructions needed to make them. He conducted two years of research on bioinformatics at Oregon Health & Science University, plays clarinet and is a competitive Taekwondo sparring athlete. He is headed to Columbia University.

Kevin Seog led Oregon's top team in the Tests of Engineering Aptitude, Mathematics, and Science contest in 2020 and 2021. He is headed to Berkeley, where he plans to double major in business and computer science.

Kevin Minjay Seog

He co-led Oregons top team in the Tests of Engineering Aptitude, Mathematics, and Science contest this spring and last. He provided illustrations for a college-level economics book focusing on risk and insurance. He plays piano and guitar. He is headed to the University of California, Berkeley, where he intends to double major in computer science and business.

Stan Wing founded and led a nonprofit dedicated to providing free debate opportunities to middle schoolers across Oregon. He is headed to New York Universitys Stern School of Business to study business with concentrations in finance and econometrics.

Stanley Wang

During high school, he honed his skills as a landscape and portrait photographer. He competed as a member of Sunsets golf team. His primary extracurricular involvement during high school was with Health Occupations Students of America, an organization that holds state and international business competitions and conferences for high school students and its health careers counterpart. He helped found and served as president of the Oregon Middle School Speech and Debate League, a nonprofit dedicated to providing free debate opportunities to middle schoolers across Oregon. He is headed to New York Universitys Stern School of Business to study business with concentrations in finance and econometrics.

Lele Yang was a frequent volunteer during high school, including leading a group that taught computer science lessons to middle and high school students. She is headed to Penn State University, where she will take part in an accelerated premedical and medical program.

Lele Zixin Yang

Yang was president of Tech4Girls, in which she taught computer science lessons to middle and high school students. She gathered resources and grants for the program and also trained student teachers to help with the classes. She is an artist and a competitive fencer. Yang will enter the accelerated premedical-medical program at Penn State University in the fall.

Tualatin

Aven Sadighi, who competed in sports and business, is headed to Oregon State Universitys Honors College to study computer science with a focus on artificial intelligence.

Aven Sadighi

The Tualatin High valedictorian volunteered for three years tutoring fellow students. He competed and medaled at the 2020 Health Occupations Students of America state conference. He spent three years as a member of Pack Leaders, the student group that aids incoming freshmen in navigating their first year of high school. He competed freshman year in cross country, baseball and track and spent many hours volunteering in the community as a member of the National Honors Society. Hes headed to Oregon State Universitys Honors College to study computer science with a focus on artificial intelligence.

West Linn

Gillian Herbert

Herbert plans to study public policy in college, National Merit officials indicated.

Westview

Sangana Ilango

Ilango won a Congressional App Challenge for her mobile phone application, Spoiler Alert!, that helps consumers determine if food and medications are safe to use. She founded a club called CodeHERS to help encourage elementary girls to try computer coding. She worked as a research assistant at Oregon Health & Science University in summer 2019, interned at Mentor Graphics in summer 2020 and is interning with the product management team at Oregon Sesame this summer. Shes headed to the University of Southern California and will major in computer science.

Adam Jones

He conducted genomic research in Portland State Universitys Extreme Virus Lab. He competed at least one year for his high schools baseball, track and soccer teams. He is likely to study engineering in college, according to National Merit officials.

Pranav Mandyam, who placed in the top 10 in an international high school competition for biomedical laboratory science, is headed to Rice University to study cell biology and genetics.

Pranav Mandyam

He conducted research on acutemyeloidleukemia at Oregon Health & Science Universitys Knight Cancer Institute for two years. He was named one of the top 10 national finalists biomedical laboratory sciences by the Health Occupations Students of America. He was twice named a USA Biolympiadsemifinalist. He captained Westviews Science Olympiad Team, which made it to nationals. He volunteered at Legacy Good SamaritanHospital and received national-level recognition in multiple math competitions. He plays piano and received American College of Musicians high school diploma in social music. He is headed to Rice University, where he plans to major in biosciences with a concentration in cell biology and genetics.

Sophie Ong competed in speech and debate and did two years of research analyzing cancer genome databases and studying the impact of mRNA on tumors. At the University of California, Los Angeles, she plans to study genetics and related fields on a premed track.

Sophia Joy Ong

She competed as a member of Westviews speech and debate team. She served as co-president of Westviews chapter of Health Occupations Students of America and won that groups state championship in prepared speaking. She conducted research on cancer for two years at Oregon Health & Science University. She was also a captain of the school speech and debate team and competed at tournaments on both the state and national level. She is an avid guitar player and holds a third degree black belt in taekwondo. Shes headed to the University of California, Los Angeles, to study microbiology, immunology, and molecular genetics.

John Wang

He competed in and volunteered at many middle and high school robotics competitions, including serving as captain of his high school team. He competed as a member of Westviews varsity cross country and track teams. He was captain of the science club and president of the schools quiz bowl team, according to his profile on LinkedIn. He helped conduct research as an intern at Portland State Universitys Extreme Virus Lab. He is likely to study bioinformatics in college, National Merit officials said.

Note: If you know, or better are, one of these students, and I dont have a photo or full information, please contact me so I can make the coverage more complete.

-- Betsy Hammond; betsyhammond@oregonian.com; @chalkup

Excerpt from:
Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive

Read More...

Investing in stem cells, the building blocks of the body – MoneyWeek

June 24th, 2021 1:50 am

Imagine being able to reverse blindness, cure multiple sclerosis (MS), or rebuild your heart muscles after a heart attack. For the past few decades, research into stem cells, the building blocks of tissues and organs, has raised the prospect of medical advances of this kind yet it has produced relatively few approved treatments. But that could be about to change, says Robin Ali, professor of human molecular genetics of Kings College London. Just as gene therapy went from being a fantasy with little practical value to becoming a major area of treatment, stem cells are within a few years of reaching the medical mainstream. Whats more, developments in synthetic biology, the process of engineering and re-engineering cells, could make stem cells even more effective.

Stem cells are essentially the bodys raw material: basic cells from which all other cells with particular functions are generated. They are found in various organs and tissues, including the brain, blood, bone marrow and skin. The primary promise of adult stem cells lies in regenerative medicine, says Professor Ali.

Stem cells go through several rounds of division in order to produce specialist cells; a blood stem cell can be used to produce blood cells and skin stem cells can be used to produce skin cells. So in theory you can take adult stem cells from one person and transplant them into another person in order to promote the growth of new cells and tissue.

In practice, however, things have proved more complicated, since the number of stem cells in a persons body is relatively limited and they are hard to access. Scientists were also previously restricted by the fact that adult stem cells could only produce one specific type of cell (so blood stem cells couldnt produce skin cells, for instance).

In their quest for a universal stem cell, some scientists initially focused on stem cells from human embryos, but that remains a controversial method, not only because harvesting stem cells involves destroying the embryo, but also because there is a much higher risk of rejection of embryonic stem cells by the recipients immune system.

The good news is that in 2006 Japanese scientist Shinya Yamanaka of Kyoto University and his team discovered a technique for creating what they call induced pluripotent stem cells (iPSC). The research, for which they won a Nobel Prize in 2012, showed that you can rewind adult stem cells development process so that they became embryo-like stem cells. These cells can then be repurposed into any type of stem cells. So you could turn skin stem cells into iPSCs, which could in turn be turned into blood stem cells.

This major breakthrough has two main benefits. Firstly, because iPSCs are derived from adults, they dont come with the ethical problems associated with embryonic stem cells. Whats more, the risk of the body rejecting the cells is much lower as they come from another adult or are produced by the patient. In recent years scientists have refined this technique to the extent that we now have a recipe for making all types of cells, as well as a growing ability to multiply the number of stem cells, says Professor Ali.

Having the blueprint for manufacturing stem cells isnt quite enough on its own and several barriers remain, admits Professor Ali. For example, we still need to be able to manufacture large numbers of stem cells at a reasonable cost. Ensuring that the stem cells, once they are in the recipient, carry out their function of making new cells and tissue remains a work in progress. Finally, regulators are currently taking a hard line towards the technology, insisting on exhaustive testing and slowing research down.

The good news, Professor Ali believes, is that all these problems are not insurmountable as scientists get better at re-engineering adult cells (a process known as synthetic biology). The costs of manufacturing large numbers of stem cells are falling and this can only speed up as more companies invest in the area. There are also a finite number of different human antigens (the parts of the immune system that lead a body to reject a cell), so it should be possible to produce a bank of iPSC cells for the most popular antigen types.

While the attitude of regulators is harder to predict, Professor Ali is confident that it needs only one major breakthrough for the entire sector to secure a large amount of research from the top drug and biotech firms. Indeed, he believes that effective applications are likely in the next few years in areas where there are already established transplant procedures, such as blood transfusion, cartilage and corneas. The breakthrough may come in ophthalmology (the treatment of eye disorders) as you only need to stimulate the development of a relatively small number of cells to restore someones eyesight.

In addition to helping the body repair its own tissues and organs by creating new cells, adult stem cells can also indirectly aid regeneration by delivering other molecules and proteins to parts of the body where they are needed, says Ralph Kern, president and chief medical officer of biotechnology company BrainStorm Cell Therapeutics.

For example, BrainStorm has developed NurOwn, a cellular technology using peoples own cells to deliver neurotrophic factors (NTFs), proteins that can promote the repair of tissue in the nervous system. NurOwn works by modifying so-called Mesenchymal stem cells (MSCs) from a persons bone marrow. The re-transplanted mesenchymal stem cells can then deliver higher quantities of NTFs and other repair molecules.

At present BrainStorm is using its stem-cell therapy to focus on diseases of the brain and nervous system, such as amyotrophic lateral sclerosis (ALS, also known as Lou Gehrigs disease), MS and Huntingtons disease. The data from a recent final-stage trial suggests that the treatment may be able to halt the progression of ALS in those who have the early stage of the disease. Phase-two trial (the second of three stages of clinical trials) of the technique in MS patients also showed that those who underwent the treatment experienced an improvement in the functioning of their body.

Kern notes that MSCs are a particularly promising area of research. They are considered relatively safe, with few side effects, and can be frozen, which improves efficiency and drastically cuts down the amount of bone marrow that needs to be extracted from each patient.

Because the manufacture of MSC cells has become so efficient, NurOwn can be used to get years of therapy in one blood draw. Whats more, the cells can be reintroduced into patients bodies via a simple lumbar puncture into the spine, which can be done as an outpatient procedure, with no need for an overnight stay in hospital.

Kern emphasises that the rapid progress in our ability to modify cells is opening up new opportunities for using stem cells as a molecular delivery platform. Through taking advantage of the latest advances in the science of cellular therapies, BrainStorm is developing a technique to vary the molecules that its stem cells deliver so they can be more closely targeted to the particular condition being treated. BrainStorm is also trying to use smaller fragments of the modified cells, known as exosomes, in the hope that these can be more easily delivered and absorbed by the body and further improve its ability to avoid immune-system reactions to unrelated donors. One of BrainStorms most interesting projects is to use exosomes to repair the long-term lung damage from Covid-19, a particular problem for those with long Covid-19. Early preclinical trials show that modified exosomes delivered into the lungs of animals led to remarkable improvements in their condition. This included increasing the lungs oxygen capacity, reducing inflammation, and decreasing clotting.

Overall, while Kern admits that you cant say that stem cells are a cure for every condition, there is a lot of evidence that in many specific cases they have the potential to be the best option, with fewer side effects. With Americas Food and Drug Administration recently deciding to approve Biogens Alzheimers drug, Kern thinks that they have become much more open to approving products in diseases that are currently considered untreatable. As a result, he thinks that a significant number of adult stem-cell treatments will be approved within the next five to ten years.

Adult stem cells and synthetic biology arent just useful in treatments, says Dr Mark Kotter, CEO and founder of Bit Bio, a company spun out of Cambridge University. They are also set to revolutionise drug discovery. At present, companies start out by testing large numbers of different drug combinations in animals, before finding one that seems to be most effective. They then start a process of clinical trials with humans to test whether the drug is safe, followed by an analysis to see whether it has any effects.

Not only is this process extremely lengthy, but it is also inefficient, because human and animal biology, while similar in many respects, can differ greatly for many conditions. Many drugs that seem promising in animals end up being rejected when they are used on humans. This leads to a high failure rate. Indeed, when you take the failures into account, it has been estimated that it may cost as much to around $2bn to develop the typical drug.

As a result, pharma companies are now realising that you have to insert the human element at a pre-clinical stage by at least using human tissues, says Kotter. The problem is that until recently such tissues were scarce, since they were only available from biopsies or surgery. However, by using synthetic biology to transform adult stem cells from the skin or other parts of the body into other types of stem cells, researchers can potentially grow their own cells, or even whole tissues, in the laboratory, allowing them to integrate the human element at a much earlier stage.

Kotter has direct experience of this himself. He originally spent several decades studying the brain. However, because he had to rely on animal tissue for much of his research he became frustrated that he was turning into a rat doctor.

And when it came to the brain, the differences between human and rat biology were particularly stark. In fact, some human conditions, such as Alzheimers, dont even naturally appear in rodents, so researchers typically use mice and rats engineered to develop something that looks like Alzheimers. But even this isnt a completely accurate representation of what happens in humans.

As a result of his frustration, Kotter sought a way to create human tissues. It initially took six months. However, his company, Bit Bio, managed to cut costs and greatly accelerate the process. The companys technology now allows it to grow tissues in the laboratory in a matter of days, on an industrial scale. Whats more, the tissues can also be designed not just for particular conditions, such as dementia and Huntingdons disease, but also for particular sub-types of diseases.

Kotter and Bit Bio are currently working with Charles River Laboratories, a global company that has been involved in around 80% of drugs approved by the US Food and Drug Administration over the last three years, to commercialise this product. They have already attracted interest from some of the ten largest drug companies in the world, who believe that it will not only reduce the chances of failure, but also speed up development. Early estimates suggest that the process could double the chance of a successful trial, effectively cutting the cost of each approved drug by around 50% from $2bn to just $1bn. This in turn could increase the number of successful drugs on the market.

Two years ago my colleague Dr Mike Tubbs tipped Fate Therapeutics (Nasdaq: FATE). Since then, the share price has soared by 280%, thanks to growing interest from other drug companies (such as Janssen Biotech and ONO Pharmaceutical) in its cancer treatments involving genetically modified iPSCs.

Fate has no fewer than seven iPSC-derived treatments undergoing trials, with several more in the pre-clinical stage. While it is still losing money, it has over $790m cash on hand, which should be more than enough to support it while it develops its drugs.

As mentioned in the main story, the American-Israeli biotechnology company BrainStorm Cell Therapeutics (Nasdaq: BCLI) is developing treatments that aim to use stem cells as a delivery mechanism for proteins. While the phase-three trial (the final stage of clinical trials) of its proprietary NurOwn system for treatment of Amyotrophic lateral sclerosis (ALS, or Lou Gehrigs disease) did not fully succeed, promising results for those in the early stages of the disease mean that the company is thinking about running a new trial aimed at those patients. It also has an ongoing phase-two trial for those with MS, a phase-one trial in Alzheimers patients, as well as various preclinical programmes aimed at Parkinsons, Huntingtons, autistic spectrum disorder and peripheral nerve injury. Like Fate Therapeutics, BrainStorm is currently unprofitable.

Australian biotechnology company Mesoblast (Nasdaq: MESO) takes mesenchymal stem cells from the patient and modifies them so that they can absorb proteins that promote tissue repair and regeneration. At present Mesoblast is working with larger drug and biotech companies, including Novartis, to develop this technique for conditions ranging from heart disease to Covid-19. Several of these projects are close to being completed.

While the US Food and Drug Administration (FDA) controversially rejected Mesoblasts treatment remestemcel-L for use in children who have suffered from reactions to bone-marrow transplants against the advice of the Food and Drug Administrations own advisory committee the firm is confident that the FDA will eventually change its mind.

One stem-cell company that has already reached profitability is Vericel (Nasdaq: VCEL). Vericels flagship MACI products use adult stem cells taken from the patient to grow replacement cartilage, which can then be re-transplanted into the patient, speeding up their recovery from knee injuries. It has also developed a skin replacement based on skin stem cells.

While earnings remain relatively small, Vericel expects profitability to soar fivefold over the next year alone as the company starts to benefit from economies of scale and runs further trials to expand the range of patients who can benefit.

British micro-cap biotech ReNeuron (Aim: RENE) is developing adult stem-cell treatments for several conditions. It is currently carrying out clinical trials for patients with retinal degeneration and those recovering from the effects of having a stroke. ReNeuron has also developed its own induced pluripotent stem cell (iPSC) platform for research purposes and is seeking collaborations with other drug and biotech companies.

Like other small biotech firms in this area, it is not making any money, so it is an extremely risky investment although the rewards could be huge if any of its treatments show positive results from their clinical trials.

More here:
Investing in stem cells, the building blocks of the body - MoneyWeek

Read More...

95 and Counting – Arlington Connection

June 24th, 2021 1:49 am

95-year-old Howard Eisenberg says he was carded recently and asked to provide proof of his age as he boarded a train on his way to visit his 80-year-old girlfriend.

Three different conductors carded me. I said, Look, isn't my gray hair enough? The conductor said, Nope, that could have started at 40. They insisted on seeing my driver's license and boy, was I proud.

Whats the secret to a long life? Three local seniors reflect on their lives and share their accomplishments and their advice to younger generations.

Born in Manhattan, Eisenberg, who now lives in Alexandria, began his lifelong career as a writer while doing a stint in the military.

I started writing at 18. WWII had just ended and my captain learned that I'd had a couple of years of college. He said, PFC Eisenberg, the Nazis who were in this barracks left a mimeograph machine and a typewriter here. Write me a newspaper to improve morale. You don't say no to your company commander, so I wrote The Rifleman."

Eisenberg, who recently completed the script for a musical, says hes been a writer ever since. I've written for radio and television. Ive written magazine articles, he said. I shared magazine and book bylines with my amazing late wife, Arlene.

To him, age is just a number and he says he has no intention of retiring. There is so much to write about that I don't plan to quit until my fingers break off in the computer keys, he said. And then I'll try dictating.

He has three children, six grandchildren and three great grandchildren. I have to do a bit of math to keep track of progeny, he jokes.

Eisenberg doesnt attribute his longevity to genetics. My mom only reached 62 and my dad his mid-70s, he said. But those were meat-and-potato days. You ate what tasted best, not what was good for you.

Instead, he attributes his good health to prioritizing nutrition and taking vitamins. A healthy diet and regular exercise are two habits that Eisenberg attributes to hitting the 95+ mark. Down with sugar and white flour, he said. The more colorful the food the better.

Broccoli, spinach, asparagus, yams and low-fat, sugar-free ice cream are among the foods that he enjoys. Of course, this is common sense, not prescription, he said.

Inquisitiveness is a trait that Eisenberg advises younger generations to acquire. One of his regrets is not being bold enough to ask questions when he didnt understand something in his youth.

I joined my outfit as an infantry replacement and they gave me a bazooka, which I'd only fired twice and that was in basic training, he said. I didn't remember how to shoot it but was sadly too embarrassed to ask guidance from one of the Battle of the Bulge seasoned veterans. Big mistake.

So when a machine gun nest stopped us and the captain shouted, Bazooka up front, I was momentarily frozen in place, continued Eisenberg. The GI carrying bazooka rockets saved me. He turned and ran to the rear with the ammo and I had to chase and tackle him. By the time I got back with the ammo the machine gun was kaput.

This experience taught him the value of seeking as much information as needed to gain the understanding necessary to complete a task.

You may not carry a bazooka, but there will be many times at different stages in your life when you won't know how to do something. Don't be a shy guy or gal. Ask questions, ask questions, ask questions. Ask until you're sure you understand. Then do it.

Adele Aspinwall Bethesda, 98

Adele Aspinwall was an English teacher in Chicago for 68 years, mostly in the inner city.

"I enjoyed looking out for and encouraging children that some people had written off," she said. "I've had so many students come back to me and tell me how I motivated them and touched their lives. That's how I knew I was born to be a teacher."

When she retired, she moved to Bethesda to be closer to her daughter, three grandchildren and five great grandchildren. Now, 98-year-old Aspinwall lives in the mother-in-laws suite in the home of her daughter.

Aspinwalls mother lived to be 87 years old and her father was 67 when he died. She believes her longevity comes from exercise and a healthy diet.

I would advise young people to begin preserving their health and develop and maintain a sense of style when they're in their 30s, said Aspinwall. Stay current with trends. I dont need to dress like a 25-year-old, but I also dont have to look frumpy. When you look well-dressed then you feel good.

Aspinwall is in a bridge club and plays regularly with a group of friends. She says this helps keep her mind sharp.

Maintain friendships and good relationships with your family members, especially your children, she said. "If thats difficult then set boundaries. But the most important thing is to stay in contact with other people. I dont focus on my age, I just focus on maintaining my health, style and relationships.

Miriam Halprin, 103 of Springfield

Miriam Halprin of Springfield is 103 and credits her longevity to eating and drinking in moderation. You need a positive mental outlook, good genes, a good laugh and an extremely high degree of vanity.

Born in Vermont, she worked as a legal secretary at Hofstra Law School. After retiring at age 75, she moved to be closer to her family which includes one son and one grandson.

These days, she spends her time reading, watching movies and playing cards to keep her mind sharp.

Halprin says her son is her greatest accomplishment, and the life advice that she would give to younger generations is, Always keep a positive outlook and a sense of humor.

Read the original post:
95 and Counting - Arlington Connection

Read More...

What Lifestyle Decisions Will Help You Become a "Cognitive Super-Ager"? – InsideHook

June 24th, 2021 1:49 am

In a recent profile, The New York Times investigates the phenomenon of cognitive super-agers people whose brains remain miraculously youthful even as they join the ranks of centenarians.

For these very few less than 1% of the United States population lives to 100, and cognitive super-agers are a fraction of that their twilight years are not marked by a sudden drop in brainpower. On the contrary, the neurofuction of cognitive super-agers doesnt change much at all after their 70th birthdays. They routinely receive top marks on tests designed to root out declines in understanding, communication, focus or memory.

How is this possible? Researchers are currently studying two methods by which cognitive super-agers are able to ward off the most common form of dementia, Alzheimers disease: via resistance or resilience. With the former, scientists say, some brains are just able to avoid damage. Genetics and lifestyle play a role. But with the latter, fascinatingly, some brains show signs of aging commiserate with Alzheimers and are able to weather the damage regardless. These people, Dr Yaakov Stern tells The New York Times, have a cognitive reserve that enables them to cope better with pathological brain changes.

Of course, longevity isnt appealing to everyone; it isnt uncommon to hear people wishing for an exit in their late seventies or early eighties, the sentiment likely influenced by watching some older relative suffer his or her way into too-old age. But as researchers unlock the secrets of societys healthiest centenarians, and people continue to live longer (the cohort aged 90 and older is Americas fastest-growing population sector), a new kind of promise might begin to perform: live quality years into your hundreds.

No one has the answers yet on how to achieve this. There seem to be some genetic predispositions that help brains that literally start out larger and stronger are less likely to atrophy (the same way a muscle in an arm shrinks due to lack of use or aging). Thickness of the cingulate cortex seems to matter, as does ones prevalence of von Economo neurons.

But both resistance and resilience, researchers believe, can be influenced by lifestyle decisions. There are things you can do right now to stick around longer (and actually have your wits about you while doing so). One of the top recommendations? Enriching experiences. That could mean pursuing higher education, working a job that requires complex problem-solving, or mastering a new craft. Also on the list protecting your hearing and vision (which are closely intertwined with cognitive function), finding a place in a supportive community, making time for leisure and play, eating a Mediterranean-style diet, and exercising regularly.

There are no guarantees here. You may not live to 100 if you do these things, and you may make it there and never remember your own name, but for now, theyre your best shot. The good news? Theyre all things you could look back on after a life lived to only 70 and know you did it right.

Thanks for reading InsideHook. Sign up for our daily newsletter and be in the know.

See the original post:
What Lifestyle Decisions Will Help You Become a "Cognitive Super-Ager"? - InsideHook

Read More...

Wentworth weight gains steal the Wagyu show – Queensland Country Life

June 24th, 2021 1:49 am

WAGYU F1 steers selected for flat bone and suppleness of hide stole the show in the Wagyu Challenge weight gain phase of the RNA Paddock to Palate competition.

The commercial Wagyu operation Wentworth Cattle Co, owned by Richard and Dyan Hughes and family from Clermont in central Queensland, almost made it a clean sweep of the Wagyu section.

Their best pen of 50 per cent Wagyu cross steers took out first place with an average daily gain of 1.159 kilograms and second place with a gain of 1.097kg. One steer recorded the highest individual weight gain of 1.289kg/day over 360 days for an exit weight of 800kg.

The long-fed Wagyu programs are designed to achieve a consistent lower gain over a long period of time, to enhance the marbling for which the breed is famous.

TOP PERFORMER: The steer from Wentworth which collected the highest individual weight gain of 1.289kg/day over 360 days for an exit weight of 800kg.

Wentworth Cattle Co started with a Brahman cross Red Poll cow base, and currently joins around 8000 F1s through to purebred Wagyu females at Strathablyn near Bowen, and Table Top at Collinsville, managed by Bristow and Ureisha Hughes.

The steers move to Wentworth as weaners where they are backgrounded before being sold to various feedlots at 300 to 480kgs, destined for a number of Wagyu branded products, including Mort & Co's award-winning Phoenix Beef.

Sires of the winning 2021 pen were from Hornery Group's Bar H at River Lea, Comet, Guyra's Door Key Wagyu and Kelva Camm's Cross Bar Wagyu at Clermont.

However, Dyan Hughes explained these steers were chosen while Wentworth was still very much in drought in April 2020 and pedigree was not in the main criteria.

"Flat bone delivers meat tenderness, suppleness in the hide allows for growth and greasiness of spine reflects hormonal activity which delivers flavour," she said.

"The steers were hand-selected for these indicators - good eating quality is the result, but these are also linked to fertility.

"Since the start of time, Wagyu breeders have pursued meat quality and that has also provided exceptional fertility. That also works conversely."

Wentworth uses a Wagyu geneticist to help with bloodline decisions.

"Our daughter Kelva works with Alan Hoey designing mating plans - it's a 'this goes with that' approach to create the ultimate animal," Mrs Hughes said.

"We aim for a balance in frame, marbling and feed conversion in both sexes, combined with fertility, milk and resilience in females.

"We are building longevity into our herd, and making it one that is adapted to the vagaries of northern conditions.

"This is a herd that thrives under regenerative management practices. We like to keep things as natural as we can, hence the move to knock the horns off using polled genetics."

Interestingly, over the 25 years they've been involved with Wagyu breeding the Hughes have used genetics from many of their fellow competitors in this year's competition, including polled Wagyu genetics that became available four years ago.

"Data on the polls is just starting to come through, and it's very promising," Mrs Hughes said.

"Sapphire Feedlot at Goondiwindi achieved a remarkable result with our steers, however F1s often outperform higher-content cattle in weight gains. The real challenge is in the next classes, relating to carcass, carcase dollar value and the ultimate test, the taste-off."

The Hughes family consider it a privilege to compete in competitions like the RNA Paddock to Palate, saying benchmarking against industry leaders and lessons learned are invaluable.

Continued here:
Wentworth weight gains steal the Wagyu show - Queensland Country Life

Read More...

People on the Move: Appointments, retirements, achievements – Beef Central

June 24th, 2021 1:49 am

Beef Central publishes an occasional summary of appointments, departures and achievements occurring across the red meat and livestock supply chain. Send details for entries toadmin@beefcentral.com

Australias Chief Veterinary Officer Dr Mark Schipp has recently completed his three-year term as President of the World Organisation for Animal Health (OIE).

Mark Schipp

Dr Schipp last month represented Australia at the 88th general session (virtual) of the OIE, his last official function as president.

Secretary of the Federal Department of Agriculture, Water and the Environment, Andrew Metcalfe, said Dr Schipps leadership as OIE President had reinforced Australias global influence on a large range of issues related to animal health and welfare. Australias leading role in setting international standards around animal health and welfare has been strengthened by his important work, Mr Metcalfe said.

Dr Schipp said the challenges of the COVID pandemic had highlighted the importance of the work that the OIE does.

It also presents an important opportunity for OIE members to strengthen relationships under the One Health frameworkthe interconnection between humans, animals and our shared environment, he said.

Despite the physical distance that may separate us through our collaborative, approach, we continue to address the many important global issues related to animal health and welfare.

With wildlife the source of many emerging and zoonotic diseases, during Dr Schipps term as OIE President he oversaw the development of a Wildlife Health Framework by the OIE Working Group on Wildlife to create new approaches to wildlife health management.

He also achieved increased OIE member engagement and participation in international standard setting, through strong advocacy and Australian funding for international workshops on implementation of standards related to animal health and welfare.

Under Dr Schipps leadership, the OIE also implemented the OIE Observatory, which is collecting data on the relevance and impact of the OIEs standards to members, allowing this information to support more effective solutions to global animal health and welfare challenges.

As a veterinarian, I am very aware of the need for global animal health and veterinary services to be strong, influential and effective contributors to addressing the global animal health challenges that we face, such as antimicrobial resistance, food insecurity and identification of future pandemics at their source, Dr Schipp said.

The Australian Agricultural Co has promoted David Harris as the companys new chief operating officer, following the recent departure of former COO, Anna Speer.

Ms Speer left AA Co in late April to take up a new role as head of Woolworths new Greenstock red meat supply chain business.

In March 2020, Mr Harris was appointed to the role of AA Cos COO supply chain. Prior to this he was working with AA Co from 2016 in a contracted capacity reporting to the CEO and Board to improve operational aspects of the business.

Since Anna Speers departure, Mr Harris has taken over her previous COO responsibility for Pastoral Operations, as well as his original role as supply chain COO.

Earlier in his career he worked in the lotfeeding sector, holding executive positions with Stanbroke, Smithfield Cattle Co and running his own private agricultural consultancy business and family farming operations in central western New South Wales. He holds a Bachelor of Rural Science from the University of New England specialising in ruminant nutrition and meat science.

In other recent AA Co appointments and promotions, AA Cos experienced pastoral operations manager Michael Johnson has been promoted to the new position of head of pastoral operations.

Previously he managed AA Cos Barkly Group and Brunette Downs station. He originally joined AA Co in 2010 as manager of Avon and Austral Downs, having previously worked with Stanbroke Pastoral Co where he gained extensive experience in the cattle industry, progressing his career from stockman into management roles across a number of enterprises throughout Northern Australia.

He currently sits as an executive of the Northern Territory Cattlemens Association and chairs the Barkly Regional Advisory Council. He will continue to operate out of Brunette Downs.

In other recent AA Co appointments, the new role of head of supply chain operations has been filled by Patrick Vialle, who has had extensive supply chain management experience in the corporate food sector with global giants, Nestle, Retail Food Group and Parmalat.

Mr Vialle, who joined the AA Co business last September before the recent promotion, will oversee supply chain operations, based out of AA Cos Brisbane office.

Meat & Livestock Australia has made a series of recent appointments in middle and upper management roles, both here and in overseas offices.

Scott Cameron has been appointed Group Industry Insights & Strategy Manager, in the Marketing & Insights team.

Scott Cameron

He starts in his new role today, 23 June, following the recent departure of Natalie Isaac. Prior to joining MLA, Mr Cameron already had a depth of experience across marketing, insights and strategy roles in the corporate world, including roles with Nestle, Coca-Cola, and Frucor Suntory.

In his 18 months with MLA, he has been a champion for collaboration across business units and the industry. Working closely with the Insights and International Markets teams, Mr Cameron has contributed to the Category Growth Driver projects for Japan, Korea, and Australia. In addition, he has played a significant role with the Sustainability Discovery Sprint.

He has led strategic engagement with major retailers, with a focus on evolving their approach to Shopper Activation and Category Management, as well as building strong networks amongst brand owners and the processing sector.

Meanwhile, former global industry insights & strategy manager Natalie Isaac finished up with the industry service delivery company yesterday, after five years with MLA. She has accepted a new role with Huon Aquaculture in Tasmania.

Across a range of projects from Data Transformation to the Category Growth Drivers, Ms Isaac connected and engaged effectively with teams including ISC, MSA, Genetics, and Science & Innovation that previously had limited interaction with the marketing & insights team.

She played a key role in the development of MLAs global markets strategy, which then led to the development of market classification. This has been widely used both internally and externally by commercial stakeholders to make better decisions identifying high value growth opportunities.

In other recent MLA appointments:

The man responsible for the smooth operations behind last months hugely successful Beef Australia 2021 event in Rockhampton has moved on.

Beef 2021 CEO Ian Mill

Ian Mill has accepted a position from August, as acting chief executive of the Rockhampton Jockey Club, an organisation he has served as a board member for since 2018. Mr Mill led a team of 80 staff and more than 200 volunteers to deliver Beef 2021, which attracted 115,866 people across the week-long internationally recognised beef industry exposition.

Horse racing has been a passion of mine for a long time, both as a volunteer on the local board, as well as having shares in racehorses albeit on somewhat of a social scale, Mr Mill said.

The Thoroughbred industry has always been something I have followed keenly, so when the opportunity arose to step into this role, and with my contract at Beef Australia coming to an end, I jumped at the chance.

Beef Australia board chairman Bryce Camm acknowledged his contribution.

We greatly appreciate Ians contribution to Beef 2021 which despite the challenges and unknowns associated with Covid has been hailed an overwhelming success by all, from our tens of thousands of visitors and participants through to our stakeholders, Mr Camm said. Many of Ians management skills and abilities displayed in delivering Beef 2021 will serve him and the Rockhampton Jockey Club well in his new role. We thank Ian for his service and wish him continued success in serving the Rockhampton community which he is so passionate about.

After spending the past three years working as Chief Scientist on secondment from the University of New England, the Food Agility CRC has announce that Professor David Lamb will now join the CRC full time.

In addition to continuing his role as Chief Scientist overseeing research across the entire program of CRC activities, Professor Lamb will be heading the Food Agility CRCs newGlobal Digital Farminitiative. He continues his ongoing contribution to academia, through both research and teaching, as an Adjunct Professor of UNE.

Specialist rural property agency JLL has appointed Jock Grimshaw to join JLLs Agribusiness team based in Melbourne.

Jock Grimshaw

Formerly working with Colliers International, he will report to JLLs Director of Agribusiness, Clayton Smith, and will focus on campaigns across southern markets including Victoria, New South Wales and South Australia.

Following the boom in the Australian rural market, JLL had recorded more than $160 million in sales for the first quarter of 2021, the company said in a statement supporting Mr Grimshaws appointment.

Jocks experience and reputation in the marketplace will provide us with access to a broad cross-section of clients and asset types, and his knowledge will greatly benefit our clients, Clayton Smith said.

The Australian agribusiness market continues to assert its position as a secure and stable asset class. The market is currently the strongest it has been in ten years, and sales activity is not predicted to slow as family, private, institutional and non-traditional buyers look to the rural sector for investment longevity and stability.

Growing our Agribusiness team is a clear indicator of the strength of this sector and shows the confidence we have in strengthening our service offering in southern markets as Melbourne recovers from the COVID-19 pandemic, Mr Smith said.

Experienced bull breeder Ian Durkin has been elected chairman of the Herefords Australia board.

In line with past practice, all Herefords Australia board positions are declared open in the first board meeting after the breed societys annual general meeting.

Both Trish Worth and Ian Durkin were nominated for the position of chairman, with Ian Durkin duly elected by HAL directors.

Mr Durkin was first elected to the board in May 2020 and held the position of member liaison representative. He owns and manages a mixed farming operation near Coolatai with his wife Shelley and three children.

The position of chairman is an important one, but I believe it is the combination of the diverse skills and experience of all directors that makes for an effective board, he said. I will be drawing on this team to ensure we have sound policies in place to support the advancement of the breed and good governance in place to strengthen the company.

I also understand members want to better understand the strategic direction for the breed. I look forward to the development of the next plan and the role the board plays in monitoring progress and reporting to members outcomes of our investments and activities.

Mr Durkin replaces Trish Worth, who served as chair for the past 12 months. Ms Worth continues her tenure as Herefords Australia director and has been appointed to the finance, audit and risk committee. In other HAL board appointments, Geoff Birchnell was elected as member liaison representative and Michael Crowley elected to the marketing committee.

The 2021 Herefords Australia Board comprises Ian Durkin (chair), Marc Greening (deputy chair), Mark Baker (company secretary), Sam Becker, Geoff Birchnell, Michael Crowley, Ian Durkin, Mark Duthie, Alex Sparkes, Trish Worth.

Smarter farming systems that thrive through drought are among the agricultural innovations recognised at the annual awards of the Australian Academy of Technology and Engineering (ATSE).

ATSEs prestigious annual ICM Agrifood Award is bestowed on applied scientists who have made significant contributions to the agriculture sector.

One of the 2021 winners was Dr Lindsay Bell, Farming Systems Scientist at CSIRO, for world-leading research helping dryland crop and livestock farmers manage climate variability.

Dr Bells research focuses on redesigning cropping systems and re-integrating crops and livestock to more efficiently use highly variable rainfall to increase profitability and reduce losses during droughts. He has been instrumental in developing dual-purpose canola that works both as a crop and a feedstock, and designing protocols to help farmers graze their crops at a time that reduces the risk of grain yield losses.

Growing up on a farm in western Queensland I have firsthand experience with many of the challenges facing agriculture, Dr Bell said.

This has driven me to try to identify practices, technology and markets that help farmers become more viable in the short and long term.

ATSE President Professor Hugh Bradlow congratulated the winners, saying the ICM Agrifood Awards recognise the vital role of R&D in advancing Australias strength as an agricultural powerhouse.

The Graham Centre for Agricultural Innovation has celebrated the achievements of PhD graduates during formal ceremonies at Charles Sturt University recently.

The graduates from the Centre, an alliance between Charles Sturt and the NSW Department of Primary Industries, were among the 600 graduates who attended the Universitys ceremonies in Wagga Wagga, which were postponed last year due to COVID-19.

Dr Cara Wilson and Dr Thomas Williams celebrate graduation at Charles Sturt University.

Charles Sturt University PhD graduate Dr Cara Wilsons PhD research through the Graham Centre examined the impact of hydatid disease on the beef industry in eastern Australia. As part of her research, Dr Wilson examined data from 1.1 million cattle slaughtered at a focus abattoir from 2010 to 2018.

She found the geographic distribution of hydatid-infected cattle was wider than previously thought, with losses to the abattoir from 2011 to 2017 of more than $650,000 in downgraded carcases.

Hydatid disease in beef cattle has important epidemiological and economic impacts on the Australian beef industry, she said. Improved knowledge and awareness of hydatid disease among Australian beef producers is required, and practical and cost-effective control measures need to be identified.

Dr Sajid Latifs research has given new insight on how annual pasture legumes can be used to suppress weeds in south eastern Australian farming systems.

His research examined legumes species such as biserrula, serradella, gland, bladder and arrow-leaf clover established as monocultures and as mixed stands.

Looking at both the above-ground competitive traits and the chemical interactions in the soil rhizosphere Dr Latif looked at the suppression of common annual weeds. He found the choice of pasture species impacted stand establishment, yearly regeneration and weed suppression in pastures, with arrow-leaf clover and biserrula suppressing annual weeds effectively.

Biomass accumulation in pasture species was found to contribute significantly to the reduction of weed biomass for the majority of species followed by light interception at the base of the canopy, Dr Latif said. The results also suggest that plant produced chemical interference is one of the key mechanisms of weed suppression in some of those species, including biserrula and serradella, he said.

Dr Jane Kelly has been awarded her PhD for research examining the prevalence, management and economic impact of seed contamination in sheep carcasses by barley grass.

The findings show the value of proactive and accurately timed integrated weed management strategies for influencing legume pasture composition, reducing barley grass populations and mitigating losses associated with seed contamination in grazing sheep in southern Australia.

Dr Thomas Williams PhD was focused on gastrointestinal nematodes in water buffalo, comparing production systems in Australia and Pakistan.

Go here to see the original:
People on the Move: Appointments, retirements, achievements - Beef Central

Read More...

Novel CAR-T Cell Therapy Produces Early and Deep Responses in Certain Patients with Multiple Myeloma – Curetoday.com

June 7th, 2021 1:57 am

Treatment with a single infusion of the novel CAR-T cell therapy ciltacabtagene autoleucel (cilta-cel) induced early and deep responses in a group of patients with relapsed/refractory multiple myeloma, according to results of a phase 2 study.

The findings, which were presented during the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting, demonstrated that a single-infusion of the CAR-T cell therapy resulted in an overall response rate (which includes a partial response or better) of 95% with a stringent complete response rate of 75%, and a very good partial response rate or better of 85%.

Cilta-cel, formerly JNJ-68284528, is a second-generation CAR-T cell therapy with two BCMA-targeting, single-domain antibodies designed to confer avidity. Previous data that were published from the phase 1b/2 CARTITUDE-1 trial demonstrated that single infusion of cilta-cel was associated with deep and durable response among heavily pretreated patients with relapsed/refractory disease.

Measuring minimal residual disease negativity, or the small number of cancer cells in the body after cancer treatment, was the main goal of the study. Other goals included assessing overall response rate, duration of response, as well as time and duration of minimal residual disease negativity and incidence and severity of side effects.

The study comprised 20 patients (median age, 60 years; 65% men) who were either refractory to treatment with the chemotherapy lenalidomide or relapsed after one to three prior lines of treatment. One of the patients was treated in an outpatient setting.

Twelve of the patients had received fewer than three lines of prior therapy, and the remaining individuals received three prior lines of therapy.

All the patients had been previously treated with a proteasome inhibitor, an immunomodulatory drug and the steroid dexamethasone. Almost all (95%) of the patients were exposed to alkylating agents, and 65% received treatment with Darzalex (daratumumab).

As of the data cutoff of January 2021, four evaluable patients achieved minimal residual disease negativity.

Blood-related side effects that occurred in 20% or more of the patients included neutropenia (95%), thrombocytopenia (80%), anemia (65%), lymphopenia (60%) and leukopenia (55%). Moreover, cytokine release syndrome (which involves the cytokines overstimulating the immune system so that it attacks healthy organs) occurred in 85% of patients, of which 10% were considered serious or severe.

The safety profile was manageable, including in the one patient that was treated in the outpatient setting, said study author Dr. Mounzer E. Agha, director of the Mario Lemieux Center for Blood Cancers and clinical director of Hematopoietic Stem Cell Transplantation at the UPMC Hillman Cancer Center in Pittsburgh, during a recorded presentation of the data. There were no cases of movement and neurocognitive adverse effects.

Agha noted that one death occurred 100 days after the infusion of cilta-cel due to COVID-19 infection and was assessed as treatment-related by the investigators.

Early and deep responses were observed with a single infusion of cilta-cel in lenalidomide refractory patients with multiple myeloma, who received one-to three prior lines of therapy, he concluded.

The CAR-T cell therapy is being evaluated in other cohorts of the CARTITUDE-2 in earlier line settings, as well as in the phase 3 CARTITUDE-4 study in patients with one to three prior lines of therapy.

For more news on cancer updates, research and education, dont forget tosubscribe to CUREs newsletters here.

Excerpt from:
Novel CAR-T Cell Therapy Produces Early and Deep Responses in Certain Patients with Multiple Myeloma - Curetoday.com

Read More...

Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver – Science Advances

June 7th, 2021 1:57 am

Abstract

Hepatocellular carcinoma (HCC) is driven by repeated rounds of inflammation, leading to fibrosis, cirrhosis, and, ultimately, cancer. A critical step in HCC formation is the transition from fibrosis to cirrhosis, which is associated with a change in the liver parenchyma called ductular reaction. Here, we report a genetically engineered mouse model of HCC driven by loss of macroautophagy and hemizygosity of phosphatase and tensin homolog, which develops HCC involving ductular reaction. We show through lineage tracing that, following loss of autophagy, mature hepatocytes dedifferentiate into biliary-like liver progenitor cells (ductular reaction), giving rise to HCC. Furthermore, this change is associated with deregulation of yes-associated protein and transcriptional coactivator with PDZ-binding motif transcription factors, and the combined, but not individual, deletion of these factors completely reverses the dedifferentiation capacity and tumorigenesis. These findings therefore increase our understanding of the cell of origin of HCC development and highlight new potential points for therapeutic intervention.

Liver cancer is predicted to be the third leading cause of cancer-related deaths by 2030 (1). Hepatocellular carcinoma (HCC) is the major form of liver cancer and develops in patients with chronic liver conditions, including viral hepatitis, as well as alcoholic and nonalcoholic fatty liver disease (2). Generally, chronic liver injuries lead to inflammation, stromal activation, regeneration, fibrosis, and cirrhosis before progression to HCC (3).

Autophagy (strictly macroautophagy but hereafter referred to simply as autophagy) is a catabolic membrane-trafficking process that serves to deliver cellular constituents including misfolded proteins and damaged organelles to lysosomes for degradation (4). There is now clear evidence that autophagy is important in various diseases including neurodegenerative diseases, chronic liver diseases, and cancer (57). The role of autophagy in cancer, however, is complex and not fully understood, with seemingly opposing roles described in different tumors and at different stages of tumor evolution (812). In the early stages of malignant transformation, autophagy removes damaged mitochondria responsible for the production of reactive oxygen species (ROS) (13) and prevents genomic instability (14), highlighting its role in preventing tumor initiation. Conversely, in established tumors, autophagy not only can adopt a protumorigenic role, for example, by promoting survival under hypoxic conditions (15) and supporting invasion and metastasis (16), but also can have a tumor-suppressive role by preventing the proliferative outgrowth of disseminated tumor cells from dormant states at metastatic sites (1719).

In the liver, autophagy has primarily been described as tumor suppressive (11). Liver-specific deletion of the central autophagy-related protein 5 (ATG5) or ATG7 in mice leads to the formation of liver steatosis, inflammation, ROS production, oval cell formation, fibrosis, hepatomegaly, and the development of HCCs (11, 20). In many cases, loss of autophagy causes accumulation of the autophagy adapter protein p62 (Sqstm1), and this can influence antioxidant responses by affecting the axis between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) (21). In autophagy-deficient livers, studies have shown that p62 accumulation activates the NRF2 signaling pathway to induce metabolic reprogramming, hepatomegaly, and tumorigenesis (22, 23).

The liver is a plastic organ in which cell fate can change upon injuries to regenerate liver function loss. Hepatocytes and cholangiocytes, epithelial cells that form the liver parenchyma and the bile duct, respectively, can transdifferentiate into one another to reestablish bile duct or liver parenchyma functions (24, 25), with hepatocytes being the primary source of liver regeneration upon injury. Following chronic injury, ductular cells develop in the liver parenchyma when hepatocyte or cholangiocyte function is severely impaired, a process called ductular reaction (26). The ductular reaction is a repair mechanism for generating new hepatocytes or cholangiocytes, depending on which liver cells are injured (27). However, the origin of the ductular reaction and its role in liver tumorigenesis are controversial with reports indicating that ductular cells can arise from cholangiocyte expansion (28, 29) or through hepatocyte dedifferentiation (30, 31) and reports concluding that the ductular reaction is involved in forming HCC (32, 33), while other studies report the opposite (34, 35). Autophagy-deficient livers undergo a ductular reaction (36), and we considered this as an excellent system in which to explore its origin and the role, this phenomenon plays in tumorigenesis.

In this study, we report that autophagy prevents hepatocyte dedifferentiation into ductular liver progenitor cells (LPCs). This ductular LPC population affects HCC formation in autophagy-deficient livers. Mechanistically, we show that autophagy deletion activates both yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in hepatocytes, which are connected to the ductular reaction leading, ultimately, to tumorigenesis. We show that YAP/TAZ coexpression is required to trigger the ductular reaction and tumorigenesis in autophagy-deficient livers.

Autophagy loss in the murine liver results in hepatomegaly, inflammation, and fibrosis leading to the formation of liver HCCs at 12 months of age (20). Phosphatase and tensin homolog (PTEN) expression is lost in approximately half of human liver cancers, and hepatic Pten-deficient mice develop HCC at 74 weeks (37). To accelerate the autophagy phenotype in the liver, we used the liver-specific promoter Albumin-Cre to selectively delete either Atg7flox/flox or Atg5flox/flox in the liver in combination with either heterozygous Pten+/flox (Alb-Cre+; Atg7fl/fl; Pten+/fl or Alb-Cre+; Atg5fl/fl; Pten+/fl) or homozygous Ptenflox/flox (Alb-Cre+; Atg7fl/fl; Ptenfl/fl or Alb-Cre+; Atg5fl/fl; Ptenfl/fl). The reduced gene dosage of Pten in an autophagy-deficient background significantly decreased mouse life span similarly in males and females (Fig. 1A and fig. S1A). At end point, while Alb-Cre+; Atg7fl/fl; Pten+/fl and Alb-Cre+; Atg5fl/fl; Pten+/fl mice developed liver HCCs (Fig. 1B and fig. S1B), Alb-Cre+; Atg7fl/fl; Ptenfl/fl and Alb-Cre+; Atg5fl/fl; Ptenfl/fl mice were culled because of extensive hepatomegaly and did not form tumors. To evaluate whether the decreased survival of Alb-Cre+; Atg7fl/fl; Pten+/fl and Alb-Cre+; Atg5fl/fl; Pten+/fl mice was a result of an early tumor onset, we compared the tumorigenesis of Pten+/+ and Pten+/fl mice with an autophagy-deficient background at 140 days. This revealed that heterozygous deletion of Pten significantly accelerated tumorigenesis in autophagy-deficient livers (Fig. 1, B and C, and fig. S1, B and C). Although conditional double knockout mice did not develop HCC at end point (4 to 5 weeks), they presented with excessive liver overgrowth. When we compared the liver size in 4- to 5-week-old mice, we observed that PTEN loss significantly increased the hepatomegaly of autophagy-deficient livers (Fig. 1D and fig. S1D).

(A) Kaplan-Meier analysis comparing overall survival of mice between males and females (left), males only (middle), or females only (right) (n = 6 males and n = 7 females per group). Data were analyzed by log-rank Mantel Cox test (***P < 0.001 and ****P < 0.0001). (B) Macroscopic pictures from a representative Alb-Cre+; Atg7fl/fl (Alb-Cre+; 7fl/fl) (top) and Alb-Cre+; Atg7fl/fl; Pten+/fl (Alb-Cre+; 7fl/fl; P+/fl) (bottom) liver in 140-day-old mice. (C) Quantification of tumor numbers in Alb-Cre+; 7fl/fl and Alb-Cre+; 7fl/fl; P+/fl at 140 days. Data are means SD of six mice per group and were analyzed by Mann-Whitney test (**P < 0.01). (D) Liver-to-body weight ratio in 4- to 5-week-old mice. Data are means SD of five mice per group and were analyzed by one-way analysis of variance (ANOVA) with Tukey correction for multiple comparison tests (***P < 0.001 and ****P < 0.0001). Please note that data are the same controls for WT and Alb-Cre+; Pfl/fl mice as shown in fig. S1D. (E) Hematoxylin and eosin (H&E) staining and immunohistochemical (IHC) analysis of neutrophil recruitment (Ly6G), hepatic stellate cell activation (-SMA), and collagen deposition (Sirius Red) on paraffin-embedded sections of livers from 4- to 5-week-old mice. Red arrowhead represents ductular structures. Scale bars, 50 m. Left: Representative staining. Right: Quantifications. Data are means SD of four or five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (*P < 0.05, **P < 0.01, and ****P < 0.0001). All data points are the mean from five pictures per mouse. FoV, field of vision. Please note that data are the same controls for WT and Alb-Cre+; Pfl/fl mice as shown in fig. S1 (E to G).

Next, we assessed whether PTEN loss promotes early development of a tumor-permissive microenvironment in 4- to 5-week-old autophagy-deficient livers by looking for markers of inflammation (38) and fibrosis. This showed that both hemizygous and homozygous Pten deletion significantly increased the recruitment of Ly6G+ neutrophils (Fig. 1E and fig. S1E) and activated smooth muscle actin+ (-SMA+) expressing hepatic stellate cells (Fig. 1E and fig. S1F) in the parenchyma of autophagy-deficient livers, concomitant with a significantly enhanced collagen deposition (Fig. 1E and fig. S1G). PTEN deficiency in 4- to 5-week-old autophagy-competent livers (Alb-Cre+; Pfl/fl) did not result in hepatomegaly, inflammation, hepatic stellate cell activation, or fibrosis (Fig. 1, D and E, and fig. S1, D to G). Together, our data suggest that PTEN loss accelerates the early formation of a tumor-prone microenvironment (inflammation, hepatic stellate cell activation, and fibrosis) and tumorigenesis in autophagy-deficient livers.

Following histological examination, we observed an accumulation of atypical ductular structures in the parenchyma of conditional double knockout livers (Fig. 1E), called ductular reaction. Under normal conditions, the liver has ductular structures, called the bile duct, that are formed out of cholangiocytes (Fig. 1E). The ductular reaction is a regeneration program that occurs in the liver following chronic liver injury that impairs the hepatocyte capacity to regenerate the liver (27). To evaluate whether hepatocytes are injured upon loss of autophagy, we first assessed the expression of enzymes for liver damage in the serum of 4- to 5-week-old livers. All autophagy-deficient livers had a significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and -glutamyl transferase (GGT) levels in comparison to wild-type (WT) (Alb-Cre+; Atg7+/+ or Atg5+/+; Pten+/+) mice (Fig. 2A and fig. S2, A to D). In addition, we determined whether hepatocytes were dying in our model by looking for cells positive for cleaved caspase 3 (CC3), a marker of apoptosis. We noted a significant augmentation of CC3+ hepatocytes in 4- to 5-week-old autophagy-deficient livers when compared to WT livers (Fig. 2, B and C, and fig. S2E), indicating that autophagy prevents hepatocyte cell death. Next, we observed a significant accumulation of the ductular markers sex-determining region Y-box 9 (SOX9), cytokeratin-19 (CK19), and panCK in Alb-Cre+; Atg7fl/fl; Ptenfl/fl or Alb-Cre+; Atg5fl/fl; Ptenfl/fl livers in comparison to Alb-Cre+; Atg7fl/fl; or Alb-Cre+; Atg5fl/fl single knockout counterparts (Fig. 2, B and D to F, and fig. S2, F to H), confirming that the ductular reaction is occurring in our accelerated model.

(A) Serum analysis of the liver damage markers ALP, ALT, AST, and GGT levels in 4- to 5-week-old mice. Data are means SD of three to five mice per group and were analyzed by one-way ANOVA with Dunnett correction for multiple comparison tests (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). Please note that data are the same controls for WT and Alb-Cre+; Pfl/fl mice as shown in fig. S2 (A to D). (B) IHC analysis of cell death (CC3) and the duct markers SOX9, CK19, and panCK on paraffin-embedded sections of livers from 4- to 5-week-old mice. Scale bars, 50 m. (C to F) Quantification of CC3 (C), SOX9 (D), CK19 (E), and panCK (F) from (B). Data are means SD of five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (**P < 0.01, ***P < 0.001, and ****P < 0.0001). All data points are the mean from five pictures per mouse. Please note data are the same controls for WT and Alb-Cre+; Pfl/fl mice as shown in fig. S2 (E to H).

As the ductular reaction is a regenerative process for the de novo generation of hepatocytes upon chronic liver injury (2831), we hypothesized that ductular cells in our model are LPCs forming to repair injured hepatocytes. To test this, we first looked at the expression of liver stem cell markers in Atg- and Pten-deficient livers and found increased levels of epithelial cell adhesion molecule (EpCAM), CD133, and CD44 within ductular cells (Fig. 3A and fig. S3, A to C) of autophagy-deficient livers. The expression of the stem cell makers was autophagy dependent but PTEN independent (Fig. 3A and fig. S3, A to C), although Pten deletion appears to exacerbate the phenotype caused by Atg5 or Atg7 deletion. In addition, we assessed the expression of a-fetoprotein (AFP), a fetal marker reexpressed during HCC and liver stem cell regeneration (39). We observed a significant increase in Afp mRNA levels (Fig. 3B and fig. S3D) and AFP protein level in the serum (Fig. 3C and fig. S3E) of autophagy-deficient mice when compared to WT counterparts.

(A) IHC analysis of the liver stem cell markers EpCAM, CD133, and CD44 on paraffin-embedded sections of livers from 4- to 5-week old mice. Left: Representative staining. Scale bars, 50 m. Right: Quantifications. Data are means SD of five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). All data points are the mean were from five pictures per mouse. Please note that data are the same controls for WT and Alb-Cre+; Pfl/fl mice as shown in fig. S3 (A to C). (B) Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of Afp mRNA isolated from 4- to 5-week-old livers. 18S was used as the internal amplification control. Data are means SD of three mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (**P < 0.01 and ****P < 0.0001). All data points are the mean from technical triplicates. CT, cycle threshold. (C) Enzyme-linked immunosorbent assay (ELISA) analysis of AFP from the serum of 4- to 5-week-old mice. Data are means SD of three mice per group and were analyzed by one-way ANOVA with Dunnett correction for multiple comparison tests (****P < 0.0001). All data points are the mean from technical triplicates. (D) Schematic representation of the lineage tracing experiment for ductular origin. Eight-week-old Atg7flox/flox; Ptenflox/flox; Rosa26mTmG/mTmG mice were infected with hepatocyte-specific Cre-expressing adenovirus (AAV8-TBG-Cre) and aged for 40 days. Rosa26mTmG, Rosa26LoxP-Tomato-Stop-LoxP-GFP. (E) Representative IHC analysis of GFP, tdTomato and SOX9 staining on paraffin-embedded serial sections of liver from Atg7flox/flox; Ptenflox/flox; Rosa26mTmG/mTmG mice 40 days after infection with AAV8-Cre or the vehicle control (AAV8-null). Scale bars, 20 m.

We were interested to know how the ductular-reactive cells were forming within the liver parenchyma. It has been established that ductular-reactive cells can originate from dedifferentiated hepatocytes in the parenchyma (30, 31) or from the activation and the proliferation of hepatic progenitor cells from the canal of Hering to regenerate the liver parenchyma when the regenerative function of hepatocytes is impaired (29). To determine the cell of origin for the ductular-reactive cells in our model, we crossed Alb-Cre; Atg7fl/fl; Ptenfl/fl or Alb-Cre; Atg5fl/fl; Ptenfl/fl mice with the double reporter Rosa26LoxP-Tomato-LoxP-GFP (Rosa26mTmG) and caused Cre-mediated recombination only in hepatocytes using the AAV8-TBG-Cre adeno-associated virus (AAV) (Fig. 3D and fig. S3F), where the Cre recombinase is expressed under the hepatocyte-specific thyroxine binding globulin (TBG) promoter (29). Following recombination, green fluorescent protein (GFP) will only be expressed in hepatocytes at the membrane, while non-recombined cells and unaffected tissues will remain Tomato+. Using this approach, we found that SOX9+ ductular-reactive cells expressed GFP at the membrane 40 days following AAV8-Cre infection in autophagy-deficient livers (Fig. 3E), confirming the hepatocyte origin of the ducts (fig. S3G). Together, our data establish that autophagy prevents dedifferentiation of hepatocytes into ductular LPCs.

ATG7-deficient livers develop HCCs at around 1 year of age (20). Since the ductular reaction is an early event following autophagy inhibition to regenerate the liver and ductular reactive cells express stem cell markers (Fig. 3A and fig. S3, A to C) found in cancer stem cells from HCC (40), we hypothesized that ductular LPCs form HCCs in autophagy-deficient livers. To test this, we first assessed whether autophagy-deficient HCCs retain the expression of the duct marker SOX9, and we noted the presence of two distinct hepatocyte populations (SOX9+ and SOX9) in the normal region surrounding liver HCCs, with SOX9+ hepatocytes found adjacent to ductular structures (Fig. 4A). We found that hepatocytes forming HCCs preserved the ductular marker SOX9 (Fig. 4A). To further evaluate the role of the ductular reaction in tumorigenesis, we infected Alb-Cre+; Atg7fl/fl; Pten+/fl and WT mice with the AAV8-TBG-GFP adenovirus at 6 weeks of age to label hepatocytes with GFP (Fig. 4B). At this age, the ductular reaction is occurring in autophagy-deficient livers, which allows us to distinguish and discriminate between resident hepatocytes (GFP+) and ductular reactive cells (GFP) following AAV8-TBG-GFP infection to trace their role in tumorigenesis. First, we confirmed that at 7 days after AAV8-TBG-GFP infection, SOX9+ LPCs were GFP, while hepatocytes (SOX9) expressed GFP in autophagy-deficient livers (Fig. 4C), confirming that ductular LPCs are not expressing GFP following AAV8-TBG-GFP infection. We then assessed the expression of GFP in autophagy-deficient HCCs 100 days after AAV8-TBG-GFP infection. This revealed that tumors forming in Alb-Cre+; Atg7fl/fl; Pten+/fl livers expressed no GFP in comparison to the surrounding normal hepatocytes, which retained GFP expression (Fig. 4D), highlighting that the ductular cells initiate tumorigenesis in autophagy-deficient livers. We also found that high expression of SOX9 correlates with a decreased survival in human HCCs (Fig. 4E). Together, our data establish that ductular LPCs, formed early upon autophagy deficiency, ultimately lead to the generation of HCCs in autophagy-deficient livers.

(A) IHC analysis of the duct marker SOX9 on Alb-Cre+; Atg7fl/fl; Pten+/fl livers from 140-day-old mice. The red dashed line separates tumor (T) from normal tissue (NT) in the liver. Red and green rectangles outline SOX9+ and SOX9 region in normal tissue, respectively. Scale bar, 100 m. (B) Schematic representation of lineage tracing for tumor origin. Six-week-old Alb-Cre+; Atg7fl/fl; Pten+/fl and WT mice were infected with hepatocyte-specific GFP-expressing adenovirus (AAV8-TBG-GFP) and aged for either 7 or 100 days. (C) Immunofluorescence (IF) analysis of GFP and SOX9 on Alb-Cre+; Atg7fl/fl; Pten+/fl and WT livers 7 days following AAV8-TBG-GFP infection. 4,6-diamidino-2-phenylindole (DAPI) stains nuclei. Scale bars, 75 m. (D) IHC analysis of GFP on Alb-Cre+; Atg7fl/fl; Pten+/fl or WT livers 100 days following AAV8-TBG-GFP infection. The red dashed line separates tumor from normal tissue in the liver. Scale bars, 100 m. (E) Kaplan-Meier analysis comparing overall survival between high and low SOX9 mRNA expression in human liver cancer data (The Cancer Genome Atlas Liver Hepatocellular Carcinoma). Each group represents 20th lower and 20th higher percentile (n = 72 per group).

Blocking the formation of the ductular reaction would be beneficial in preventing human HCC (41). YAP and TAZ are transcriptional coactivators essential in controlling organ size (42), hepatocyte dedifferentiation (31), stemness (43), and liver tumorigenesis (44, 45). The Hippo pathway regulates the activation of YAP and TAZ, and phosphorylation of both coactivators primes them for degradation. As our autophagy-deficient liver model develops severe hepatomegaly (Fig. 1D and fig. S1D), dedifferentiates hepatocytes into ductular LPCs (Figs. 2 and 3 and figs. S2 and S3), and induces tumorigenesis, we next investigated whether YAP and TAZ are active in early-stage autophagy-deficient livers exhibiting ductular reaction. First, we compared the protein levels of the inactive forms of YAP and TAZ (phosphorylated YAP and phosphorylated TAZ), with the levels of total YAP and total TAZ (active forms) in 4- to 5-week-old livers (Fig. 5A). We noticed that the ratio of phosphorylated YAP and phosphorylated TAZ was reduced in autophagy-deficient livers in comparison to WT counterparts (Fig. 5A), highlighting that unphosphorylated YAP and unphosphorylated TAZ accumulate in autophagy-deficient livers undergoing ductular reaction.

(A) Immunoblotting analysis of phosphorylated YAP (p-YAP), total YAP, phosphorylated TAZ (p-TAZ), total TAZ, CTGF, ATG7, and PTEN from 4- to 5-week-old total liver lysates. Extracellular signalregulated kinase 2 (ERK2) was used as the loading control. (B) Quantitative RT-PCR analysis of the YAP/TAZ targets Ctgf, Cyr61, and Areg mRNA isolated from 4- to 5-week-old livers. 18S was used as the internal amplification control. Data are means SD of three mice per group and were analyzed by one-way ANOVA with Dunnett correction for multiple comparison tests (*P < 0.05, **P < 0.01, and ***P < 0.001). All data points are the mean from technical triplicates. (C) IHC analysis of YAP and TAZ on paraffin-embedded sections of livers from 4- to 5-week-old mice. Scale bars, 50 m.

To evaluate whether YAP and TAZ are functionally active in autophagy-deficient livers, we tested for the expression of YAP/TAZ transcriptional targets in 4- to 5-week-old livers. We found that mRNA levels of connective tissue growth factor (Ctgf), amphiregulin (Areg), and cysteine-rich angiogenic inducer 61 (Cyr61), three YAP/TAZ target genes (46, 47), were all significantly up-regulated in autophagy-deficient livers (Fig. 5B and fig. S4A). At the protein level, CTGF was increased in total liver lysates of all autophagy-deficient conditions (Fig. 5A). Next, we assessed the localization of YAP and TAZ in 4- to 5-week-old autophagy-deficient livers and observed that both YAP and TAZ strongly accumulated in the ductular cells, whereas YAP and TAZ were found in the bile duct and the canal of Hering of WT counterparts (Fig. 5C and fig. S4B). Collectively, our data therefore indicate that autophagy loss in hepatocytes triggers a YAP/TAZ signature within the ductular LPC population.

YAP is turned over not only by the proteasome (48, 49), but also by autophagy as shown in recent reports (20, 50). As TAZ is a YAP homolog, we next wondered whether TAZ accumulation and activation in our autophagy-deficient livers were due to blockage of autophagy-mediated degradation of TAZ. To test more directly whether TAZ is degraded by autophagy, we first deleted ATG7 or ATG5 expression in the liver cancer cell lines HLE and Huh7 using the CRISPR-Cas9mediated gene disruption system. Next, we treated each cell line with Earles balanced salt solution (EBSS), to induce starvation-mediated autophagy, in combination with or without 200 nM bafilomycin A1 (Baf) for 2 hours to prevent lysosomal degradation of autophagosomes. We checked for the efficient disruption of ATG7 or ATG5 expression following lenti-CRISPR infection in HLE (fig. S5A) and Huh7 (fig. S5B), and we analyzed the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3)I (diffuse form in the cytosol) into LC3-II (lipidated form attached to autophagosomes), to confirm loss of autophagy. Examination of TAZ revealed that its levels did not change upon starvation-induced autophagy (EBSS), blockage of lysosomal autophagy degradation [Dulbeccos modified Eagles medium (DMEM) + Baf and EBSS + Baf], or disruption of ATG7/ATG5 (ATG7CRISPR/ATG5CRISPR) in HLE and Huh7 cells (fig. S5, A and B). Unexpectedly, we also observed that not only YAP levels accumulated under EBSS only and EBSS and Baf conditions but also this occurred in ATG7CRISPR/ATG5CRISPR cells, indicating that this was an autophagy-independent effect. Together, our data indicate that TAZ and YAP are not directly turned over by autophagy in liver cells and that the accumulation of YAP and TAZ in autophagy-deficient livers is not the result of the inhibition of the autophagy degradation pathway but instead is due to the expansion of ductular cells in vivo, which are known to express YAP and TAZ (Fig. 5 and fig. S4) (51).

Deletion of YAP partially rescued hepatomegaly, fibrosis, and tumorigenesis induced by autophagy blockage in the liver (20). As a YAP homolog, TAZ can compensate YAP activity if the latter is lost (52). Since we observed in our model that YAP and TAZ are activated within the ductular LPC population, we hypothesized that deleting both YAP and TAZ might prevent the early ductular reaction and subsequent HCC formation in autophagy-deficient livers. First, we evaluated whether TAZ has a role in the phenotype of autophagy-deficient livers. To test this, we crossed Wwtr1flox/flox (encoding TAZ) mice (53) with our liver-specific autophagy-deficient model, and we observed that loss of TAZ significantly reduced liver size of 4- to 5-week-old autophagy-deficient livers (Fig. 6A and fig. S6A). Next, we found that TAZ loss also significantly reduced the accumulation of activated -SMA+ hepatic stellate cells and collagen deposition in 4- to 5-week-old autophagy-deficient livers (Fig. 6B and fig. S6B), indicating that TAZ contributes to hepatic stellate cell activation and fibrosis in our model. In addition, TAZ loss significantly decreased SOX9+, panCK+, and EpCAM+ cells in 4- to 5-week-old autophagy-deficient livers (Fig. 6B and fig. S6B), highlighting that TAZ loss hinders the formation of ductular LPCs upon autophagy deficiency in the liver. We next compared tumor formation between Alb-Cre+; Atg7fl/fl; Pten+/fl or Alb-Cre+; Atg5fl/fl; Pten+/fl and Alb-Cre+; Atg7fl/fl; Pten+/fl; Tazfl/fl or Alb-Cre+; Atg5fl/fl; Pten+/fl; Tazfl/fl in 140-day-old livers and noted that TAZ deletion caused a highly significant decrease in tumorigenesis in autophagy-deficient livers (Fig. 6, C and D, and fig. S6, C and D) that was accompanied by a significant increase in the survival of autophagy-deficient mice (Fig. 6E and fig. S6E). Last, we evaluated whether TAZ has a role in the proliferation of ductular LPCs. We found that TAZ loss did not impair the number of Ki-67+ proliferative LPCs in 4- to 5-week-old autophagy-deficient livers (fig. S7).

(A) Liver-to-body weight ratio in 4- to 5-week-old mice. Data are means SD of three mice per group and were analyzed by unpaired two tailed t test (**P < 0.01). (B) IHC analysis of hepatic stellate cell activation (-SMA), collagen deposition (Sirius Red), duct markers (SOX9 and panCK), and liver stem cell marker EpCAM on paraffin-embedded sections of livers from 4- to 5-week-old mice. Scale bars, 50 m. Left: Representative staining. Right: Quantifications. Data are mean SD of three mice per group and were analyzed by unpaired two-tailed t test (*P < 0.05, **P < 0.01, and ***P < 0.001). All data points are the mean from five pictures per mouse. (C) Macroscopic pictures of Alb-Cre+; Atg7fl/fl; Pten+/fl (top) and Alb-Cre+; Atg7fl/fl; Pten+/fl; Tazfl/fl (Alb-Cre+; 7fl/fl; P+/fl; T/) (bottom) liver in 140-day-old mice. (D) Quantification of tumor numbers in Alb-Cre+; Atg7fl/fl; Pten+/fl and Alb-Cre+; Atg7fl/fl; Pten+/fl; Tazfl/fl at 140 days. Data are means SD of five mice per group and were analyzed by unpaired two-tailed t test (***P < 0.001). (E) Kaplan-Meier analysis comparing overall survival between Alb-Cre+; Atg7fl/fl; Pten+/fl and Alb-Cre+; Atg7fl/fl; Pten+/fl; Tazfl/fl mice (n = 5 males and n = 5 females per group). Data were analyzed by log-rank Mantel-Cox test (****P < 0.0001).

To evaluate whether there was any redundancy between YAP and TAZ in our model, we crossed Yap1flox/flox mice (53) to our liver-specific (Alb-Cre) autophagy- and TAZ-deficient model to evaluate the effect of YAP/TAZ double knockout on the ductular reaction and tumorigenesis of autophagy-deficient livers. Unexpectedly, we observed that 40% (9 of 22 mice) of YAP-deficient mice developed jaundice within 6 to 8 weeks regardless of Atg7, Atg5, Pten, or Wwtr1 genotype. This is likely because YAP is highly expressed in the bile duct of WT mice (Fig. 5C and fig. S4B), and the Albumin promoter driving Cre recombinase expression is expressed in hepatoblasts, the embryonic progenitor cells generating hepatocytes and cholangiocytes (54). YAP deletion in our Albumin-Cre model can therefore impair cholangiocyte function in the bile duct leading to acute jaundice. To overcome this phenotype for long term studies, we used AAV8-TBG-Cre adenovirus to induce Cre recombination more specifically in the hepatocytes of our Atg7flox/flox; Ptenflox/flox; Yap flox/flox; Tazflox/flox model (Fig. 7A). First, we assessed the effect of YAP/TAZ deletion on the hepatomegaly and ductular reaction of autophagy-deficient livers 3 weeks following AAV8-TBG-Cre recombination and confirmed the recombination of Atg7, Pten, Yap, and Wwtr1 alleles in AAV8-TBG-Creinfected livers (fig. S8). We found that although YAP or TAZ deletion significantly reduced hepatomegaly of autophagy-deficient livers (Fig. 7B), YAP/TAZ double knockout mice significantly restored liver size to that observed in nonrecombined counterparts infected with the AAV8-TBG-null adenovirus (Fig. 7B). In addition, we noted that while the individual deletion of Yap or Taz significantly impaired the formation of SOX9+ cells in autophagy-deficient livers (Fig. 7, C and D), only YAP/TAZ codeletion completely blocked the formation of SOX9+ cells in autophagy-deficient livers (Fig. 7, C and D). In this AAV8-TBG-Cre model, Atg7/; Pten/ mice had to be culled because of hepatomegaly and did not develop tumors at humane end point. To evaluate the role of YAP/TAZ loss in the tumorigenesis of autophagy-deficient livers, we infected Atg7flox/flox; Pten+/flox; Yapflox/flox; Tazflox/flox with AAV8-TBG-Cre adenovirus and assessed tumor formation 140 days following AAV8 infection (Fig. 7E). We observed that while Yap or Taz deletion significantly impaired tumorigenesis in autophagy-deficient livers (Fig. 7, F and G), only YAP/TAZ codeletion completely prevented tumor formation (Fig. 7, F and G). Our data therefore show that deleting YAP and TAZ suppresses the ductular reaction and tumorigenesis of autophagy-deficient livers. However, in this context, we observed functional redundancy between YAP and TAZ, and only the combined deletion of both these genes could revert the effects on tissue overgrowth and tumor development.

(A) Schematic representation. Eight-week old Atg7fl/fl; Ptenfl/fl Yapfl/fl (Yfl/fl) and/or Tazfl/fl (Tfl/fl) mice were infected with AAV8-TBG-Cre and aged for 3 weeks before hepatomegaly and ductular reaction analysis. (B) Liver-to-body weight ratio in mice 3 weeks after AAV8 infection. Data are means SD of five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (*P < 0.05, ***P < 0.001, and ****P < 0.0001). (C) IHC analysis of the duct marker SOX9 on paraffin-embedded sections of livers from mice 3 weeks after AAV8 infection. Scale bars, 50 m. (D) Quantification of SOX9 from (C). Data are means SD of five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (****P < 0.0001). All data points are the mean from five pictures per mouse. (E) Schematic representation. Eight-week-old Atg7fl/fl; Pten+/fl; Yapfl/fl and/or Tazfl/fl mice were infected with AAV8-TBG-Cre and aged for 140 days before tumor analysis. (F) Macroscopic pictures from 140 days after AAV8-Cre livers. (G) Quantification of tumor numbers in 140 days after AAV8-Cre livers. Data are means SD of five mice per group and were analyzed by one-way ANOVA with Tukey correction for multiple comparison tests (*P < 0.05, **P < 0.01, and ****P < 0.0001). All data points are the mean from five pictures per mouse. Xfl/fl, AAV8-null infected; X/, AAV8-Cre infected.

We report a new model for extensive ductular reaction upon deletion of ATG5 or ATG7 and PTEN in the murine liver. Although Pten-deficient livers develop steatosis and HCC (37), we observed that hepatic Pten deletion alone did not initiate liver damage, inflammation, hepatic stellate cell activation, fibrosis, or a ductular reaction in young livers, but these effects were observed on hepatic deletion of ATG5 or ATG7. ATG5 and ATG7 are two proteins that are essential for the stage of autophagy that involves LC3 conjugation. ATG5 and ATG7 are also important for two other processes that involve the LC3 conjugation machinery: LC3-associated phagocytosis (LAP) (55) and LC3-associated endocytosis (LANDO) (56). We consider, however, that the core observations in our study relating to tumor development and liver injury are connected to autophagy, as previous studies have shown that they can be reversed by concomitant deletion of the autophagy adapter protein p62 (11, 22, 57), and autophagy adapter proteins are not thought to be involved in LAP or LANDO (58). We cannot fully discount that some of the effects we observe on deletion of ATG5 or ATG7 may be related to LAP or LANDO rather than autophagy or a combination thereof. Future studies to clarify this point using deletion of other factors such as FIP200 or ATG13 that are involved in autophagy, but not LAP and LANDO (5962), would certainly be merited to investigate this possibility.

Autophagy is impaired in Pten-deficient mice due to mTORC1 activation; however, autophagy is not blocked in Pten-deficient livers (63). LC3 is still conjugated to phosphatidylethanolamine leading to autophagosome and autolysosome formation when Pten expression is lost (63). This dictates an important role for autophagy in hepatocytes to prevent the microenvironmental remodeling and ductular reaction in healthy livers, with Pten cooperating with the autophagy-specific phenotype. Pten loss induces cellular senescence to protect from tumorigenesis in different models (64, 65). However, we noticed the presence of apoptotic hepatocytes following autophagy abrogation and Pten deletion. The extent of injury in hepatocytes determines their fate toward senescence or cancer (66). Acute injury in hepatocytes results in senescence (67), while chronic injury does not activate senescence in hepatocytes, ultimately leading to HCC (66). Autophagy degrades damaged mitochondria, a process named mitophagy, to maintain cellular homeostasis. In hepatocytes, loss of autophagy leads to ROS accumulation, damaged mitochondria, and dysfunction (11, 22, 68, 69). We suggest that the persistence of chronic damage and defects in damaged mitochondria clearance by mitophagy drive apoptosis and tumorigenesis in our autophagy- and Pten-deficient livers.

In our autophagy- and Pten-deficient model, we observed that following liver injury, hepatocytes dedifferentiate into ductular LPCs. This ductular reactive phenotype is not unique to the loss of autophagy as it has previously been observed in animal models subjected to diet modification, e.g., a diet enriched in 3,5-diethoxycarboncyl-1,4-dihydrocollidine (70) or choline-deficient, ethionine-supplemented diet (71). This indicates that the ductular reaction is likely to be a secondary effect of autophagy inhibition due to liver damage caused by autophagy loss. The origin of the ductular reaction in rodents is still controversial, with reports indicating the role of biliary cells (28, 29) or hepatocytes (30, 31) in forming LPCs with the capacity for generating new hepatocytes upon liver injury. Here, we show in a genetically modified mouse model that ductular reactive cells arise from mature hepatocytes upon injury induced by autophagy deficiency. The cellular plasticity of human hepatocytes can also generate ductular cells in a transplantation mouse model (30), strengthening the hepatocyte origin of the ductular reaction in human liver diseases.

The plastic differentiation program of the ductular reaction for liver regeneration is defined by the origin of the injuries. Following bile duct injury, resident LPCs/biliary cells (26) and hepatocyte-derived LPCs (72) regenerate biliary cells. When hepatocyte function is impaired, resident LPCs/biliary cells (28, 29, 73) or hepatocyte-derived LPCs (30, 31, 74) generate new hepatocytes. The decision to recruit biliary cells or hepatocytes during the ductular reaction remains elusive, and future studies will be required to shed further light on this mechanism.

Autophagy loss has been previously shown to give rise to HCC in mice (20). Our results suggest that the hepatocyte-derived ductular reaction gives rise to HCC in autophagy-deficient livers. While some studies conclude that the ductular reaction is not involved in liver carcinogenesis (34, 35, 74), other studies do report a role for the ductular reaction in initiating HCCs (32, 33). Although all these studies recombine LPCs for lineage tracing, they differ with respect to the timing between the induction of LPC labeling and the start of the injury. Recombination of LPCs for lineage tracing before inducing liver injury (34, 35, 74) does not label hepatocyte-derived LPCs, excluding them from the lineage tracing of HCCs. In contrast, recombination of LPCs for lineage tracing following liver injury results in LPC-derived HCCs (32, 33). In our autophagy- and Pten-deficient model, we report that hepatocyte-derived LPCs generate SOX9+ hepatocytes that give rise to HCC. The ability of LPCs to induce tumorigenesis has been controversial since it is generally accepted that HCC originates from hepatocytes. Here, we reconcile these findings by showing that HCC does originate from hepatocytes, but these hepatocytes, early upon liver injury, dedifferentiate into LPCs to attempt to regenerate liver function, before transforming into HCC.

In human liver diseases, the accumulation of LPCs is observed in nonalcoholic steatohepatitisinduced cirrhosis preceding HCC (75), and the presence of peritumoral ductular reaction is a poor prognostic factor for human HCC after resection (76), indicating the importance of targeting the ductular reaction in human liver diseases. The gene signature of autophagy-deficient mice is similar to the human transcriptomes of nonalcoholic fatty livers (20), and rat livers from rats fed a high-fat diet reduce their autophagy function (77). Restoring autophagy could therefore be a beneficial treatment in injured livers harboring a ductular reaction.

Mechanistically, we report that YAP and TAZ cooperate to drive hepatocyte dedifferentiation and tumorigenesis in autophagy-deficient livers. Unlike a previous study on YAP (20), we uncovered that TAZ also plays a role in promoting hepatomegaly, ductular reaction, stromal activation, fibrosis, and tumorigenesis in autophagy-deficient livers. TAZ deletion alone, similar to YAP deletion alone (20), only impaired carcinogenesis in autophagy-deficient livers. However, TAZ loss did not impair the proliferative outgrowth of the ductular LPC population. Here, we speculate that TAZ is involved in the differentiation switch in our model as its homolog YAP can directly drive hepatocyte dedifferentiation (31), and, more recently, YAP/TAZ have been described as regulators of stemness and cell plasticity in glioblastoma (78). We found that YAP and TAZ are not directly turned over by autophagy and that their accumulation in the absence of autophagy in vivo is associated with the increased presence of ductular cells, which are known to express YAP and TAZ (79). YAP and TAZ are mechanosensors and mechanotransducers (80), and their activation is linked to the stiffness of the extracellular matrix (81). As we noted a significant increase in extracellular matrix remodeling and fibrosis (Fig. 1E and fig. S1, F and G) correlating with a significant increase in YAP+/TAZ+ ductular LPCs in our models, we suggest that YAP and TAZ are also activated in response to the microenvironment changes following autophagy and PTEN deletion in the liver. Building on these findings, we observed that only the combined deletion of YAP and TAZ prevented the emergence of hepatocyte-derived LPCs that initiate tumorigenesis in autophagy-deficient livers. Our study uncovered a role for autophagy in suppressing the emergence of hepatocyte-derived ductular LPCs that can give rise to HCCs via concomitant activation of YAP and TAZ.

Male and female animals were housed in a pathogen-free environment and kept under standard conditions with a 12-hour day/night cycle and access to food and water ad libitum. All in vivo experiments were carried out under guidelines approved by the Glasgow University Animal Welfare and Ethical Review Body and in accordance with U.K. Home Office guidelines under license P54E3DD25. As described previously (82), Alb-Cre+ mice [RRID (research resource identifier): MGI:2176228] were crossed to Atg7fl/fl (68) (RRID: MGI:3590136) or Atg5fl/fl (83) (RRID: MGI:3612279) and Ptenfl/fl (84) (RRID: MGI:2182005) to generate the different combinations on a mixed background. Subsequently, Atg7fl/fl; Ptenfl/fl and Atg5fl/fl; Ptenfl/fl mice were crossed to Yap1fl/fl; Wwtr1fl/fl (the Jackson laboratory, stock 030532, RRID: IMSR_JAX:030532) (53) animals to generate all the different combinations. Experimental cohort (males and females) sizes were based on previous similar studies that have given statistically significant results while also respecting the limited use of animals in line with the 3R system: replacement, reduction, and refinement. All treatment studies were randomized but did not involve blinding. Genotyping was performed by Transnetyx. To lineage trace the ductular cell origin, we crossed our model with the Rosa26-mtdTomato-mEGFP mouse (the Jackson laboratory, stock 007576, RRID: IMSR_JAX:007576) (85).

In AAV8 studies, AAV8 recombination was performed as previously described (67). Briefly, viral particles [2 1011 genomic copies per mouse] of AAV8.TBG.PI.Cre.rBG (Addgene, catalog no. 107787-AAV8), AAV8.TBG.PI.eGFP.WPRE.bGH (Addgene, catalog no. 105535-AAV8), or AAV8.TBG.PI.Null.bGH (Addgene, catalog no. 105536-AAV8) were injected in 6-week-old (AAV8-GFP and AAV8-null) or 8-week-old (AAV8-Cre and AVV8-null) mice via tail vein in 100 L of phosphate-buffered saline (PBS).

Mice were euthanized by CO2 inhalation followed by cervical dislocation, and blood was harvested by cardiac puncture in accordance with U.K. Home Office guidelines. Tissues were weighed and stored immediately at 80C or in paraffin blocks after fixation in 10% formalin (in PBS) for 24 hours, followed by dehydration in 70% ethanol before embedding. Blood samples (EDTA-plasma and serum) were stored at 80C following 10-min centrifugation at 900g at 4C. Serum was sent to the Veterinary Diagnostic Services (University of Glasgow) for ALT, AST, ALP, and GGT analyses.

Plasma AFP levels were assessed using the enzyme-linked immunosorbent assay (ELISA) kit (catalog no. ab210969) according to the manufacturers instruction. Each sample was analyzed in triplicate.

For immunohistochemical (IHC) or immunofluorescence (IF) studies, paraffin-embedded sections were deparaffinized, rehydrated, and heated to 95 to 97C either in Lab Vision Citrate Buffer for heat-induced epitope retrieval (pH 6.0) (Thermo Fisher Scientific, catalog no. 12638286), EnVision FLEX Target Retrieval Solution, High pH (Agilent, catalog no. K8004), BOND Epitope Retrieval Solution 2 (ER2) (Leica, catalog no. AR9640), or Antigen Unmasking Solution, Citric Acid Based (Vector Laboratories, catalog no. H-3300) for antigen retrieval, depending on the primary antibody used. Primary antibodies used for IHC analyses: Ly6G (Bio X Cell, catalog no. BE0075-1, RRID: AB_1107721, rat, ER2; 1:60,000), -SMA (Sigma-Aldrich, catalog no. A2547, RRID: AB_476701, mouse, citric acid; 1:25,000), CC3 (Asp175, Cell Signaling Technology, catalog no. 9661, RRID: AB_2341188, rabbit, ER2; 1:500), SOX9 (Millipore, catalog no. AB5535, RRID: AB_2239761, rabbit, high pH; 1:500), CK19 (Novus, catalog no. NB100-687, RRID: AB_2265512, rabbit, high pH; 1:100), panCK (Lab Vision, catalog no. MS-343-P, RRID: AB_61531, mouse, Citric acid; 1:100), EpCAM (Abcam, catalog no. ab71916, RRID: AB_1603782, rabbit, high pH; 1:1500), CD133 (Abcam, catalog no. ab19898, RRID: AB_470302, rabbit, citrate pH 6; 1:200), CD44 (BD Biosciences, catalog no. 550538, RRID: AB_393732, rat, ER2; 1:300), GFP (Cell Signaling Technology, catalog no. 2555, RRID: AB_10692764, rabbit, ER2; 1:600), red fluorescent protein (Rockland, catalog no. 600-401-379, RRID: AB_2209751, rabbit, high pH; 1:1000), YAP (Cell Signaling Technology, catalog no. 4912, RRID: AB_2218911, rabbit, high pH; 1:50), WW domain containing transcription regulator 1 (WWTR1)/TAZ (Sigma-Aldrich, catalog no. HPA007415, RRID: AB_1080602, rabbit, high pH; 1:100), and Ki-67 (Cell Signaling Technology, catalog no. 12202, RRID: AB_2620142, rabbit, ER2; 1:1000). Primary antibodies were incubated with sections for 40 min at room temperature or overnight at 4C. For IHC analysis, primary antibodies were detected using mouse or rabbit EnVision+ System kits (Agilent, catalog no. K4001 and K4006) or ImmPRESS horseradish peroxidase (HRP) goat anti-rat immunoglobulin G (IgG) polymer detection kit (Vector Laboratories, catalog no. MP-7404) and 3,3-diaminobenzidine substrate (Agilent, catalog no. K4011). Slides were then counterstained with hematoxylin solution. Images were obtained on a Zeiss AX10 (light microscopy) at a 20 or 40 magnification.

For IF analysis, SOX9/GFP immunofluorescent primary antibodies were applied sequentially. First, slides were incubated with a chicken polyclonal GFP antibody (Abcam, catalog no. ab13970, RRID: AB_300798, citrate; 1:200) overnight at 4C and was detected using a biotinylated goat anti-chicken (Vector Laboratories, catalog no. BA-9010, RRID: AB_2336114; 1:200) coupled to Avidin-HRP (Vector Laboratories, PK-7100) and a PerkinElmer TSA Plus Cyanine 3 signaling amplification kit (NEL744B001KT; 1:50). This was followed by a second antigen retrieval to denature any antibodies in the tissue. Slides were then incubated with a rabbit monoclonal SOX9 antibody (Abcam, catalog no. ab185230, RRID: AB_2715497, citrate; 1:500) overnight at 4C and detected using a donkey anti-rabbit Alexa Fluor 488 secondary antibody (Molecular Probes, catalog no. A-21206, RRID: AB_2535792; 1:200). Slides were then counterstained with 4,6-diamidino-2-phenylindole (DAPI). Images were obtained on a Zeiss 710 confocal microscope at a 20 magnification. For collagen staining, sections were rehydrated and then immersed in Picro Sirius Red solution [0.1% Direct Red 80 (Sigma-Aldrich, 41496LH) and 0.1% Fast Green FCF (Raymond Lamb, S142-2) diluted in aqueous picric acid solution] for 2 hours.

HLE and Huh7 were grown in DMEM (Gibco, 21969-035) supplemented by 10% fetal bovine serum (FBS; Gibco, 10270-106), 2 mM glutamine (Gibco, 25030-032), streptomycin (100 g/ml), and penicillin (100 U/ml; Gibco, 15140-122) (complete DMEM) at 37C and 5% CO2. For starvation-induced autophagy experiments, cells were washed twice in PBS and starved in EBSS (Sigma-Aldrich, E2888) containing or not 200 nM Baf (LC Labs, B-1080) for 2 hours. HLE and Huh7 cell lines were provided by T. Bird.

Lentiviruses were produced using human embryonic kidney (HEK) 293T cells using calcium/phosphate transfection protocol. Cells were transfected overnight with lentiviral, packaging, and envelope plasmids (pPAX2 and pVSVG). The following day, media were replaced by complete DMEM containing 20% FBS for 24 hours. Then, virus-enriched media were collected, filtered (0.45 m), supplemented with polyprene (4 g/ml; Sigma-Aldrich, H9268), and transferred to recipient cells. In the meantime, HEK293T cells were kept in DMEM containing 20% FBS for an additional 24 hours to perform a second round of infection of recipient cells as described before. Last, infected cells were selected with puromycin (2 g/ml; Sigma-Aldrich, P9620) for 10 days. The following single-guide RNA sequences were used in this study: human ATG7, 5-GAA GCT GAA CGA GTA TCG GC-3 (86); human ATG5, 5-AAG AGT AAG TTA TTT GAC GT-3 (86); nontargeting control, 5-GTA GCG AAC GTG TCC GGC GT-3 (87).

Livers were dissociated using a Precellys Evolution (Bertin Technologies) and lysed in 1% Triton X-100, 0.1% SDS, 50 mM Hepes (pH 7.5), 150 mM NaCl, 100 mM NaF, and 10 mM EDTA, supplemented with Halt protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, catalog no. 87786). After 15-min centrifugation at 12,000g at 4C, the supernatant was removed, and the concentration of solubilized proteins was determined with the Pierce bicinchoninic acid assay (Thermo Fisher Scientific, catalog no. 23225). Protein lysates were separated by SDSpolyacrylamide gel electrophoresis with Criterion TGX Stain-Free precast gels (Bio-Rad) or the NuPAGE 4 to 12% bis-tris gel (Invitrogen) and blotted onto polyvinylidene difluoride membranes (Merck). Criterion TGX Stain-Free precast gels (Bio-Rad) were activated using the ChemiDoc (Bio-Rad) to detect total protein levels. Total protein level was measured before and after transfer. Western blot analysis was performed according to the manufacturers instructions for Criterion TGX Stain-Free precast gels or for the NuPAGE 4 to 12% bis-tris gel (Invitrogen). The following antibodies were used at a dilution of 1:1000 unless otherwise stated: p-YAP (Cell Signaling Technology, catalog no. 13008, RRID: AB_2650553), YAP (Cell Signaling Technology, catalog no. 4912, RRID: AB_2218911; 1:750), p-TAZ (Cell Signaling Technology, catalog no. 59971, RRID: AB_2799578), YAP/TAZ (Cell Signaling Technology, catalog no. 8418, RRID: AB_10950494), CTGF (Abcam, catalog no. ab125943, RRID: AB_2858254), ATG7 (Cell Signaling Technology, catalog no. 8558, RRID: AB_10831194), PTEN (Cell Signaling Technology, catalog no. 9559, RRID: AB_390810), extracellular signalregulated kinase 2 (ERK2; Santa Cruz Biotechnology, catalog no. sc-154, RRID: AB_2141292), LC3B (Cell Signaling Technology, catalog no. 2775, RRID: AB_915950), ATG5 (Cell Signaling Technology, catalog no. 12994, RRID: AB_2630393), glyceraldehyde-3-phosphate dehydrogenase (Abcam, catalog no. ab9485, RRID: AB_307275), anti-rabbit IgG HRP-linked (Cell Signaling Technology, catalog no. 7074, RRID: AB_2099233; 1:4000), and anti-mouse IgG HRP-linked (Cell Signaling Technology, catalog no. 7076, RRID: AB_330924; 1:4000).

RNAs were extracted from livers using the RNeasy Mini Kit (QIAGEN, catalog no. 74101) and quantified using a NanoDrop200c (Thermo Fisher Scientific). Complementary DNAs (cDNAs) were produced using the High-Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific, catalog no. 4388950) according to the manufacturers instruction. Quantitative polymerase chain reactions (qPCRs) were performed using the DyNAmo HS SYBR Green qPCR Kit (Thermo Fisher Scientific, catalog no. F-410) on a Step-One Plus (Applied Biosystems) as follows: 20 s at 95C, followed by 40 cycles of 3 s at 95C, and 30 s at 60C. mRNA quantification was calculated using Ct method. The following mouse primers were used: mouse Ctgf (QIAGEN, QT00174020), mouse Ctgf (QIAGEN, QT00096131), mouse Cyr61 (QIAGEN, QT00245217), mouse Areg (QIAGEN, QT00112217), 18S forward (5-GTAACCCGTTGAACCCCATT-3), and 18S reverse (5-CCATCCAATCGGTAGTAGCG-3).

For IHC studies, five representative pictures were taken per mouse and were analyzed using Fiji software. For all in vivo studies, data are shown as means SD. Sample normality was assessed by Shapiro-Wilk test. Statistical significances were determined by two-tailed unpaired Students t test for two-group comparison, two-way analysis of variance (ANOVA) with Tukey or Dunnett for multiple group comparison, and log-rank (Mantel-Cox) test for survival comparison using GraphPad Prism software. Results were considered statistically different when *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 with ns indicating no significance.

J. OPrey, J. Sakamaki, A. D. Baudot, M. New, T. Van Acker, S. A. Tooze, J. S. Long, K. M. Ryan, in Methods in Enzymology, vol. 588 of Molecular Characterization of Autophagic Responses, Part B, L. Galluzzi, J. M. Bravo-San Pedro, G. Kroemer, Eds. (Academic Press, 2017), pp. 79108.

Read the original post:
Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver - Science Advances

Read More...

Cancer research: New advances and innovations – Medical News Today

June 7th, 2021 1:57 am

In the second part of our whats exciting the experts series, Medical News Today spoke with another group of cancer experts. We asked them what recent advances have given them the most hope. Here, we provide a sneak peek at the fascinating forefront of cancer research in 2021.

Cancer is not a single disease but a collection of diseases. It is complex and does not readily give up its secrets. Despite the challenges cancer poses, scientists and clinicians continue to hone the way in which they diagnose and treat it.

Modern medicine means that diagnosis rates for many cancers are up, as are survival rates. However, with an estimated 19.3 million new cases of cancer worldwide in 2020, there is still much work to be done.

MNT recently contacted a number of medical experts and researchers and asked them to speak about the aspects of cancer research that they find most exciting. Their answers are fascinating and demonstrate the incredible variety of approaches that scientists are using to understand and combat cancer.

We will start todays journey into cutting edge oncology with a surprising guest: magnetically responsive bacteria.

Due to the difficulty of targeting systemically delivered therapeutics for cancer, interest has grown in exploiting biological agents to enhance tumor accumulation, explained Prof. Simone Schrle-Finke, Ph.D., from ETH Zurich in Switzerland.

In other words, getting cancer drugs to the right place is not as straightforward as one might hope. Prof. Schrle-Finke is among the researchers who are now enlisting the help of specialized bacteria.

She told MNT how scientists have known for a century that certain bacteria can colonize tumors and trigger regression. She explained that today, thanks to modern genetic engineering techniques, attenuated bacteria are available that can have a therapeutic effect exactly where this is necessary.

These therapeutic effects include secretion of toxins, competition for nutrients, and modulation of immune responses.

However, despite the promise of bacterial cancer therapy, there are still challenges to meet. Delivering the doses to the right place and getting them into the tumor remain foremost among challenges hampering clinical translation only about 1% of a systemically injected dose reaches the tumor, explained Prof. Schrle-Finke.

To address these challenges, her team at ETH Zurich is using magnetically responsive bacteria.

These so-called magnetotactic bacteria naturally orient themselves like compass needles to Earths magnetic field.

Although this ability evolved for navigation, scientists are keen to find out whether magnetic steering or pulling could allow them to repurpose it for cancer delivery.

In a recent study, Prof. Schrle-Finke and her colleagues used rotating magnetic fields to override the bacterias natural propulsion. As the authors of the study explain, they used swarms of magnetotactic bacteria to create a directable living ferrofluid.

These magnetotactic bacteria have a high demand for iron, so once they reach the tumor, as Prof. Schrle-Finke told MNT, they can metabolically influence cancer cells through starvation from this vital nutrient. We have shown in in vitro models that an increasing number of bacteria induce an upregulation of iron-scavenging receptors and death in cancer cells.

By uniting engineering principles and synthetic biology, we aim to provide a new framework for bacterial cancer therapy that addresses a major remaining hurdle by improving the efficiency of bacterial delivery using safe and scalable magnetic stimuli to these promising living therapeutic platforms.

Prof. Simone Schrle-Finke, Ph.D.

Personalized medicine is transforming the landscape of medicine and how healthcare providers can offer and plan personalized care for each of their patients, believes Dr. Santosh Kesari, Ph.D., director of neuro-oncology at Providence Saint Johns Health Center in Santa Monica, CA.

Dr. Kesari is also chair of the Department of Translational Neurosciences at Saint Johns Cancer Institute and regional medical director for the Research Clinical Institute of Providence Southern California.

Describing personalized medicine, Dr. Kesari said, It is an approach for disease prevention and treatment that takes into account biological, genetic, behavioral, environmental, and social risk factors that are unique to every individual.

He continued, Personalized medicine is rooted in early detection and prevention; integrating data from genomics and other advanced technologies; digital health monitoring; and incorporating the latest medical innovations for optimizing outcomes.

This is becoming very apparent in oncology, where genetic testing for tumor mutations and predispositions is increasingly being utilized and showing more value in using targeted drugs more wisely and improving outcomes.

Dr. Santosh Kesari, Ph.D.

Some personalized cancer approaches are already in use, such as EGFR, HER2, and NTRK inhibitors and the super personalized CAR-T cells.

According to Dr. Kesari, the future of personalization is bright, and progress has only accelerated in the past 5 years.

Continuing with the personalization theme, Dr. Robert Dallmann from Warwick Medical School at Warwick University in the United Kingdom talked with us about chronotherapy:

Propelled by the 2017 Nobel Prize in Medicine or Physiology [going] to three circadian biologists for uncovering the molecular mechanism of circadian biological clocks, cancer chronotherapy is gaining critical momentum to enter mainstream oncology especially in the context of personalized medicine.

Dr. Dallmann explained that many key physiological processes in the cells of our body are modulated in a daily fashion by the circadian clock. These cellular clocks are disrupted in some tumors but not in others.

Interestingly, a functional clock in the tumor predicts the survival time of patients, which has been shown for brain as well as breast tumors.

Therefore, he explained, if scientists could determine the clock status in solid tumors, it would allow doctors to more easily determine whether a patient is at high or low risk. It might also help guide therapy.

There is great potential in optimizing treatment plans with existing drugs by taking into account the interaction with the circadian system of the patient, continued Dr. Dallmann.

More recently, the circadian clock mechanism itself has been proposed as a novel treatment target in glioblastoma. The authors of the glioblastoma study concluded that pharmacologic targeting of circadian networks specifically disrupted cancer stem cell growth and self-renewal.

However, whether this might be generalized to many solid tumors or even other chronic diseases remains to be elucidated, said Dr. Dallmann.

In summary, he told MNT, circadian clocks have long been recognized to modulate chronic disease on many levels. The increased mechanistic understanding has the potential to improve diagnosis and existing treatments of cancer, as well as develop a new class of clock-targeting treatments.

Dr. Chung-Han Lee is a medical oncologist at Memorial Sloan Kettering Cancer Center in New York. He is also a member of the Kidney Cancer Associations Medical Steering Committee. He talked us through recent advances in the treatment of kidney cancer.

The development and subsequent regulatory approval of combination immunotherapy for patients with metastatic kidney cancer have led to transformative change in the lives of many patients and are the hallmark of how greater scientific understanding has impacted cancer care, Dr. Lee told MNT.

Prior to 2005, treatment for metastatic kidney cancer was very limited, with most patients passing away in less than 1 year despite undergoing treatment. According to Dr. Lee, the development of antiangiogenic drugs that inhibit the growth of new blood vessels was among the first breakthroughs to improve the outcomes for patients.

However, even with antiangiogenic drugs, most patients ultimately developed resistance to treatment, and 18 months was considered a long-term response. Next came immunotherapies.

Prior to the development of antiangiogenic medications, it was known that kidney cancer could be treated by activating the immune system to better recognize the disease. However, the tools to activate the immune system were often very nonspecific. Therefore, responses to these early immunotherapies were rare, and the side effects related to treatment were not only burdensome but also could be life threatening.

With recent advances in immunotherapy, we have demonstrated that more targeted immunotherapies that activate specific immune checkpoints are not only possible but can have substantially increased activity against disease.

Two emerging treatment approaches have now become the new standard of care for kidney cancer: dual immunotherapies (such as ipilimumab/nivolumab) or combinations of antiangiogenic targeted therapies with immunotherapies (such as axitinib/pembrolizumab).

In patients treated with ipilimumab and nivolumab, over 50% remain alive at 4 years, and with some [combined antiangiogenic and immunotherapy approaches], nearly 50% of patients remain on their initial therapy at 2 years.

Despite these advances, Dr. Lee is far from complacent, telling us that there remains considerable work to be done. [] Unfortunately, in 2021, for most patients, kidney cancer remains fatal. Even for those who have outstanding responses to treatment, most still require ongoing systemic therapy.

With the rapid improvements in treatments, the development of correlative biomarkers, and the improved biologic understanding of the disease, we have only started to entertain the possibility of curative, time-limited therapy.

Building on the sacrifices of patients and caregivers and the hard work of clinicians, research staff, and scientists, a cure may, one day, be a reality for our patients, he concluded.

Our study from late 2020 has shown that the antidepressant sertraline helps to inhibit the growth of cancer cells in mice, Prof. Kim De Keersmaecker from KU LEUVEN in Belgium told MNT.

Other studies had already indicated that the commonly used antidepressant has anticancer activity, but there was no explanation for the cause of this. Weve been able to demonstrate that sertraline inhibits the production of serine and glycine, causing decreased growth of cancer cells.

Cancer cells and healthy cells are often reliant on the amino acids serine and glycine, which they extract from their environment. However, certain cancer cells produce serine and glycine within the cell. They can become addicted to this production.

This internal production of serine and glycine requires certain enzymes, and these enzymes have become targets for cancer researchers. Preventing them from functioning can starve the cancer cells.

Previous studies have identified inhibitors of serine/glycine synthesis enzymes, but none have reached the clinical trial stage. As the authors of a KU LEUVEN study note, because sertraline is a clinically used drug that can safely be used in humans, it might make a good candidate.

Prof. De Keersmaecker explained that when used with other therapeutics, the drug strongly inhibited the growth of cancer cells in the mice.

The authors of the study concluded: Collectively, this work provides a novel and cost efficient treatment option for the rapidly growing list of serine/glycine synthesis-addicted cancers.

Christy Maksoudian from the NanoHealth & Optical Imaging Group team at KE LEUVEN is excited about the promise of nanotechnology for the treatment of cancer. She told MNT that because of the unique properties that emerge at such a small scale, nanoparticles can be designed in a multitude of ways to exhibit specific behaviors in organisms.

Currently, she explained, many available nanoformulations in the clinic are composed of organic materials because of their biocompatibility and safety. In this context, organic refers to compounds that include carbon.

However, she explains that inorganic nanomaterials, which do not contain carbon, also hold promise for cancer treatment because they possess further functionalities.

For instance, some magnetic nanoparticles, such as those of superparamagnetic iron oxide, can be magnetically guided toward the tumor, while gold nanoparticles generate heat upon exposure to near-infrared light and can, therefore, be used for photothermal therapy (via tumor tissue ablation).

In short, it is possible to introduce gold nanoparticles to the bloodstream of people with cancer. From there, these nanoparticles accumulate in tumors because tumors have particularly leaky blood vessels. Once that region is exposed to near-infrared light, the gold nanoparticles heat up and, consequently, kill cancer cells.

Because of the potential of such broad range of nanomaterial designs, there are always novel cancer therapies being developed.

Christy Maksoudian

I am excited to take part in this movement with my work on copper oxide nanoparticles. Maksoudian and her colleagues use copper oxide nanoparticles doped with 6% iron.

Maksoudian told MNT that these nanoparticles exploit intrinsic metabolic differences between cancer cells and healthy cells to induce high levels of toxicity in cancer cells while only causing reversible damage in healthy tissue.

The fact that such cancer-selective properties can arise due to minor modifications of the nanoparticles at the nanoscale is truly extraordinary and reaffirms the significant role that nanomedicine can play in expanding the treatment landscape for oncology.

Cancer is complex, so approaches to its treatment must match that complexity. As the summaries above demonstrate, scientists are not short on ingenuity, and the battle against cancer continues at pace.

Read the first part of our series on cancer researchers and their exciting work here.

Link:
Cancer research: New advances and innovations - Medical News Today

Read More...

Fulvestrant Alone Found to be Superior to Venetoclax/Fulvestrant Combo in ER+/HER2- Breast Cancer – Targeted Oncology

June 7th, 2021 1:57 am

Compared to fulvestrant (Faslodex) alone, venetoclax (Venclexta) and fulvestrant did not improve overall outcomes in patients with locally advanced or metastatic estrogen receptor (ER)positive, HER2-negative breast cancer who had previously received a CDK4/6 inhibitor, according to findings from the phase 2 VERONICA trial (NCT03584009) that were presented during the 2021 ASCO Annual Meeting.

At a median follow-up of 9.9 months, the clinical benefit rate (CBR) was 11.8% (95% CI, 4.44%-23.87%) with venetoclax/fulvestrant vs 13.7% (95% CI, 5.7%-26.26%) with fulvestrant alone, translating to a risk difference of -1.96% (95% CI, -16.86%-12.94%).

The primary analysis of VERONICA revealed a largely endocrine-refractory population of patients. Venetoclax added to fulvestrant did not improve CBR or progression-free survival [PFS], [nor did] overall survival [OS] favor [the combination], lead study author Geoffrey J. Lindeman, MD, joint head of the Stem Cells and Cancer Division at The Walter and Eliza Hall Institute of Medical Research, said in a virtual presentation of the data.

Despite the use of the combination of a CDK4/6 inhibitor and chemotherapy, which has become the standard frontline therapy for patients with metastatic ER-positive, HER2-negative breast cancer, disease progression is inevitable.

BCL-2 is a pro-survival protein that is overexpressed in the majority of primary and relapsed ER-positive breast cancers. The BCL-2 inhibitor venetoclax has shown promising activity in patients with endocrine-nave, ER-positive, BCL-2positive metastatic breast cancer.

To that end, investigators evaluated the activity of adding the BCL-2 inhibitor to fulvestrant in patients with progressive ER-positive, HER2-negative disease.

Eligibility criteria stipulated that females, 18 years of age or older, had to have locally advanced or metastatic ER-positive, HER2-negative breast cancer, received 2 or fewer lines of therapy in the locally advanced or metastatic setting without chemotherapy, received a CDK4/6 inhibitor at least 8 weeks before enrollment, and have measurable disease.

Patients were randomized 1:1 to 800 mg of oral, daily venetoclax (n = 51) plus 500 mg of intramuscular fulvestrant on day 1 and 15 of cycle 1 and day 1 of each 28-day cycle thereafter or fulvestrant alone (n = 52). Treatment was continued until disease progression, unacceptable toxicity, withdrawal of consent, death, or predefined study end.

CBR, defined as the total complete response (CR), partial response (PR), and stable disease rate after at least 24 weeks, served as the primary end point of the study. Secondary end points included PFS, OS, objective response rate (ORR)defined as the total CR and PR rateand duration of response (DOR).

Additional end points included safety and tolerability, biomarker analysis, pharmacokinetics, and patient-reported outcomes.

The primary analysis took place on August 5, 2020, and the updated analysis took place in April 2021.

Regarding baseline demographics, the median age was 58 years in the venetoclax arm vs 59.5 years in the fulvestrant-alone arm. Approximately half of all patients had an ECOG performance status of 0 in both arms, at 54.9% and 59.6%, respectively. Moreover, in both arms, the majority of patients were White (78.4% vs 88.5%, respectively), had ductal histology (78.4% vs 65.4%, respectively), at least 1 visceral metastatic lesion (92.2% vs 82.7%, respectively), and 1 prior line of endocrine therapy in the metastatic setting (80.4% vs 82.7%, respectively).

All patients had received prior endocrine therapy in the venetoclax and fulvestrant-alone arms, whereas approximately half had received adjuvant chemotherapy (58.8% vs 51.9%, respectively), and less than a quarter had received prior neoadjuvant chemotherapy (23.5% vs 13.5%, respectively).

The median duration of exposure to prior treatment with a CDK4/6 inhibitor in the metastatic setting was 15 months in the venetoclax arm vs 16.5 months in the fulvestrant-alone arm, with palbociclib (Ibrance; 56.9% vs 75%, respectively) and ribociclib (Kisqali; 43.1% vs 25%, respectively).

Regarding BCL-2 status, more patients had high expression in the venetoclax and fulvestrant-alone arms (64.7% vs 65.4%, respectively) than low expression (35.3% vs 34.6%, respectively).

Biomarker status in the venetoclax and fulvestrant-alone arms, respectively, indicated the presence of mutations in the PIK3CA (39.6% vs 30.4%), ESR1 (43.8% vs 41.3%), TP53 (47.9% vs 34.8%), and RB1(18.8% vs 8.7%) genes.

Additional results demonstrated that the ORR was 3.9% in the venetoclax arm vs 5.9% in the fulvestrant-alone arm and consisted all of PRs.

The median PFS was 2.69 months (95% CI, 1.94-3.71) in the venetoclax arm vs 1.94 months (95% CI, 1.84-3.55) in the fulvestrant-alone arm (HR, 0.94; 95% CI, 0.61-1.45; P = .7853). The 6-month PFS rates were 12.3% vs 18.8%, respectively.

The OS data were not mature at the time of the primary analysis but did not favor the venetoclax arm. The median OS was 16.76 months (95% CI, 10.12-not evaluable [NE]) in the venetoclax arm vs NE (95% CI, 16-NE) in the fulvestrant-alone arm (HR, 2.56; 95% CI, 1.11-5.89; P = .0218). The updated analysis showed comparable results, with a numerically lower hazard ratio of 1.85 (95% CI, 1.01-3.39).

Notably, similar CBR and PFS was observed between arms irrespective of BCL-2 expression.

However, increased CBR and PFS was reported in the PIK3CA wild-type subgroup in an exploratory analysis. Here, the CBR was 20.7% in the venetoclax arm (n = 29) vs 9.7% in the fulvestrant-alone arm (n = 31). The median PFS was 3.71 months (95% CI, 1.94-4.53) vs 1.87 (95% CI, 1.74-3.55), respectively (HR, 0.66; 95% CI, 0.38-1.17; P = .1549).

A higher number of deaths was reported in the venetoclax arm vs the fulvestrant-alone arm primarily because of progressive disease at least 28 days after the last dose of study treatment. A similar trend was reported in the updated analysis.

The safety profile of the combination was consistent with the known safety profile of each agent alone, and no new signals were identified.

The occurrence of at least 1 adverse effect (AE) was reported in 94% of patients in the venetoclax arm vs 76.5% of patients in the fulvestrant-alone arm. Grade 3 or 4 AEs were reported in 26% vs 11.8% of patients, respectively. Serious AEs occurred in 8% vs 2% of patients, respectively. One case of urosepsis leading to death occurred in the venetoclax arm but was unrelated to the study drug.

Treatment-related AEs leading to drug withdrawal occurred in 8% of patients in the venetoclax arm vs 0% of patients in the fulvestrant-alone arm. AEs leading to dose modification or interruption occurred in 44% vs 2% of patients, respectively.

The most common grade 3 or 4 AEs in the venetoclax arm included fatigue (6%), neutropenia (12%), lymphopenia (4%), and dyspnea (4%) vs a 2% incidence of grade 3 or 4 fatigue in the fulvestrant-alone arm.

It remains unclear whether a BCL-2 inhibitor would be effective in an endocrine therapyresponsive, CDK4/6 inhibitornave setting, concluded Lindeman.

Read the original here:
Fulvestrant Alone Found to be Superior to Venetoclax/Fulvestrant Combo in ER+/HER2- Breast Cancer - Targeted Oncology

Read More...

Merck’s KEYTRUDA Given After Surgery Reduced the Risk of Disease Recurrence or Death by 32% Versus Placebo as Adjuvant Therapy in Patients With Renal…

June 7th, 2021 1:57 am

KEYNOTE-564 is the First Phase 3 Study to Show Positive Results for Adjuvant Immunotherapy in RCC

First-Time Disease-Free Survival Data to be Presented During Plenary Session at the 2021 ASCO Annual Meeting

Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced first-time results from the pivotal Phase 3 KEYNOTE-564 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, for the potential adjuvant treatment of patients with renal cell carcinoma (RCC) at intermediate-high or high risk of recurrence following nephrectomy (surgical removal of a kidney) or following nephrectomy and resection of metastatic lesions. After a median follow-up of 24.1 months (14.9-41.5), KEYTRUDA demonstrated a statistically significant and clinically meaningful reduction in the risk of disease recurrence or death by 32% compared to placebo (HR=0.68 [95% CI, 0.530.87]; p=0.0010). Additionally, a favorable trend in overall survival (OS) was observed with a 46% reduction in the risk of death with KEYTRUDA as compared to placebo (HR=0.54 [95% CI, 0.300.96]; p=0.0164). As previously announced , the trial will continue to evaluate OS, a key secondary endpoint.

With the results of KEYNOTE-564, pembrolizumab is the first immunotherapy to show a clinical benefit in the adjuvant setting in kidney cancer, said Dr. Toni K. Choueiri, director of the Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and professor of medicine at Harvard Medical School. It took several decades to achieve this milestone. We hope to build on this important research and provide new treatment options to kidney cancer patients.

As nearly half of early-stage renal cell carcinoma patients experience disease recurrence after surgery, we are particularly encouraged to see that KEYTRUDA demonstrated a statistically significant reduction in the risk of recurrence or death by 32% compared with placebo in this study, said Dr. Scot Ebbinghaus, vice president, clinical research, Merck Research Laboratories. These data highlight the opportunity for KEYTRUDA to become a new standard of care for patients with early-stage renal cell carcinoma and we look forward to working closely with regulatory authorities to make this treatment option available to patients.

The late-breaking results will be presented in the Plenary session of the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting (Abstract #LBA5) on Sunday, June 6, 2021. As announced , data spanning more than 20 types of cancer will be presented from Mercks oncology research program at ASCO. A compendium of presentations and posters of Merck-led studies will be posted by Merck on Friday, June 4 at 9 a.m. ET. Follow Merck on Twitter via @Merck and keep up to date with ASCO news and updates by using the hashtag #ASCO21.

Merck is continuing to study KEYTRUDA, in combination or as monotherapy, as well as other investigational products across multiple settings and stages of RCC including adjuvant and advanced or metastatic disease through our broad clinical development program, which includes over 20 clinical studies and more than 4,000 patients.

KEYTRUDA is currently approved in the U.S., Europe and Japan in combination with axitinib for the first-line treatment of patients with advanced RCC.

Study Design and Additional Data from KEYNOTE-564

KEYNOTE-564 is a randomized, double-blind, Phase 3 trial ( ClinicalTrials.gov , NCT03142334 ) evaluating KEYTRUDA monotherapy versus placebo for the adjuvant treatment of patients with RCC who have undergone nephrectomy and who have intermediate-high risk, high risk, or M1 no evidence of disease (M1 NED) RCC with clear cell component. The study enrolled 994 patients who were randomized to receive either KEYTRUDA (200 mg intravenously [IV] on Day 1 of each three-week cycle for up to 17 cycles) or placebo (saline solution IV on Day 1 of each three-week cycle for up to 17 cycles). The primary endpoint is disease-free survival (DFS), and the secondary endpoints include OS and safety.

As of data cutoff (Dec. 14, 2020), the median study follow-up was 24.1 months. Findings showed KEYTRUDA demonstrated a statistically significant improvement in DFS in patients with RCC following nephrectomy or following nephrectomy and resection of metastatic lesions compared with placebo (HR=0.68 [95% CI, 0.530.87]; p=0.0010). Additionally, the two-year estimated DFS rate was 77.3% with KEYTRUDA versus 68.1% with placebo. Overall, the DFS benefit was consistent across subgroups. Median DFS was not achieved in either treatment arm based on event accrual.

Grade 3-5 treatment-related adverse events (TRAEs) occurred in 18.9% of patients in the KEYTRUDA arm and 1.2% of patients in the placebo arm. TRAEs resulting in discontinuation of any treatment occurred in 17.6% of patients in the KEYTRUDA arm and 0.6% of patients in the placebo arm. The most common TRAEs of any grade (occurring in 5% of patients) were fatigue (20.3%), pruritus (18.6%) and hypothyroidism (17.6%) in the KEYTRUDA arm and fatigue (14.3%), pruritus (11.5%) and diarrhea (10.3%) in the placebo arm. The most common immune-mediated adverse events of any grade (occurring in 3% of patients) were hypothyroidism (21.1%) and hyperthyroidism (11.9%) in the KEYTRUDA arm and hypothyroidism (3.6%) in the placebo arm. No treatment-related deaths occurred.

About Renal Cell Carcinoma (RCC)

Renal cell carcinoma (RCC) is by far the most common type of kidney cancer; about nine out of 10 kidney cancers are RCCs. Renal cell carcinoma is about twice as common in men as in women. Most cases of RCC are discovered incidentally during imaging tests for other abdominal diseases. Worldwide, it is estimated there were nearly 431,300 new cases of kidney cancer diagnosed and almost 179,400 deaths from the disease in 2020. In the U.S. alone, it is estimated there will be nearly 76,100 new cases of kidney cancer diagnosed and almost 13,800 deaths from the disease in 2021.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,400 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications in the U.S.

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic HNSCC with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult patients with relapsed or refractory classical Hodgkin lymphoma (cHL).

KEYTRUDA is indicated for the treatment of pediatric patients with refractory cHL, or cHL that has relapsed after 2 or more lines of therapy.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 (CPS 10), as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High or Mismatch Repair Deficient Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Microsatellite Instability-High or Mismatch Repair Deficient Colorectal Cancer

KEYTRUDA is indicated for the first-line treatment of patients with unresectable or metastatic MSI-H or dMMR colorectal cancer (CRC).

Gastric Carcinoma

KEYTRUDA, in combination with trastuzumab, and fluoropyrimidine- and platinum-containing chemotherapy, is indicated for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal junction (GEJ) adenocarcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic esophageal or gastroesophageal junction (GEJ) (tumors with epicenter 1 to 5 centimeters above the GEJ) carcinoma that is not amenable to surgical resection or definitive chemoradiation either:

Cervical Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Tumor Mutational Burden-High

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high (TMB-H) [10 mutations/megabase] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with TMB-H central nervous system cancers have not been established.

Cutaneous Squamous Cell Carcinoma

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cutaneous squamous cell carcinoma (cSCC) that is not curable by surgery or radiation.

Triple-Negative Breast Cancer

KEYTRUDA, in combination with chemotherapy, is indicated for the treatment of patients with locally recurrent unresectable or metastatic triple-negative breast cancer (TNBC) whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test. This indication is approved under accelerated approval based on progression-free survival. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Selected Important Safety Information for KEYTRUDA

Severe and Fatal Immune-Mediated Adverse Reactions

KEYTRUDA is a monoclonal antibody that belongs to a class of drugs that bind to either the programmed death receptor-1 (PD-1) or the programmed death ligand 1 (PD-L1), blocking the PD-1/PD-L1 pathway, thereby removing inhibition of the immune response, potentially breaking peripheral tolerance and inducing immune-mediated adverse reactions. Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue, can affect more than one body system simultaneously, and can occur at any time after starting treatment or after discontinuation of treatment. Important immune-mediated adverse reactions listed here may not include all possible severe and fatal immune-mediated adverse reactions.

Monitor patients closely for symptoms and signs that may be clinical manifestations of underlying immune-mediated adverse reactions. Early identification and management are essential to ensure safe use of antiPD-1/PD-L1 treatments. Evaluate liver enzymes, creatinine, and thyroid function at baseline and periodically during treatment. In cases of suspected immune-mediated adverse reactions, initiate appropriate workup to exclude alternative etiologies, including infection. Institute medical management promptly, including specialty consultation as appropriate.

Withhold or permanently discontinue KEYTRUDA depending on severity of the immune-mediated adverse reaction. In general, if KEYTRUDA requires interruption or discontinuation, administer systemic corticosteroid therapy (1 to 2 mg/kg/day prednisone or equivalent) until improvement to Grade 1 or less. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Consider administration of other systemic immunosuppressants in patients whose adverse reactions are not controlled with corticosteroid therapy.

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis. The incidence is higher in patients who have received prior thoracic radiation. Immune-mediated pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including fatal (0.1%), Grade 4 (0.3%), Grade 3 (0.9%), and Grade 2 (1.3%) reactions. Systemic corticosteroids were required in 67% (63/94) of patients. Pneumonitis led to permanent discontinuation of KEYTRUDA in 1.3% (36) and withholding in 0.9% (26) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 23% had recurrence. Pneumonitis resolved in 59% of the 94 patients.

Pneumonitis occurred in 8% (31/389) of adult patients with cHL receiving KEYTRUDA as a single agent, including Grades 3-4 in 2.3% of patients. Patients received high-dose corticosteroids for a median duration of 10 days (range: 2 days to 53 months). Pneumonitis rates were similar in patients with and without prior thoracic radiation. Pneumonitis led to discontinuation of KEYTRUDA in 5.4% (21) of patients. Of the patients who developed pneumonitis, 42% of these patients interrupted KEYTRUDA, 68% discontinued KEYTRUDA, and 77% had resolution.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis, which may present with diarrhea. Cytomegalovirus infection/reactivation has been reported in patients with corticosteroid-refractory immune-mediated colitis. In cases of corticosteroid-refractory colitis, consider repeating infectious workup to exclude alternative etiologies. Immune-mediated colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 4 (

Hepatotoxicity and Immune-Mediated Hepatitis

KEYTRUDA as a Single Agent

KEYTRUDA can cause immune-mediated hepatitis. Immune-mediated hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 4 (

KEYTRUDA with Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider monitoring more frequently as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased alanine aminotransferase (ALT) (20%) and increased aspartate aminotransferase (AST) (13%) were seen, which was at a higher frequency compared to KEYTRUDA alone. Fifty-nine percent of the patients with increased ALT received systemic corticosteroids. In patients with ALT 3 times upper limit of normal (ULN) (Grades 2-4, n=116), ALT resolved to Grades 0-1 in 94%. Among the 92 patients who were rechallenged with either KEYTRUDA (n=3) or axitinib (n=34) administered as a single agent or with both (n=55), recurrence of ALT 3 times ULN was observed in 1 patient receiving KEYTRUDA, 16 patients receiving axitinib, and 24 patients receiving both. All patients with a recurrence of ALT 3 ULN subsequently recovered from the event.

Immune-Mediated Endocrinopathies

Adrenal Insufficiency

KEYTRUDA can cause primary or secondary adrenal insufficiency. For Grade 2 or higher, initiate symptomatic treatment, including hormone replacement as clinically indicated. Withhold KEYTRUDA depending on severity. Adrenal insufficiency occurred in 0.8% (22/2799) of patients receiving KEYTRUDA, including Grade 4 (

Hypophysitis

KEYTRUDA can cause immune-mediated hypophysitis. Hypophysitis can present with acute symptoms associated with mass effect such as headache, photophobia, or visual field defects. Hypophysitis can cause hypopituitarism. Initiate hormone replacement as indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Hypophysitis occurred in 0.6% (17/2799) of patients receiving KEYTRUDA, including Grade 4 (

Thyroid Disorders

KEYTRUDA can cause immune-mediated thyroid disorders. Thyroiditis can present with or without endocrinopathy. Hypothyroidism can follow hyperthyroidism. Initiate hormone replacement for hypothyroidism or institute medical management of hyperthyroidism as clinically indicated. Withhold or permanently discontinue KEYTRUDA depending on severity. Thyroiditis occurred in 0.6% (16/2799) of patients receiving KEYTRUDA, including Grade 2 (0.3%). None discontinued, but KEYTRUDA was withheld in

Hyperthyroidism occurred in 3.4% (96/2799) of patients receiving KEYTRUDA, including Grade 3 (0.1%) and Grade 2 (0.8%). It led to permanent discontinuation of KEYTRUDA in

Type 1 Diabetes Mellitus (DM), Which Can Present With Diabetic Ketoacidosis

Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Initiate treatment with insulin as clinically indicated. Withhold KEYTRUDA depending on severity. Type 1 DM occurred in 0.2% (6/2799) of patients receiving KEYTRUDA. It led to permanent discontinuation in

Immune-Mediated Nephritis With Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Immune-mediated nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 4 (

Immune-Mediated Dermatologic Adverse Reactions

KEYTRUDA can cause immune-mediated rash or dermatitis. Exfoliative dermatitis, including Stevens-Johnson syndrome, drug rash with eosinophilia and systemic symptoms, and toxic epidermal necrolysis, has occurred with antiPD-1/PD-L1 treatments. Topical emollients and/or topical corticosteroids may be adequate to treat mild to moderate nonexfoliative rashes. Withhold or permanently discontinue KEYTRUDA depending on severity. Immune-mediated dermatologic adverse reactions occurred in 1.4% (38/2799) of patients receiving KEYTRUDA, including Grade 3 (1%) and Grade 2 (0.1%) reactions. Systemic corticosteroids were required in 40% (15/38) of patients. These reactions led to permanent discontinuation in 0.1% (2) and withholding of KEYTRUDA in 0.6% (16) of patients. All patients who were withheld reinitiated KEYTRUDA after symptom improvement; of these, 6% had recurrence. The reactions resolved in 79% of the 38 patients.

Other Immune-Mediated Adverse Reactions

The following clinically significant immune-mediated adverse reactions occurred at an incidence of Cardiac/Vascular: Myocarditis, pericarditis, vasculitis; Nervous System: Meningitis, encephalitis, myelitis and demyelination, myasthenic syndrome/myasthenia gravis (including exacerbation), Guillain-Barr syndrome, nerve paresis, autoimmune neuropathy; Ocular: Uveitis, iritis and other ocular inflammatory toxicities can occur. Some cases can be associated with retinal detachment. Various grades of visual impairment, including blindness, can occur. If uveitis occurs in combination with other immune-mediated adverse reactions, consider a Vogt-Koyanagi-Harada-like syndrome, as this may require treatment with systemic steroids to reduce the risk of permanent vision loss; Gastrointestinal: Pancreatitis, to include increases in serum amylase and lipase levels, gastritis, duodenitis; Musculoskeletal and Connective Tissue: Myositis/polymyositis rhabdomyolysis (and associated sequelae, including renal failure), arthritis (1.5%), polymyalgia rheumatica; Endocrine: Hypoparathyroidism; Hematologic/Immune: Hemolytic anemia, aplastic anemia, hemophagocytic lymphohistiocytosis, systemic inflammatory response syndrome, histiocytic necrotizing lymphadenitis (Kikuchi lymphadenitis), sarcoidosis, immune thrombocytopenic purpura, solid organ transplant rejection.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% of 2799 patients receiving KEYTRUDA. Monitor for signs and symptoms of infusion-related reactions. Interrupt or slow the rate of infusion for Grade 1 or Grade 2 reactions. For Grade 3 or Grade 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Fatal and other serious complications can occur in patients who receive allogeneic HSCT before or after antiPD-1/PD-L1 treatment. Transplant-related complications include hyperacute graft-versus-host disease (GVHD), acute and chronic GVHD, hepatic veno-occlusive disease after reduced intensity conditioning, and steroid-requiring febrile syndrome (without an identified infectious cause). These complications may occur despite intervening therapy between antiPD-1/PD-L1 treatment and allogeneic HSCT. Follow patients closely for evidence of these complications and intervene promptly. Consider the benefit vs risks of using antiPD-1/PD-L1 treatments prior to or after an allogeneic HSCT.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with an antiPD-1/PD-L1 treatment in this combination is not recommended outside of controlled trials.

Follow this link:
Merck's KEYTRUDA Given After Surgery Reduced the Risk of Disease Recurrence or Death by 32% Versus Placebo as Adjuvant Therapy in Patients With Renal...

Read More...

Betcha Haven’t Heard These: A Biochemist’s 3 Surprising Tips For Longevity – mindbodygreen.com

June 7th, 2021 1:56 am

According to Wolf, maintaining muscle mass is the No. 1 thing you can do to optimize longevity. "There's this guarantee of losing muscle mass, losing the ability for maximum power production, as we age that begins in our 30s," he explains. (Specifically, you lose 3 to 8% of muscle mass per decade after you turn 30, and at an even higher rate after 60.) It's a process called sarcopenia, or age-related muscle mass loss, that happens as you age; between the ages of 20 and 80, research has found you can actually lose 40% of your muscle mass.

The key, says Wolf, is to delay sarcopenia as long as you can: "If you want to avoid a rest home, if you want to avoid neurodegenerative disease... All of that plays favorably to maintaining adequate muscle mass into aging," he says.

In terms of how to maintain muscle mass, Wolf is quick to sing the praises of strength training. "That's where the real return on investment lies with the longevity-healthspan story," he explains. While any physical activity will do, says Wolf, he especially loves workouts with basic strength training mechanics (read: pressing, pulling, squatting, hinging, lunging, etc.)just make sure you switch it up from time to time.

"Your body gets super efficient at the things that you do," Wolf explains. "The real key in this [longevity] story is a novel load, a novel experiencesomething you haven't really done before or is achieved in a different way. And a very minimal dose can go a long way."

View post:
Betcha Haven't Heard These: A Biochemist's 3 Surprising Tips For Longevity - mindbodygreen.com

Read More...

Aging in Style: Lessons learned from athletes for increasing longevity – KCTV Kansas City

June 7th, 2021 1:56 am

'); $("#expandable-weather-block .modal-body #mrd-alert"+ alertCount).append(""+val.title+""); if (val.poly != "" && val.polyimg != "") { $("#expandable-weather-block .modal-body #mrd-alert"+ alertCount).append('"+val.ihtml+""); $("#expandable-weather-block .weather-index-alerts").show(); $("#expandable-weather-block .modal-body h2").css({"font-family":"'Fira Sans', sans-serif", "font-weight":"500", "padding-bottom":"10px"}); $("#expandable-weather-block .modal-body p").css({"font-size":"14px", "line-height":"24px"}); $("#expandable-weather-block .modal-body span.wxalertnum").css({"float":"left", "width":"40px", "height":"40px", "color":"#ffffff", "line-height":"40px", "background-color":"#888888", "border-radius":"40px", "text-align":"center", "margin-right":"12px"}); $("#expandable-weather-block .modal-body b").css("font-size", "18px"); $("#expandable-weather-block .modal-body li").css({"font-size":"14px", "line-height":"18px", "margin-bottom":"10px"}); $("#expandable-weather-block .modal-body ul").css({"margin-bottom":"24px"}); $("#expandable-weather-block .modal-body pre").css({"margin-bottom":"24px"}); $("#expandable-weather-block .modal-body img").css({"width":"100%", "margin-bottom":"20px", "borderWidth":"1px", "border-style":"solid", "border-color":"#aaaaaa"}); $("#expandable-weather-block .modal-body #mrd-alert"+ alertCount).css({"borderWidth":"0", "border-bottom-width":"1px", "border-style":"dashed", "border-color":"#aaaaaa", "padding-bottom":"10px", "margin-bottom":"40px"}); }); } function parseAlertJSON(json) { console.log(json); alertCount = 0; if (Object.keys(json.alerts).length > 0) { $("#mrd-wx-alerts .modal-body ").empty(); } $.each(json.alerts, function(key, val) { alertCount++; $("#mrd-wx-alerts .alert_count").text(alertCount); $("#mrd-wx-alerts .modal-body ").append(''); $("#mrd-wx-alerts .modal-body #mrd-alert"+ alertCount).append(""+val.title+""); if (val.poly != "" && val.polyimg != "") { $("#mrd-wx-alerts .modal-body #mrd-alert"+ alertCount).append(''); } else if (val.fips != "" && val.fipsimg != "") { // $("#mrd-wx-alerts .modal-body #mrd-alert"+ alertCount).append(''); } $("#mrd-wx-alerts .modal-body #mrd-alert"+ alertCount).append(val.dhtml+"

Instruction

Read the original:
Aging in Style: Lessons learned from athletes for increasing longevity - KCTV Kansas City

Read More...

Try this 2 fruits and 3 vegetables per day diet for longevity: Harvard Study – Times of India

June 7th, 2021 1:56 am

The study released by the American Health Association in March 2021 and conducted by researchers at Harvard TH Chan School of Public Health revealed that eating a balanced amount of fruits and vegetables can help us live longer.

Just two servings of fruit and three servings of vegetables can lower mortality rates. However, eating more than that does not provide any additional benefits.

The lead study author Dong D. Wang, M.D., Sc.D., an epidemiologist, nutritionist and a member of the medical faculty at Harvard Medical School and Brigham and Womens Hospital in Boston in an interview to a news channel revealed that two servings of fruits and three servings of vegetables are the optimal amount of natural products that one can take to cut down the risk of developing any major diseases.

This amount likely offers the most benefit in terms of prevention of major chronic disease and is a relatively achievable intake for the general public," he said.

Follow this link:
Try this 2 fruits and 3 vegetables per day diet for longevity: Harvard Study - Times of India

Read More...

The 2 fruits and 3 vegetables per day diet for longevity: Harvard study shows the way – Times Now

June 7th, 2021 1:56 am

The fruits and vegetables path to longevity  |  Photo Credit: iStock Images

So, heres the formula that we had been searching for high and low. Eating the right mix of fruits and vegetables can help us live longer, according to a new study.

Released by the American Health Association in March 2021 and conducted by researchers at Harvard TH Chan School of Public Health, the new study found that eating two servings of fruit and three servings of vegetables is associated with lower mortality rates.

Eating more than that was not associated with additional benefits, the study said.CNBC quotes the lead study author Dong D. Wang, M.D., Sc.D., an epidemiologist, nutritionist and a member of the medical faculty at Harvard Medical School and Brigham and Womens Hospital in Boston, who says that This amount likely offers the most benefit in terms of prevention of major chronic disease and is a relatively achievable intake for the general public.

So, does that mean we can eat any and every fruit and vegetable, and expect the 5-a-day combo to enhance our longevity? Not all fruits and vegetables were considered equal, alerts Dr Wang.

Vegetables and fruits that showed benefits:

Not recommended for 5-a-day regimen:

How the study was conducted:

What ifone eats more servings of fruits or veggies?Eating more than five servings per day of fruits and vegetables was not linked with additional health benefits, the researchers found.

The nutty way to longevity:According to a report in the Boston Globe, nuts may help us live longer, healthier lives. New research shows that people who eat a daily handful of nuts have improved longevity, lower risk for chronic illnesses like heart disease, and are generally leaner than those who do not eat nuts.

The report says that this research in 2013, by the Harvard School of Public Health, Brigham and Women's Hospital, and the Dana-Farber Cancer Institute suggests consuming nuts regularly promotes health.

Critics say partial funding by a nut research group raises credibility questions.Walter Willett, professor of epidemiology and nutrition, chair of the department of nutrition at Harvard's School of Public Health, was one of the study's authors.

The nutritional profile of nuts, which includes unsaturated fats, antioxidants, protein, fibre, vitamins, minerals, and phytosterols, maybe what's responsible for the protective effects. Professor Willett says, "Like most good things it's a package."

Researchers saw similar results for both peanuts (which are legumes), and tree nuts such as almonds, cashews, and pecans. The family of tree nuts also includes Brazil nuts, hazelnuts, macadamia nuts, pine nuts, pistachios, walnuts, and others.

Professor Willett cautions against eating too many nuts, though. He suggests using them to replace cheese or meat on salads, tossing some into your yogurt, and mixing them with legumes for protein-rich vegetarian dishes.

Mediterranean diet linked to longer life:The Mediterranean diet, already considered one of the healthiest diets because of its link to reduced risk of heart disease, cancer, and other chronic diseases, has a new feather in its cap. A study by Harvard School of Public Health (HSPH) and the Harvard-affiliated Brigham and Womens Hospital (BWH) researchers found women who regularly consumed this diet rich in olive oil, nuts, beans, fish, fruits, vegetables, and wine in moderation may live longer. The study was published on December 2, 2014, online in The BMJ (British Medical Journal).The researchers studied nutritional data from 4,676 women participating in the Nurses Health Study. They found that those who ate mostly a Mediterranean diet had longer telomeres, a biomarker linked to longevity.

Disclaimer: Tips and suggestions mentioned in the article are for general information purposes only and should not be construed as professional medical advice. Always consult your doctor or a professional healthcare provider if you have any specific questions about any medical matter.

View post:
The 2 fruits and 3 vegetables per day diet for longevity: Harvard study shows the way - Times Now

Read More...

Page 216«..1020..215216217218..230240..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick