header logo image


Page 183«..1020..182183184185..190200..»

No, people who recovered from COVID-19 are not completely immune to the virus – Local 5 – weareiowa.com

August 4th, 2021 1:52 am

Although studies show people who had COVID-19 and survived have some level of immunity, public health agencies still recommend they get vaccinated.

COVID-19 cases, hospitalizations and deaths are again rising across the United States, with the highest spread coming in areas with low vaccination rates, according to the Centers for Disease Control and Prevention. The increase in cases has come with the continued spread of the more contagious delta variant.

As a result, the CDC and Democratic and Republican leaders are urging more people to get vaccinated. But what about people who already had COVID-19? A VERIFY viewer asked if they are immune and wondered if they should get vaccinated.

THE QUESTION

Maria C. asked: Are people who recovered from COVID-19 completely immune?

THE SOURCES

THE ANSWER

No, people who recovered from COVID-19 are not completely immune to the virus and health officials recommend they get vaccinated.

WHAT WE FOUND

The World Health Organization says: Take whatever vaccine is made available to you first, even if you have already had COVID-19. It is important to be vaccinated as soon as possible once its your turn and not wait. Approved COVID-19 vaccines provide a high degree of protection against getting seriously ill and dying from the disease, although no vaccine is 100% protective.

The CDC alsorecommends people who already had COVID-19 get vaccinated. People who were treated with monoclonal antibodies or convalescent plasma should wait 90 days before getting vaccinated, the CDC says. But after that, the agency recommends those people get the vaccine as well.

Dr. Bill Moss, a professor and executive director of the International Vaccine Access Center at Johns Hopkins University, said immunity means a persons immune system has previously responded to a bacteria or virus that causes infection.

However, its more of a spectrum than an absolute, as there are different levels of immunity,he said.

People who were infected with COVID-19 and survived have some level of natural immunity, although the CDC says its unclear how long that protection lasts. The CDC saysreported cases of reinfection are rare.

One study, partially funded by the National Institutes of Health, concluded immunity may last as long as eight months after infection.Dr. Abinash Virk with the Mayo Clinic said recent studies show natural immunity may last for at least a year. But she said the COVID-19 vaccines boost immunity for people who already had COVID-19 and provide protection against variants of concern.

"Additionally, vaccinated persons have demonstrated longer immunity and lower rates of infection than those who were infected, suggesting the vaccines generate a more sustained immunity than natural infection alone, Virk said.

The CDC says studies suggest the currently authorized vaccines, developed by Pfizer, Moderna and Johnson & Johnson,work against the variants, including the widespread delta variant, which is estimated to make up more than80% of new COVID-19 cases across the U.S.

As of Aug. 2,nearly 50% of the U.S. population was fully vaccinated against COVID-19. More than 611,000 COVID-19 deaths have been reported in the U.S. during the pandemic.

The VERIFY team works to separate fact from fiction so that you can understand what is true and false. Please consider subscribing to our daily newsletter, text alerts and our YouTube channel. You can also follow us on Snapchat, Twitter, Instagram, Facebook and TikTok. Learn More

Text: 202-410-8808

Here is the original post:
No, people who recovered from COVID-19 are not completely immune to the virus - Local 5 - weareiowa.com

Read More...

If Ive already had Covid, do I need a jab? How does the immune system respond? An expert explains – News24

August 4th, 2021 1:52 am

Over a year into the pandemic, questions around immune responses after Covid continue to confound.

One question many people are asking is whether the immunity you get from contracting Covid and recovering is enough to protect you in the future.

The answer is no, its not.

Heres why.

Immune responses are innate or acquired. Innate, or short-term immunity, occurs when immune cells that are the bodys first line of defence are activated against a pathogen like a virus or bacteria.

If the pathogen is able to cross the first line of defence, T-cells and B-cells are triggered into action. B-cells fight through secreted proteins called antibodies, specific to each pathogen. T-cells can be categorised into helper T-cells and killer T-cells. Helper T-cells help B-cells in making antibodies. Killer T-cells directly kill infected cells.

Once the battle is over, B-cells and T-cells develop memory and can recognise the invading pathogen next time. This is known as acquired or adaptive immunity, which triggers long-term protection.

What happens when you get reinfected? Memory B-cells dont just produce identical antibodies, they also produce antibody variants. These diverse set of antibodies form an elaborate security ring to fight SARS-CoV-2 variants.

Getting Covid and recovering (known as natural infection) doesnt appear to generate protection as robust as that generated after vaccination.

And the immune response generated post-infection and vaccination, known as hybrid immunity, is more potent than either natural infection or vaccination alone.

People who have had Covid and recovered and then been vaccinated against Covid have more diverse and high-quality memory B-cell responses than people whove just been vaccinated.

Studies indicate mRNA vaccines generate a more potent immune response with previous infection, at least against some variants including Alpha and Beta.

And studies have shown that antibody levels were higher among those whod recovered from Covid and were subsequently vaccinated than those whod only had the infection.

Memory B-cells against the coronavirus have been reported to be five to ten times higher in people vaccinated post-infection than natural infection or vaccination alone.

Some reports have suggested people whove had Covid need only one dose of the vaccine. Clinical trials of approved vaccines didnt generate relevant data because people whod already had Covid were excluded from phase 3 trials.

One study from June showed people with previous exposure to SARS-CoV-2 tended to mount powerful immune responses to a single mRNA shot. They didnt gain much benefit from a second jab.

A single dose of an mRNA vaccine after infection achieves similar levels of antibodies against the spike proteins receptor binding domain (which allows the virus to attach to our cells) compared to double doses of vaccination in people never exposed to SARS-CoV-2.

We need more studies to fully understand how long memory B-cell and T-cell responses will last in both groups.

Also, a single dose strategy has only been studied for mRNA-based vaccines. More data is required to understand whether one jab post-infection would be effective for all the vaccines.

At this stage, its still good to have both doses of a Covid vaccine after recovering from Covid.

The development of new vaccines must keep pace with the evolution of the coronavirus.

At least one variant seems to have evolved enough to overtake others, Delta, which is about 60% more transmissible than the Alpha variant. Delta is moderately resistant to vaccines, meaning it can reduce how well the vaccines work, particularly in people whove only had one dose.

Theres no data available yet about how effective a single jab is for people who were previously infected with Delta and recovered.

The most important thing you can do to protect yourself from Delta is to get fully vaccinated.

According to a Public Health England report, one dose of Pfizer offered only about 33% protection against symptomatic disease with Delta, but two doses was 88% effective.

Two doses was also 96% effective against hospitalisation from Delta. The AstraZeneca vaccine was 92% effective against hospitalisation from Delta after two doses.

A few vaccine manufacturers, including Pfizer, are now planning to use a potential third dose as a booster to combat the Delta variant.

Sunit K. Singh, Professor of Molecular Immunology and Virology, Institute of Medical Sciences, Banaras Hindu University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

See the rest here:
If Ive already had Covid, do I need a jab? How does the immune system respond? An expert explains - News24

Read More...

Genetic mutation linked to rare inflammatory bowel disease bowel-disease – Health Europa

August 4th, 2021 1:52 am

Scientists from Johns Hopkins Medicine, in collaboration with national and international researchers, have identified a genetic mutation in a small number of children with a rare type of inflammatory bowel disease. They say that this discovery could help to define the cause of more common bowel diseases and lead to more targeted treatments for gut conditions.

The study has been published in Human Genetics.

Anthony Guerreiro Jr., M.D, Ph.D., M.S., Director of the Very Early Onset Inflammatory Bowel Disease Clinic and Assistant Professor of Pediatrics at the Johns Hopkins University School of Medicine, said: We aimed to see if children have a greater genetic susceptibility for this type of inflammatory bowel disease because they develop it so young,

Unlike other inflammatory bowel diseases, very early onset inflammatory bowel disease is diagnosed in patients before the age of six, occurring in four out of every 100,000 births worldwide. In such young patients, the disease does not typically respond to anti-inflammatory medications, and surgery is sometimes required to remove all or parts of the colon.

Inflammatory bowel diseases are chronic, inflammatory conditions including Crohns disease and ulcerative colitis that occur when immune cells in the intestines are overactivated, causing sustained inflammation in the gut. These diseases are thought to be caused by multiple genetic mutations and environmental factors, such as diet and pollution, as well as disruptions to the makeup of gut bacteria. Common treatments include prescription drugs that curb inflammation.

Since the most common characteristic of bowel diseases is inflammation, scientists have long suspected genetic links between the immune system and bowel conditions.

In the study, scientists collected tissue samples from 24 patients with very early onset inflammatory bowel disease seen at The Johns Hopkins Hospital and Johns Hopkins Childrens Center and performed whole exome sequencing a method that looks at the protein-producing areas of a gene to identify mutations.

Of the 24 patients, mutations were found in four patients in parts of a gene called IFIH1, which produces a protein involved in the virus-fighting branch of the immune system. Other genetic sequencing studies have also linked the IFIH1 gene to inflammatory bowel diseases, and the current research backs up the genes involvement in very early onset inflammatory bowel disease.

As the number of patients in the first round of sequencing was small, the researchers turned to a Johns Hopkins-developed online database called GeneMatcher, which contains genetic variations from people worldwide. Guerrerio and GeneMatcher co-founder Nara Sobreira, M.D, Ph.D, Assistant Professor of Genetics and Pediatrics at the Johns Hopkins University of Medicine, found an additional 18 patients with very early onset inflammatory bowel disease being studied at both the NIH and in Padova, Italy.

The combined research teams found IFIH1 mutations in four of the 18 new patients, bringing the total of IFIH1 mutations found to eight out of the 42 patients. Among the IFIH1 mutations, the researchers discovered nine mutations which resulted in abnormal production of a protein called MDA5. In the eight patients with the mutations, MDA5 function was much lower than normal.

When functioning properly, MDA5 is a part of the inborn immune system that helps fight off viruses in the gut. Using protein assays that mimicked the activity of normal and abnormal MDA5, the researchers found that, in each patient with the IFIH1 mutation, the MDA5 proteins only partially worked, but not enough to do their job of battling viruses. The researchers suspect this loss of function in the protein causes the improper activation of the immune system, triggering the inflammation that leads to very early onset inflammatory bowel disease.

The researchers also believe that the partially functioning MDA5 proteins protect patients from more severe and rare immune diseases, such as Singleton-Merton syndrome and Aicardi-Goutires syndrome, that are associated with no MDA5 production.

Sobreira said: When you look at the physical changes associated with IFIH1 mutations, there are a wide range and they are really very different.

Its crucial to know that these different variations in the same gene can cause these different characteristics.

The researchers hope that their findings will help to improve understanding of the genetic cause of diseases and inform treatment options. They also believe the research provides additional evidence of the link between inflammatory bowel diseases and the virus-fighting part of the bodys immune response.

Recommended Related Articles

See the original post:
Genetic mutation linked to rare inflammatory bowel disease bowel-disease - Health Europa

Read More...

Researchers uncover way to harness the power of immunotherapy for advanced prostate cancer – Michigan Medicine

August 4th, 2021 1:52 am

Its a scientific riddle tangled up in a complex web. How do you turn an immune cold cancer into one that responds to immunotherapy?

Researchers led by the University of Michigan Rogel Cancer Center started with a simple thread: an inhibitor that showed promise against metastatic castration-resistant prostate cancer cells. This is the most challenging type of prostate cancer advanced disease that has become resistant to hormone-based treatment.

MORE FROM THE LAB: Subscribe to our weekly newsletter

From there, they continued to untangle the web to discover multiple levels of cellular processes that were preventing the immune system from mounting a response. Break past them with this inhibitor and suddenly whats considered an immune cold tumor turns red hot.

Immunotherapy has dramatically improved outcomes for some types of cancer. But prostate cancers are typically immune cold, which means these patients have benefited little from immunotherapies. Finding a way to rev up the immune response would create tremendous opportunity to improve patient outcomes, said Arul M. Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at Michigan Medicine. Chinnaiyan is senior author of the paper published in Nature Cancer.

Researchers started by screening a library of 167 inhibitors against prostate cancer cells. They found one, ESK981, had the most impact.

ESK981 is a class of drugs called multi-tyrosine kinase inhibitors, which are designed to hit multiple targets. This means it functions like a combination therapy, able to block cancer on more than one front. It was originally developed to check blood vessel growth and has already been tested in phase 1 clinical trials, which found it to be safe and well-tolerated.

In cell lines and mice with metastatic castration-resistant prostate cancer, researchers found ESK981 inhibited tumor growth.

SEE ALSO: New Connections Reveal How Cancer Evades the Immune System

The response was intriguing, but we wanted to understand the mechanism at play with ESK981 in prostate cancer cells, Chinnaiyan said.

They discovered several cellular processes were occurring. First was the role of a type of cell death called autophagy. The authors surprisingly found that ESK981 was a potent inhibitor of autophagy in tumor cells. This caused the cancer cells to produce a protein called CXCL10, which led to recruitment of immune T cells to the tumor.

But there was one more layer to go. Ultimately, they traced it back to PIKfyve, a type of protein called a lipid kinase. The authors discovered that ESK981 directly targets PIKfyve, affecting these multiple processes involved in metabolism and cell death.

The researchers confirmed this by knocking down PIKfyve in cell lines and mice. They saw the same processes occur: tumors stopped growing, autophagy was controlled and more T cells were recruited to the tumor. When they added an immune checkpoint inhibitor to the PIKfyve knockdown, the impact was even greater, significantly reducing tumors.

Overcoming resistance to immunotherapy is an urgent need in prostate cancer. PIKfyve is a promising target, especially combined with an immune checkpoint inhibitor. This combination has potential to extend the benefit of immunotherapy to patients whose tumors have previously not responded, Chinnaiyan said.

Based on these findings, researchers have begun phase 2 clinical trials using ESK981 alone or in combination with the immunotherapy nivolumab for metastatic castration-resistant prostate cancer.

Like Podcasts? Add the Michigan Medicine News Break oniTunes, Google Podcasts or anywhere you listen to podcasts.

Additional authors includeYuanyuan Qiao, Jae Eun Choi, Jean C. Tien, Stephanie A. Simko, Thekkelnaycke Rajendiran, Josh N. Vo, Andrew D. Delekta, Lisha Wang, Lanbo Xiao, Nathan B. Hodge, Parth Desai, Sergio Mendoza, Kristin Juckette, Alice Xu, Tanu Soni, Fengyun Su, Rui Wang, Xuhong Cao, Jiali Yu, Ilona Kryczek, Xiao-Ming Wang, Xiaoju Wang, Javed Siddiqui, Zhen Wang, Amelie Bernard, Ester Fernandez-Salas, Nora M. Navone, Stephanie J. Ellison, Ke Ding, Eeva-Liisa Eskelinen, Elisabeth I. Heath, Daniel J. Klionsky, Weiping Zou

Funding for this work comes from the Prostate Cancer Foundation Challenge Award, National Cancer Institute Prostate SPORE Grant P50CA186786, Department of Defense grant PC130151P1, National Institutes of Health grant GM131919. In addition, individual researchers are supported by NCI grant R35CA231996, Howard Hughes Medical Institute, A. Alfred Taubman Institute, American Cancer Society, PCF Young Investigator Awards, DoD Postdoctoral Award W81XWH-16-1-0195, and the Academy of Finland.

Disclosure: The University of Michigan has filed a disclosure on the findings based on this study. Chinnaiyan and Qiao are named as co-inventors. Esanik Therapeutics Inc. licensed ESK981 from Teva Pharmaceuticals. Chinnaiyan is a co-founder and serves on the scientific advisory board of Esanik Therapeutics Inc. Esanik Therapeutics or Teva Pharmaceuticals were not involved in the design or approval of this study, nor was this study funded by them.

Paper cited: Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer, Nature Cancer. DOI: 10.1038/s43018-021-00237-1

Continue reading here:
Researchers uncover way to harness the power of immunotherapy for advanced prostate cancer - Michigan Medicine

Read More...

‘I may have to start hibernating again’: Immunocompromised 27-year-old on Delta variant and booster shots – KCRW

August 4th, 2021 1:52 am

The U.S. is reporting more than 100,000 new COVID-19 cases a day numbers not seen since February when most people couldnt get vaccinated. As a result, on Monday, seven Bay Area counties reimposed indoor masking requirements, joining LA, Sacramento and Yolo counties. And employers are reevaluating whether back-to-the-office-after-Labor Day plans are realistic anymore.

The spread of the Delta variant is even more nerve-wracking for people with weakened immune systems, who were left out of initial vaccine trials. Because of that, its unclear how well the vaccine protects immunocompromised patients.

One of those immunocompromised patients is Trevor Achilles, a 27-year-old resident of Charlottesville, Virginia. After undergoing a kidney transplant 12 years ago, hes had to take immunosuppressive drugs to ensure his body doesnt reject the kidney.

He says the last 17 months have felt like hell. He was laid off during the early days of the pandemic and often found himself stuck.

I couldn't really see friends, I couldn't really go to the gym, or do anything else that I used to do before the pandemic. And so it was very taxing on me mentally and physically. I gained a lot of weight. And I was just sitting around, and getting depressed, watching all the horrible news. It was not fun.

Earlier this year, Achilles was vaccinated. When he was tested for antibodies, it turned out he didnt have any. Achilles says thats due to the nature of immunosuppressive drugs they protect his kidneys but fight off anything else that enters his body.

I got the flu before the pandemic began, and I was knocked out flat practically. And when I get sick, I tend to get sicker than most. And so I'm particularly vulnerable to getting something like COVID. And unfortunately, that pertains to the [COVID vaccine] shots as well, because my body just won't accept any kind of foreign interference.

Achilles lack of antibodies doesnt surprise Ghady Haidar, M.D from the University of Pittsburgh Medical Center. He looks at how infectious diseases can affect transplant patients. Most recently, Haidar has focused on how people with cancer, organ transplants, and autoimmune diseases respond to the COVID vaccines.

Vaccines work by triggering your immune system to respond to something. When you're taking medicines that work by suppressing the immune system, it just makes sense that vaccines aren't going to work as well, Haidar tells KCRW. This isn't unique to just COVID-19. This is true for every single vaccine that's out there.

Haidar recently led a study examining antibody responses in immunocompromised patients. It found that about 37% of organ transplant recipients produced antibodies. Thats compared to 94% of patients with well-treated HIV and about 80% of patients with blood cancer and autoimmune diseases.

He says the wide-ranging results are indicative of how certain conditions and their treatments can impact the body.

For example: A person getting chemotherapy for cancer, their immune system is not the same as someone getting, let's say, a TNF [tumor necrosis factor] inhibitor for their Crohns disease. And it's not the same as someone who just had a lung transplant a month ago. And that's not the same as someone who had a liver transplant 20 years ago.

At the recommendation of his doctor, Achilles received a third COVID vaccine in hopes that it would help him develop antibodies.

[My doctors] first goal is to keep me alive and healthy and safe. And she knows all about COVID and how it's impacting those of us who are immunocompromised, and she was really worried about me. And she figured that it'd be better to try to get some protection as opposed to having no protection at all, Achilles says. I just felt like it was the right thing to do, the natural thing to do. And I'm just hoping and praying this third shot will give me the antibodies that I need.

Haidar says other countries, including France and Germany, have started to distribute booster shots. In the U.S. however, vaccine regulators are waiting for more clinical trials and data in order to make a decision.

In the meantime, Achilles says hes laying low to protect himself from the new Delta variant.

He adds, I may have to start hibernating again, so to speak. I'm just really concerned about the Delta variants because it's much more contagious. I'm willing to do anything and everything to protect myself and my family.

Read more here:
'I may have to start hibernating again': Immunocompromised 27-year-old on Delta variant and booster shots - KCRW

Read More...

Study Pairs Two Forms of Immunotherapy in Patients with Advanced Kidney Cancer | Dana-Farber – Dana-Farber Cancer Institute

August 4th, 2021 1:51 am

Published: August 2, 2021

Stymied and disoriented. Thats one way to describe the state of the immune system in some patients with cancer. T cells revved up to attack tumors are turned into an army of loiterers. Cells keenly attuned to signals of infection or disease fail to pick up the faint notes of cancer.

A clinical trial led by Dana-Farber researchers is addressing both of these issues in patients who have undergone surgery for kidney cancer but have a high risk of recurrence. Patients in the trial receive the latest generation of NeoVax, a personalized vaccine made from tiny bits of each patients tumor cells. They also are treated with a local injection of an immune checkpoint inhibitor, which liberates a specific group of T cells to take up an assault on tumor cells.

In the words of David Braun, MD, PhD, the principal investigator of the trial (with Toni Choueiri, MD, and Patrick Ott, MD, PhD), the checkpoint inhibitor releases the brakes on the immune response while the personalized vaccine makes it possible to steer the immune system specifically to a patients tumor.

The dual approach seeks to improve on the results achieved by either treatment alone. Checkpoint inhibitors, which have transformed the treatment of some cancers, have had little success against others. NeoVax, developed by Dana-Farbers Catherine Wu, MD, and her colleagues, has performed well in clinical trials, but its potential has only begun to be explored.

Patients with advanced kidney cancer are in need of better treatments to prevent the return of their disease and particularly stand to benefit from this combination, Braun remarks.

Even after surgery to remove the kidney, where a patient might have no evidence of disease on imaging, patients with stage III or IV cancer are at high risk of recurrence. Right now, the tools we have to lower that risk are limited.

Richard Boylan is one of those who, in the absence of the trial, would have faced a dearth of options to prevent his cancer from coming back. Diagnosed with stage III kidney cancer in mid-2019, Boylan, 67, learned about the trial from his local surgeon.

He explained that the trial would be integrated with the surgery, says Boylan, of Holliston, Mass. When the tumor was removed in October, it was sent to Dana-Farber for analysis.

At the Institute, technicians sequenced the DNA in the tumor and in a sample of Boylans blood to identify the genetic changes that distinguished the tumor cells from the bodys normal cells. Specialists used bioinformatics to predict which of these changes, or mutations, were most likely to trigger an immune response.

We pick the top 20 targets and make millions of copies of each one in the form of peptides, short chains of amino acids, that stimulate the immune system, Braun explains. We then inject these peptides, which constitute the NeoVax vaccine, into patients.

The peptides are paired with low doses of a local injection of a checkpoint inhibitor. The hope is we can lift the brakes just enough to stir the immune response without producing adverse effects, Braun notes.

In February and June of 2020, Boylan underwent leukapheresis procedures, which separate out white blood cells from the rest of the blood. The first one was done prior to treatment with NeoVax, the second one after. Each sample of white blood cells would be mixed with tumor cells in what Boylan calls a laboratory cage match to see if the cells in the second sample, enriched with tumor cell peptides, mount a fiercer attack on the cancer than cells in the first sample.

The trial itself involved a lot of shots, a lot of needles, over an extended period, Boylan remarks, adding, I am not a big fan of needles.

At each treatment session, Boylan received three shots in each arm and each leg. Two of those three shots consisted of the peptides, the other was an immune stimulant. (The trial involves targeting many different mutations or neoantigens; hence the injections in each limb.)

The only noteworthy side effect, Boylan says, came when he was receiving the vaccine every week.

Some of them would knock me back for at least 24 hours it felt like having the flu. But, honestly, the side effects from my most recent shingles shot were worse than those from the vaccine.

The trial is supported by Gateway for Cancer Research, and the laboratory-based research is supported by the Department of Defense Congressionally-Directed Medical Research Program. As the trial is still underway, effectiveness of the regimen hasnt been analyzed, but Boylan has picked up some promising signs.

For some patients, theres a 40% risk of recurrence over an extended period of time, he says, but you can tell by the enthusiasm you hear in talking to the doctors how well the study is going.

Go here to read the rest:
Study Pairs Two Forms of Immunotherapy in Patients with Advanced Kidney Cancer | Dana-Farber - Dana-Farber Cancer Institute

Read More...

CD38 Expression Linked With Poor OS in Prostate Cancer – OncLive

August 4th, 2021 1:51 am

Results showed that in patients with metastatic castration-resistant prostate cancer (mCRPC), CD38 mRNA expression was significantly linked with upregulated immune-signaling pathways, plus interleukin (IL)-12, IL-23, and IL-27 signaling signatures, immunosuppressive adenosine signaling, and T-cell exhaustion signatures.

While CD38 was largely absent from tumor epithelial cells, it was often expressed in phenotypically diverse TIICs, such as B cells and myeloid cells. Moreover, CD38-positive TIIC density was associated with worse overall survival (OS) and increased with progression to castration-resistant prostate cancer (CRPC).

We believe that CD38 on the surface of immune cells is acting to dampen down the immune response. We have shown that the presence of this protein on immune cells within prostate tumors is a sign of worse survival outcomes and exhausted anticancer immune responses, said lead study author Johann de Bono, MD, MSc, PhD, FRCP, FMedSci, professor of experimental cancer medicine at The Institute of Cancer Research in London, and Consultant Medical Oncologist at The Royal Marsden NHS Foundation Trust.2 It is now clear that CD38 has a role in prostate cancers growth and spreadsuggesting that targeting it with drugs, which already exist and are used in other cancers, could be a promising new approach to treatment.

OS for patients with mCRPC remains poor at 2 to 3 years, and improving outcomes remains dependent on overcoming immunosuppressive barriers in the prostate tumor microenvironment (TME). CD38 upregulation in TIICs has been observed in some gastrointestinal cancers, though not in prostate cancer; however, increasing data have shown evidence that CD38 expression plays and role in tumor immune evasion, and as such, could factor into disease progression in prostate cancer, and serve as an immunotherapeutic target.

In this study, investigators sought to determine the clinical impact of CD38 expression in patients with mCRPC as they progressed to evaluate the potential use of CD38-directed therapies for the treatment of mCRPC.

For this analysis, RNA-sequencing from 159 patients with mCRPC from the Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF) project, as well as 171 samples from 63 patients at the Fred Hutchinson Cancer Research Center, were analyzed for CD38 expression. Samples were then immunohistochemically scored by a validated assay of 51 CRPC biopsies, and matching same-patient castration-sensitive prostate cancer (CSPC) biopsies.

Among these 51 patients, CSPC samples were taken from the prostate (n = 50) and lymph node (n = 1), while CRPC samples were taken from the lymph nodes (n = 30), bone (n = 12), soft tissue (n = 3), liver (n = 3), and prostate (n = 3). mCRPC samples were analyzed for associations between CD38 and other gene expression signatures, while differences in CD38-expressing TIIC densities in the CSPC and CRPC biopsies were evaluated using a negative binomial mixed model. Moreover, multiplex immunofluorescence evaluated CD38 expression.

Results showed that CD38 expression occurred in 35.8% of normal prostatic epithelial cells vs 7.7% of tumor epithelium cells (P < .001). Additionally, the rates of CD38 expression were similar between CSPC and CRPC biopsies, at 9.8% and 3.9%, respectively (P = .45).

In the CSPC samples analyzed, CD38-positive TIIC density was associated with worse OS outcomes from initial diagnosis (HR, 1.36; 95% CI, 1.08-1.70; P = .008). Additionally, high CD38-positive TIIC density, defined as more than 1.5 cells/mm2, was associated with shorter OS from the time of initial diagnosis vs those with low CD38-positive TIIC density (HR, 1.99; 95% CI, 1.09-3.62; P = .02).

Results were similar in the CRPC samples, with CD38-positive TIIC density leading to worse OS outcomes from both the time of biopsy (HR, 1.20; 95% CI, 1.00-1.42; P = .04) and the time of CRPC diagnosis (HR, 1.40; 95% CI, 1.14-1.70; P < .001). Moreover, high CD38-positive TIIC density in these samples was also associated with shorter OS from the time of diagnosis vs low CD38+ TIIC density (HR, 2.24; 95% CI, 1.15-4.00; P = .02).

Additionally, results from a multivariable analysis showed that the CD38-expressing immune cell density seen in CSPC samples lead to worse OS from the time of prostate cancer diagnosis (HR, 1.42; 95% CI, 1.08-1.87; P = .01).

As cancers develop, they often evolve the ability to evade the immune system so they can keep growing and spreading without being attacked. This new study suggests that in prostate cancer, tumors can suppress the immune system via the CD38 molecule on the surface of immune cells, said Paul Workman, FRS, FRSC, FMedSci, chief executive of The Institute of Cancer Research in London. The findings are exciting and open up a whole new potential approach to treating prostate cancer using immunotherapyan approach that is now being tested in clinical trials which have the potential to show real benefit for patients.

Read more:
CD38 Expression Linked With Poor OS in Prostate Cancer - OncLive

Read More...

Tyson Foods will require its 120,000 U.S. workforce to get vaccinated – CNBC

August 4th, 2021 1:51 am

The exterior of a Tyson Fresh Meats plant is seen on May 1, 2020 in Wallula, Washington. Over 150 workers at the plant have tested positive for COVID-19, according to local health officials.

David Ryder | Getty Images

Meatpacker Tyson Foods announced Tuesday that it will require its 120,000 U.S. employees to be vaccinated fully this year and will pay them a $200 bonus to do so.

The company said 56,000 U.S. employees have been vaccinated. Office workers face a deadline of Oct. 1 to be vaccinated fully, while plant employees have until Nov. 1.

The Centers for Disease Control and Prevention said Monday that the seven-day average of new infections surpassed last summer's peak, before the country had access to vaccines. U.S. Covid cases, based on a seven-day moving average, reached 72,790 on Friday, according to the agency's data. The delta variant is fueling the surge in cases, especially in areas with low vaccination rates.

"It is abundantly clear that getting vaccinated is the single most effective thing we can do to protect ourselves, our families and our communities," CEO Donnie King said in a memo to employees.

Tyson plans to give front-line workers who get vaccinated the $200 bonus, in addition to the current policy of providing up to four hours of pay for getting inoculated outside of work or through an external provider. The extra pay, as well as the deadline, are subject to talks with unions who represent those employees.

The United Food and Commercial Workers, which represents 24,000 Tyson workers, said that it will be meeting with Tyson in the coming weeks to discuss the mandate and make sure that the workers' rights are protected. The union said that it encourages workers to get vaccinated but noted several concerns about the company's vaccine mandate.

"We believe the FDA must provide full approval of the vaccines and help address some of the questions and concerns that workers have," UFCW International President Marc Perrone said in a statement to CNBC. "Additionally, employers should provide paid time off so that their essential workers can receive the vaccine without having to sacrifice their pay, and can rest as needed while their body adjusts to the vaccine and strengthens their immune system to fight off the virus."

Tyson said it will allow exceptions to the vaccine mandate for medical or religious reasons.

Throughout the pandemic, many meat and poultry processing facilities have been forced to close temporarily after outbreaks of Covid-19 swept through their workforce. Conditions in the plants require employees to work closely together for hours at a time, making social distancing nearly impossible. Group housing and shared transportation to and from work also increase contact among workers.

At least 132 meatpacking workers who belonged to the UFCW have died after contracting Covid according to the union.

View post:
Tyson Foods will require its 120,000 U.S. workforce to get vaccinated - CNBC

Read More...

Disparate regulation of IMD signaling drives sex differences in infection pathology in Drosophila melanogaster – pnas.org

August 4th, 2021 1:51 am

Significance

Sex differences in infection outcome are a widely observed phenomenon. While it is known that biological sex can influence an animals response to infection, the mechanisms through which these differences emerge are less clear. Here, we describe a mechanism through which heightened regulation of the IMD signaling pathway by femalebut not maleDrosophila melanogaster reduces the cost of immune activity at the expense of resistance to bacterial infection. Through the masculinization of the main organ responsible for antimicrobial peptide activity in the fly (fat body), this work demonstrates that this heightened immune regulation is mediated by sex-determining pathways.

Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.

Biological sex can influence an animals response to infection, with females often mounting stronger innate and adaptive immune responses compared to males. Across multiple taxa, the sexes exhibit differing incidences of infection, pathogen loads, pathogen-derived virulence, and immune efficacy (18). In humans, the greater responsiveness of the female immune response can confer rapid pathogen clearance, reduced mortality rates, and greater efficacy of vaccines; however, it also thought to be responsible for the increased incidence of inflammatory and autoimmune disease in women (3, 9, 10). Thus, females appear to trade-off the rapid and efficient clearance of foreign bodies, with the risk of doing self-harm, either due to autoimmunity or immunopathology. Consequently, sex-specific infection outcomes could be driven by differences between the sexes in the risks of autoimmunity, immunopathology, virulence (pathogen-induced harm), or trade-offs between immunity and other important traits.

The origins of infection-induced pathology and the mechanisms employed by hosts to limit pathology are key issues in understanding this difference between the sexes. Infection pathology can result from direct interactions between host and pathogen or can be driven indirectly. Direct pathology is caused by the pathogen itself and its products and can be produced by many effects; pathogen- or pathogen effectordriven damage to host tissue (11, 12) is the most obvious of these, but other direct pathological processes include competition with the host for access to resources (1315). Indirect pathology, in contrast, is caused not by the pathogen itself but by some aspect of the host response to the pathogen and is most often conceived as pathology caused by immune effectors; other indirect pathologies come in the form of immune trade-offs, where immune activation leads to the reallocation of host resources from other processes, such as longevity, reproduction, competitive ability, and development (5, 1623).

Differences in infection outcomes between hosts can result from differences in the ability of the host to clear the pathogen (resistance mechanisms) or from differences in sensitivity to direct or indirect pathology (tolerance mechanisms). In any given infection, the survival and continued health of the host will be the product of a complex interaction of host and pathogen genotype as well as other factors. It is unclear whether the well-documented effects of host sex on infection outcome in general primarily originate in changes in resistance to the infectious agent or in tolerance of direct or indirect pathology.

To distinguish these effects, we used the fruit fly Drosophila melanogaster and consider the response of w1118 control and immunocompromised flies to infection with the bacterium Escherichia coli. Unlike mammals, D. melanogaster lacks an adaptive immune response, instead, flies have a well-developed innate immune response consisting of both cellular and humoral components. The humoral response of D. melanogaster involves the inducible production of circulating factorsprimarily antimicrobial peptides (AMPs)that are directly microbicidal. Though infection with E. coli is nonlethal and efficiently controlled by the immune response of w1118 flies, E. coli infection cannot be controlled in immunocompromised flies (24). Therefore, using this system, we sought to distinguish between pathology resulting from the immune response and pathology resulting from the microbe. We test whether the sexes are differentially impacted by these two sources of pathology using multiple metabolic and physiological measures as readouts. We show that females reduce the cost of immune activity via strict regulation of the immune deficiency (IMD) pathway and that this comes at the cost of bacterial clearance.

To determine whether male and female flies exhibited a difference in their ability to defend against nonpathogenic gram-negative bacterial infection, we first measured survival and bacterial numbers after infection with E. coli of w1118 flies (henceforth referred to as wild-type because they have an intact immune response). Previous work has found that D. melanogaster infected with E. coli either eliminate the bacteria or maintain them at low levels at no obvious cost to the host (25, 26). As expected, we did not find a strong effect of infection with live or dead (heat killed) E. coli on the lifespan of wild-type flies (Fig. 1A and SI Appendix, Fig. S1A and Table S1). However, when we compared bacterial numbers between infected males and females, we found a clear trend toward greater numbers of surviving bacteria in females, which was significantly different at 3, 4, and 6 h following infection (Fig. 1B).

Sex-specific outcomes of E. coli infection. Representation in all plots: males, black; females, blue. (A) Survival of E. coliinfected wild-type flies. E. coliinfected flies are indicated by solid lines. Uninfected and PBS controls are indicated by long and short dashed lines, respectively. Flies had an average median survival across all treatments of 21.5 and 18.5 d for females and males, respectively (Coxph: degrees of freedom [df] = 7, n = 396, Wald test = 43.75, P = 2 107). There was no effect of treatment on survival in either sex. Survivals were performed at least twice, each repeat included 20 to 40 flies/treatment. (B) Bacterial quantification in wild-type flies. Females had more bacteria than males at 3 (Wilcoxon: W = 120, P = 0.019, n = 25), 4 (Students t test = 2.71, P = 0.013, n = 25), and 6 h (Wilcoxon: W = 148, P = 1.1 104, n = 25) postinjection. Markers indicate means, and bars represent SE. Statistical significance: *P < 0.05; ***P < 0.001. Quantifications were performed twice, each repeat included six to eight biological replicates consisting of one fly each. (C and D) AMP transcript levels 3 (C) and 6 h (D) postinfection in wild-type flies. Expression is shown relative to uninfected flies of the same sex. On average, infected males had AMP transcript levels 16 greater than females (Mtk-25x; DptA-19x; Def-3x; CecA1-0.65x; Drs-25x; AttaA-19x; Dro-23x). Solid lines represent infection with E. coli, while dotted lines are PBS injected. The area contained within the innermost heptagon represents induction levels falling between 1 and 10 times that of the uninfected controls. The middle and outer heptagons represent 100- and 1,000-fold induction, respectively. These data are also shown, represented differently, in SI Appendix, Fig. S1. AMP assays were performed two to four times, each repeat included three or four biological replicates/treatment consisting of three flies each.

Defense against E. coli infection is expected to depend primarily on the activity of the IMD signaling pathway and its AMP target genes (27, 28). The fact that males and females exhibited differences in bacterial numbers led us to examine AMP mRNA expression 3 and 6 h after infection; these times were chosen because 3 h was not long after the bulk of bacterial killing had been achieved, while 6 h is the reported peak of Diptericin inductiona canonical read-out of imd activityin wild-type animals (29). At 3 h after infection, male and female flies exhibited broadly similar levels of AMP transcripts (Fig. 1C and SI Appendix, Fig. S1B). However, by 6 h after infection, AMP expression was significantly reduced in female flies relative to males, despite females having higher bacterial numbers (Fig. 1D and SI Appendix, Fig. S1C). Importantly, AMP levels were notably greater in infected females 3 h following injection than they were at 6 h, while male levels were unchanged, possibly as a result of females being more responsive to bacterial load as a cue to shut down immune activity.

The fact that we found the regulation of IMD signaling was different between the sexes led us to look more closely at the sex-specific consequences of the loss of imd function during E. coli infection. We infected imd mutants with E. coli and found that both sexes had significantly reduced survival when infected with E. coli compared to their phosphate-buffered saline (PBS)-injected and uninfected controls; infected imd males had a median survival only 60% that of imd females (Fig. 2A and SI Appendix, Fig. S2A). We then injected imd mutants with latex beads to inhibit their ability to phagocytose bacteria (30), resulting in flies with both phagocytosis and AMP activity inhibited; inhibiting the phagocytic response with latex beads did not affect survival in either sex (SI Appendix, Fig. S2B), further supporting the idea that AMP activity plays the primary role in this infection. When we examined bacterial loads in male and female imd mutants, we found that both sexes carried similar numbers of bacteria at all but one measured time, indicating that the difference in survival between male and female animals reflected different levels of infection tolerance (Fig. 2B). The fact that this differential tolerance effect was revealed only in imd mutants implied that it was a consequence of different components of nonIMD pathway immune activation and that the secondary immune response pathways revealed by imd mutation were more damaging to males, possibly because of quantitative differences in their activation between the sexes.

Sex-specific outcomes of E. coli infection in imd flies. Representation in all plots: males, black; females, blue. (A) Survival of E. coliinfected flies. Infected flies are indicated by solid lines. Median survival of E. coliinfected imd flies was 34 and 17 h for females and males, respectively (Coxph: df = 9, n = 255, Wald test = 126.2, P < 2 1016). Survivals were performed at least twice, each repeat included 20 to 40 flies/treatment. Uninfected and PBS controls are here excluded for better visualization of the sex difference in survival. Survival of uninfected and wounded controls did not differ between the sexes during the assayed time (Log-Rank pairwise test: uninfected: P = 0.634; PBS: P = 0.198). Full survival including uninfected and PBS and controls shown in SI Appendix, Fig. S2. (B) Bacterial quantification in imd mutant flies. With the exception of 5 h postinfection when males had significantly more bacteria than females (Wilcoxon: W = 28.5, P = 4.4 103, n = 26), imd flies exhibited no difference in bacterial number between the sexes. Wild-type quantifications performed in tandem with imd flies are indicated in gray; note that this represents the same data shown in Fig. 1, and is repeated here to enable easy comparison. Markers indicate means, and bars represent SE. Statistical significance: **P < 0.01 Quantifications were performed twice, each repeat included six to eight biological replicates consisting of one fly each. (C) AMP transcript levels 6 h postinfection in imd mutant flies. Expression is shown relative to uninfected flies of the same genotype/sex. Solid lines represent infection with E. coli, while dotted lines are PBS injected. The area contained within the innermost heptagon represents induction levels falling between 1 and 10 times that of the uninfected controls. The middle and outer heptagons represent 100- and 1,000-fold induction, respectively. These data are also shown, represented differently, in SI Appendix, Fig. S2. AMP assays were performed two to four times, each repeat included three or four biological replicates/treatment consisting of three flies each.

We tested this possibility by assaying AMP induction in imd mutants infected with E. coli. Females exhibited no response at all, while males exhibited a residual 10- to 100-fold induction of most AMPs (Fig. 2C and SI Appendix, Fig. S2). This level of expression was clearly insufficient for antimicrobial activity, as the sexes exhibited similar bacterial numbers but was potentially enough to cause pathology in imd mutant males.

Because resources are finite, individuals must manage investments in multiple biological processes. The ability to draw on metabolic reserves of triglyceride or glycogen allows animals to run temporary metabolic deficits in response to unexpected costs (e.g., immunity). We hypothesized that the sex differences we observed in immune activity and tolerance of infection in wild-type and imd mutant flies, respectively, might also be reflected in differences in the metabolic cost of infection. To test this, we assayed levels of free sugar (glucose and trehalose), stored carbohydrate (glycogen), stored triglyceride, and respiration in wild-type and imd flies. Previous studies in D. melanogaster found that lethal bacterial infections can lead to hyperglycemia, as well as a reduction in triglyceride and glycogen stores, but these metabolites had not been examined during acute infection with nonpathogens (3133).

We found that 6 h postinfection with E. coli, wild-type flies had significantly less stored triglyceride than their PBS controls; this effect was independent of sex (Fig. 3A and SI Appendix, Table S2). Importantly, infection with heat-killed E. coli did not deplete triglyceride, indicating that this effect is dependent on the presence of live bacteria and not merely on general immune activation. Wild-type males had significantly less circulating sugar but more glycogen than females, but neither of these was changed by infection. Respiration was unaffected by infection status in wild-type flies (SI Appendix, Fig. S3). imd mutants exhibited a somewhat different pattern to wild type, as there was no effect of infection on free sugar levels nor glycogen in either sex (Fig. 3B). As in wild-type flies, both male and female imd mutants exhibited significant reduction in triglyceride resulting from infection, and this effect was notably stronger in males (26 versus 13% less than PBS controls for males and females, respectively; Fig. 3B and SI Appendix, Table S2). This fit with our observation that imd mutant males exhibited a stronger (though clearly ineffective) immune response to E. coli infection than imd mutant females, as a possible cause for greater triglyceride depletion in males could be increased demands resulting from immune activity. Alternatively, males could be diverting resources into other, nonimmune-related activities, such as foraging or reproduction (34, 35).

No sex difference in metabolic pathology of E. coli infection in wild-type and imd flies. Triglyceride and carbohydrate levels in live and heat-killed E. coliinfected flies. Data shown are quantities normalized to the mean of uninfected sex-matched controls. (A) In wild type, we employed an analysis of variance (AOV) there was an effect of sex on circulating sugar (AOV: df = 1, n = 67, F = 14.7, P = 2.7 104) and glycogen levels (AOV: df = 1, n = 59, F = 6.15, P = 0.016) with males having less circulating sugar but more glycogen stores than females. There was also an effect of infection status on triglyceride levels, such that E. coli infection led to triglyceride loss (AOV: df = 2, n = 74, F = 5.73, P = 4.8 102). There was no interaction between sex and infection on triglyceride loss. (B) imd flies showed no effect of sex nor infection status on circulating sugar and glycogen levels. There was no effect of sex on triglyceride levels, but there was an overall effect of both treatment (AOV: df = 1, n = 49, F = 44.971, P = 2.8 108) and the interaction between sex and treatment on triglycerides; E. coli infection led to triglyceride depletion in both sexes, relative to their PBS controls (AOV: df = 1, n = 49, F = 7.417, P = 9.2 103; male PBS-male [PBS-M] E. coli, P adjusted = 4.0 107; female PBS-female [PBS-F] E. coli P adjusted = 1.01 102). Bars indicate SE. Letters indicate statistical groupings. Full statistics including nonsignificant results can be found in SI Appendix, Table S2. All assays were performed two or three times, each repeat included four biological replicates/treatment consisting of three (carbohydrates) or eight (triglycerides) flies each.

Because animals spend significant energy on reproduction, and reproductive effort is likely to restrict or trade-off with immunity (36), we assayed reproductive output during infection. We placed infected flies in tubes with flies of the opposite sex and competitors of the same sex but of a different genotype (Dh44[3xP3-DsRed]). We allowed flies to mate for 12 h and then discarded adults. Offspring resulting from matings with competitors were easily identifiable by their red-fluorescent eyes. Both wild-type and imd males were less likely to have a successful mating interaction than their female counterparts, but neither sex showed an effect of infection on mating success or the number of offspring produced (SI Appendix, Fig. S4). These findings demonstrate that despite observing metabolic shifts and sex-specific AMP induction and pathology (bacterial load), reproductive output is unaffected in the short term by E. coli infection.

We have shown that male and female flies exhibit clear differences in the dynamics of the transcriptional response to E. coli infection, presumably due to distinct mechanisms of immune regulation and that in flies lacking the IMD pathway, male animals exhibit distinctly greater responses to infection in terms of gene expression and triglyceride depletion and die more rapidly than females. We wished to gain some mechanistic insight into these differences between the sexes, so we analyzed the expression of known negative regulators of IMD signaling in male and female flies. We expected that negative regulators responsible for the effects we observed on AMP expression should be more inducible in females.

Several negative regulators of IMD pathway activity have been described (3740). We assayed several of these regulators for increased infection inducibility in female flies relative to males (SI Appendix, Fig. S5A). Two negative regulatorsPGRP-LB and RYBPwere expressed at higher levels specifically in E. coliinfected females 3 h postinfection (Fig. 4 A and B). A more-detailed analysis of the time course of expression of PGRP-LB and RYBP revealed that both were up-regulated as early as 1 h after infection in females, and both showed continuing strong expression 3 h after infection, especially in females (Fig. 4 A and B and SI Appendix, Fig. S5B). However, by 6 h after infection, PGRP-LB expression had returned to near normal in both males and females, while RYBP expression was now induced in males to the same high level seen from 1 h in females. This difference in the regulatory timing of the IMD pathway can be seen when we compare AMP expression at 3 and 6 h in each sex (Fig. 4 C and D).

Sex-specific temporal regulation of imd during E. coli infection wild-type flies. Representation in all plots: males, black; females, blue. (A and B) Expression of PGRP-LB (A) and RYBP (B) 1, 3, and 6 h after infection in male and female flies. Plotted values are relative to the uninfected controls. Solid lines represent infection with E. coli, while dotted lines represent PBS injection. These data are also shown, represented differently, in SI Appendix, Fig. S5B. (C and D) AMP transcript levels in females (C) and males (D) 3 and 6 h after infection. Expression is shown relative to uninfected flies of the same genotype/sex. Solid lines represent infection with E. coli, while lines dotted are PBS injected. Data collected at 6 h are indicated in red. The area contained within the innermost heptagon represents induction levels falling between 1 and 10 times that of the uninfected controls (down-regulation was not observed in any of the tested genes). The middle and outer heptagons represent 100- and 1,000-fold induction, respectively. AMP assays were performed two to four times, each repeat included three or four biological replicates/treatment consisting of three flies each.

PGRP-LB is an amidase that degrades the DAP-type peptidoglycan of gram-negative bacteria, dampening activation of the IMD pathway by degrading the activating ligand (40). In contrast, RYBP inhibits IMD pathway activity by promoting proteasomal degradation of the pathways NF-B transcription factor, Relish (38). PGRP-LB reduces pathway activity by degrading free peptidoglycanthat is, it reduces pathway activity only when the immune response has been effective in killing bacteria; it was thus particularly interesting because its activation upon infection renders the IMD pathway responsive to its own success. Peptidoglycan-degrading activity also could regulate IMD-independent immune responses, which could explain the sex differences we observed in immune activity, metabolic impact, and infection pathology in imd mutants. We thus decided to analyze immune function in male and female PGRP-LB mutants.

To test whether PGRP-LB activity was responsible for the sex difference in immune function, we infected male and female PGRP-LB null mutants with E. coli and measured AMP expression, bacterial numbers, and survival of the host. In the absence of PGRP-LB, the male-biased AMP expression observed 6 h following infection with E. coli in wild-type flies was abolished (Fig. 5A and SI Appendix, Fig. S6A). PGRP-LB mutants had fewer bacteria than wild type at all time points assayed (1, 3, and 6 h; Fig. 5B). As in wild-type flies, PGRP-LB mutants of both sexes drastically reduced bacterial load within the first 2 h postinfection, at which time bacterial numbers effectively plateaued. However, in contrast to what we saw in wild-type flies, PGRP-LB females did not carry higher bacterial loads than males at any point throughout the 6-h period assayed (Fig. 5B), confirming our supposition that wild-type females down-regulate AMP activity at a cost of resistance, and indicating that sex-specific PGRP-LB induction has important functional consequences for the realized immune response.

PGRP-LB males and females exhibit parallel metabolic shifts during infection. Representation in all plots: males, black; females, blue. (A) AMP expression is shown relative to uninfected flies of the same genotype/sex. Solid lines represent infection with E. coli, while dotted lines are PBS injected. The area contained within the innermost heptagon represents induction levels falling between 1 and 10 times that of the uninfected controls. The outer heptagon represents 100-fold induction. Assays were performed twice, each repeat included three to four biological replicates/treatment consisting of three flies each. These data are also shown, represented differently, in SI Appendix, Fig. S6A. (B) Bacterial load observed over the first 6 h of infection in PGRP-LB flies did not differ between the sexes. Wild-type quantifications were performed in tandem with PGRP-LB flies at select time points (1 , 3, and 6 h) and are indicated in gray. Wild-type flies had significantly more bacteria than PGRP-LB at all points measured (1 h: KruskalWallis = 24.8, P = 1.7 105, n = 79; 3 h KruskalWallis = 18.4, P = 3.7 104, n = 70; 6 h KruskalWallis = 30.7, P = 9.9 107, n = 55). Markers indicate means, and bars represent SE. Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001. Quantifications were performed two to four times, each repeat included five to eight biological replicates consisting of one fly each. (C) Infection had a significant effect on circulating sugar such that the amount of circulating sugar in E. coliinfected animals was lower than in PBS controls (AOV: df = 1, n = 32, F = 6.44, P = 1.7 102), whereas sex had no effect on circulating sugars, nor was there a significant interaction between the two. Similarly, E. coli infection led to marked reduction in stored glycogen (AOV: df = 1, n = 32, F = 9.41, P = 4.8 103), with no effect of sex, nor a significant interaction between sex and treatment. Neither infection status nor sex effected triglyceride levels. Large, filled markers indicate means, while smaller circles represent individual data points. Letters indicate statistical groupings. Bars indicate SE. All assays were performed twice, each repeat included four biological replicates/treatment consisting of three (carbohydrates) or eight (triglycerides) flies each. Full statistics including nonsignificant results can be found in SI Appendix, Table S3. (D) Survival of flies infected with E. coli indicated by solid lines. Uninfected and PBS controls are indicated by long and short dashed lines, respectively. E. coliinfected females had a median survival 58% greater than that of males (Female = 20.9 d, Male = 13.2 d; Coxph: df = 5, n = 484, Wald test = 119, P = 2.0 1016). Survivals were repeated thrice, each repeat included one or two biological replicates/treatment consisting of 20 flies each (note that data after day 21 represent two repeats). Full survival including uninfected wild-type controls is shown in SI Appendix, Fig. S7B. (E) PGRP-LB expression 3 h postinfection (p.i.) with E. coli in flies with tra knocked down in the fat body. Data are shown relative to uninfected flies of the same genotype/sex. Solid lines represent infection with E. coli, while dotted are PBS injected. Red and black tracings show tra knock down in the fat body and driver control, respectively. The area contained within the innermost heptagon represents induction levels falling between one and two times that of the uninfected controls. The outer heptagon represents eightfold induction. Assays were performed twice, each repeat included three to four biological replicates/treatment consisting of three flies each. These data are also shown, represented differently, in SI Appendix, Fig. S7C.

We next aimed to identify the effects of PGRP-LB on the physiological consequences of immune activationin particular, to explore the extent to which the metabolic consequences of acute infection are driven by host- or pathogen-derived activities. We predicted that if triglyceride loss observed in both sexes during E. coli infection in wild-type flies is driven entirely by pathogen-derived costs that the reduced bacterial load observed in infected PGRP-LB flies might be sufficient to abrogate triglyceride loss; conversely, if triglyceride loss were driven by IMD pathway activity, the prolonged IMD pathway activation observed in PGRP-LB mutants should result in greater loss of triglyceride than in wild-type animals. We found that in both male and female PGRP-LB flies, triglyceride levels were unaffected by E. coli infection, confirming that something other than IMD pathway activity causes triglyceride depletion in this infection. Infected PGRP-LB flies of both sexes had lower levels of circulating sugars and glycogen (Fig. 5C and SI Appendix, Table S3). This effect of infection on circulating and mobile energy observed in PGRP-LB flies may be indicative of the energy requirement of an unabated immune response.

The effect on overall lifespan was more complex: similar to what we observed in wild-type flies, independent of infection status, PGRP-LB females lived longer than males (Fig. 5D). Wounding had a significant impact on survival in females, with both PBS- and E. coliinjected animals having reduced survival (though the two treatments did not differ from each other). Because PGRP-LB should have little effect in the absence of peptidoglycan, the effect of sterile wounding in females was somewhat confusing; one possibility is that the previously documented effect of PGRP-LB on interaction with microbiota-derived peptidoglycan may have specific importance in the regulation of immune responses following sterile injury (41).

We wished to determine the roles of sex-specific regulatory factors and immune pathway activation in driving the female-specific PGRP-LB induction seen after E. coli infection. The gene transformer (tra) is part of the regulatory pathway responsible for female sex determination in D. melanogaster. Functional Tra protein is produced only in females and is necessary for most female-specific gene expression in somatic tissues and consequently for several sex-specific traits related to growth, metabolism, and aging pathologies (4245). Since E. coli peptidoglycan activates the IMD pathway, leading to the synthesis and secretion of AMPs by the fat body (24, 27, 46, 47), and PGRP-LB degrades peptidoglycan to prevent IMD pathway activation, we decided to knockdown tra in the fat body to test its requirement in sex-specific regulation of PGRP-LB. At 3 h after injection, PBS- and E. coliinfected females with tra knocked down (c564 > tra-IR) had reduced PGRP-LB expression relative to their genetic controls and males of the same treatment (Fig. 5E and SI Appendix, Table S5). As expected, tra knockdown in males had no effect on PGRP-LB expression. The IMD pathway is required for most E. coliinduced gene expression; we tested PGRP-LB expression in imd mutant flies and found that E. coli infection did not induce PGRP-LB expression in these animals (SI Appendix, Fig. S6B). These findings demonstrate that PGRP-LB expression is driven via combined inputs from tra and the IMD pathway, resulting in female-specific transcriptional induction of this regulator after infection.

Differences between males and females in immune activity and infection outcomes are pervasive throughout the animal kingdom. Here, we have explored the differences between male and female Drosophila in their response to a nonpathogenic gram-negative bacterial infection. Though both males and females could control this infection at the cost of only transient metabolic depletion, our analysis revealed that females maintained much-stricter control of their own immune response; this was achieved by female-specific transcriptional induction of a peptidoglycan amidase that degrades peptidoglycan fragments liberated from bacteria after they are killed, effectively enabling the female immune response to monitor its own effectiveness and to shut down when no longer needed. Elimination of this mechanism improved bacterial killing by the female immune response. Thus, indirect costs associated with infection (i.e., immune activity) rather than pathogen-derived effects drove these sex-specific immune outcomes. This is not the first demonstration of a difference in infection outcomes between the sexes originating from differential regulation of innate immune sensing; in mice, muting the inhibitory receptor CD200 resulted in greater immune activity and viral clearance, but this effect was more pronounced in female mice (48). However, this is a case in which differential immune regulation between the sexes results from differential degradation of microbial immune elicitors.

Stricter regulation of the IMD pathway by females suggests that immune activity may come at a greater burden to them. Uninfected wild-type females had a median survival 9.6% greater than females injected with PBS, heat-killed E. coli, and live E. coli (SI Appendix, Table S1). In contrast, only injection with live E. coli affected male survival (down 11.7% from uninfected). Because heat-killed E. coli are able to activate the immune response without causing mortality (shown here and in ref. 49), these findings indicate that immune activation comes at a greater cost to females. Together, these data support the idea that the IMD response is costly and that its activity poses a greater burden to females, leading to sex-specific differences in indirectrather than pathogen-derivedpathology. An alternative idea is that the energy demand of E. coli infection in PGRP-LB flies, as indicated through the decrease in both circulating and stored carbohydrate, was pathogen derived rather than immune. Bacteria have been shown to utilize host resources during infection (15, 50, 51) and while this would be surprising in this infection as bacterial numbers were declining (and were also lower than in wild-type infection, in which carbohydrate loss was absent), it remains a possibility. Indeed, the depletion of circulating sugars and glycogen in PGRP-LB flies supports a model of pathogen-derived glycogenolysis (51).

Elimination of PGRP-LB resulted in increased expression of diptericin (an indicator of IMD pathway activity) and thus, unsurprisingly, PGRP-LB flies had fewer bacteria than wild-type over the first 6 h postinfection (Fig. 5B and SI Appendix, Fig. S7A). The absence of triglyceride loss in these animals, associated with increased immune responses and reduced microbial loads, suggests that in this infection, triglyceride is lost because of direct pathogen effects. We have recently shown that when flies infected with the gram-negative pathogen Francisella novicida were treated with antibiotics to keep bacterial numbers low, they did not exhibit infection-driven metabolic shifts (including triglyceride loss). In contrast, when bacterial numbers increased (still in the presence of antibiotic treatment), metabolic shifts during infection were again observed, suggesting that these changes were associated with bacterial load rather than being a direct effect of the antibiotics on metabolism (33).

The immune response, as we normally envision it, includes responses to infection that protect the host by killing pathogens or restricting their growth (resistance). In contrast, tolerance is defined as the ability to maintain health during infection. Experimentally, a more-tolerant host is one that remains healthy longer at a given pathogen load (52, 53). Recent years have seen increasing interest in tolerance, driven in part by the idea of improving tolerance as a therapeutic approach to infection. However, despite the large body of theory surrounding tolerance, the ability to detect tolerant phenotypes (54), and the identification of tolerance-associated genes (31, 52, 55), we still know very little about the fundamental mechanisms of tolerance. It has previously been shown that PGRP-LB contributes to infection tolerance (40); we show that this activity is in fact sexually dimorphic. Importantly, through our finding that the masculinization of the female fat body led to a reduction in PGRP-LB expression (Fig. 5E), this work also demonstrates that the sexually dimorphic PGRP-LB activity is mediated by sex-determinant pathways. Furthermore, we show that phenomenological differences in tolerance between the sexes can be used to identify fundamental mechanisms of infection tolerance and that the sex-specific regulation of inhibitors of immune signaling can underlie strong, complex differences in immune dynamics between the sexes.

w1118 flies and w1118; imd10191 were used as wild-type and IMD pathway mutants, respectively. The imd10191 line carries a 26-nucleotide deletion that frameshifts the IMD protein at amino acid 179, which is the beginning of the death domain (56). PGRP-LB mutant lines used were obtained from the Bloomington Stock Center and have been previously described (57). Both imd10191 and PGRP-LB were placed on our w1118 genetic background using isogenic balancer chromosome lines. For tra knockdown experiments, we used w1118; c564-Gal4 (fat body driver) and w1118; UAS-tra2-RNAi from Bloomington Drosophila Stock Center and the Vienna Drosophila Resource Center, respectively. Flies were maintained on a sugar-yeast diet (10% wt/vol autolyzed brewers yeast, 8% fructose, 2% polenta, and 0.8% agar, supplemented with 0.075% wt/vol nipagin and 0.75% vol/vol propionic acid) at 25 C.

For all experiments, flies were collected within 24 h following eclosion and kept in same-sex vials for 5 to 7 d in groups of 20. Thus, all experiments were conducted on flies between 5 and 8 d old. Injections were carried out using a pulled-glass capillary needle and a Picospritzer injector system (Parker). Following injection, flies were kept at 29 C. Bacteria were grown from single colonies overnight at 37 C shaking. Each fly was injected with 50 nL of E. coli suspended in PBS (optical density at 600 nm [OD600] = 1.0 100,000 bacteria). Following resuspension in PBS, a subset of bacteria designated for the heat-killed treatment was incubated for 1 h at 65 C. Sterile PBS was used as a wounding control. A subset of imd flies were preinjected with 0.2-m latex beads, FluoSpheres, Carboxylate-Modified Microspheres (Invitrogen) to inhibit phagocytosis as previously described (30, 56). Briefly, beads were washed 3 in sterile PBS and resuspended in PBS at one-fourth of the original volume of the bead stock. Flies were injected with 50 nL bead-PBS solution or PBS alone, left for 16 h, and then injected with PBS or E. coli.

Survival experiments were performed at 29 C with 15 to 20 flies/vial. Survival was monitored daily, and flies were tipped into fresh vials every 4 d.

For each sample, one fly was homogenized in 100 L sterile ddH2O. Homogenates were serially diluted and plated onto Luria-Bertani (LB) agar plates where they incubated for 16 to 18 h. Following incubation, the number of individual bacterial colonies observed on each plate was quantified and back calculated to determine the number of colony-forming units (CFU) present in each fly. Individual fly quantifications are presented in SI Appendix, Fig. S8.

For each sample, three flies were homogenized in 100 L single-step RNA isolation reagent TRI Reagent (Sigma), followed by a chloroform extraction and precipitation in isopropanol. The resultant pellet was then washed with 70% ethanol. Pellets were resuspended and subject to DNase treatment. Revertaid M-MuLV reverse transcriptase and random hexamers (Thermo Fisher Scientific) were used to carry out complementary DNA (cDNA) synthesis. A volume of 5 L from each cDNA sample was put into a neat standards tube; this tube was later used to generate standards which were used to generate a standard curve for each gene. Each cDNA sample was diluted and this diluted sample used for analysis.

We used Sensimix with SYBR Green no-ROX (Bioline) or qPCRBIO SyGreen Mix Separate-ROX (PCR Biosystems) for qRT-PCR. Reactions were run on a Corbett Rotor-Gene 6000 with cycling conditions as follows: Hold 95 C for 10 min, then 45 cycles of 95 C for 15 s, 59 C for 30 s, and 72 C for 30 s, followed by a melting curve. Primers used are listed in Table 1. Gene expression was calculated based on the standard curve generated during each run, normalized to the value of our housekeeping gene, Rpl4. Samples from PBS and infected treatments were then divided by the mean value of their uninfected controls to generate expression values relative to uninfected flies.

Primer sequences used for qRT-PCR

All gene expression experiments were performed at least twice, with three or more biological replicates per experiment.

Triglycerides were measured using thin layer chromatography (TLC) assays as described elsewhere (58). Briefly, each sample consisted of 10 flies; flies were placed in microcentrifuge tubes and stored at 80 C until the time of analysis. To perform the TLC assay, samples were removed from the 80 C freezer and spun down (3 min at 13,000 rpm at 4 C) in 100 L 3:1 (vol/vol) mix of chloroform and methanol. Flies were then homogenized and subject to a further quick spin. Standards were generated using lard dissolved in the same chloroform: methanol solution. We loaded 2 L each standard and 20 L each sample onto a silica gel glass plate (Millipore). Plates were then placed into a chamber preloaded with solvent (a 4:1 [vol/vol] mix of hexane and ethyl ether) and left to run until the solvent reached a point 1 cm short of the edge of the plate. Plates were then removed from the chamber, allowed to dry, and stained with cerium ammonium molybdate (CAM) solution (58). Plates were baked at 80 C for 15 to 25 min and imaged using a scanner. Triglyceride was quantified in Image J using the Gel Analysis tool.

Each sample consisted of three flies that were homogenized in 75 L Tris-EDTA buffer (TE) + 0.1% Triton X-100 (Sigma Aldrich). Samples were incubated for 20 min at 75 C and stored at 80 C. Prior to the assay, samples were incubated for 5 min at 65 C. Following incubation, 10 L from each sample was loaded into 4 wells of a 96-well plate. Each well was designated to serve as a measurement for either: control (10 L sample + 190 L H20), glucose (10 L sample + 190 L glucose reagent [Sentinel Diagnostics]), trehalose (10 L sample + 190 L glucose reagent + trehalase [Sigma Aldrich]), or glycogen (10 L sample + 190 L glucose reagent + amyloglucosidase [Sigma Aldrich]). A standard curve was generated by serially diluting a glucose sample of known concentration and adding 190 L glucose reagent to 10 L each standard. Standards were always run at the same time and in the same plate as samples. Plates were incubated for 1.5 to 3 h at 37 C, following which the absorbance for each well at 492 nm was determined using a plate reader.

Respiration in flies was measured using a stop-flow gas-exchange system (Q-Box RP1LP Low Range Respirometer, Qubit Systems). Eight flies from each treatment were put into an airtight glass tube and supplied with our standard fly food via a modified pipette tip. Each tube was provided with CO2-free air, while the spent air was concurrently flushed through the system and analyzed for its CO2 and O2 content. In this way, evolved CO2 and consumed O2 were measured for each tube every 44 min (the time required to go through each of the seven vials in sequence). For most replicates of the respirometry assay, there were two uninfected, two PBS, and three infected vials.

Flies were collected within 7 h of eclosion to ensure virginity. To assess fitness, immediately following injection with either PBS or E. coli, flies were placed into vials with uninfected competitors of the same sex and potential mates of the opposite sex. Competitor flies expressed DsRed marker eyes; this marker allowed for easy identification of offspring resulting from focal fliesany DsRed-eyed offspring were the progeny of competitor flies. Flies were allowed to mate for 12 h, as this interval exceeds the time required for flies to significantly reduce the number ofand by some reports, clearE. coli, thus allowing us to observe fitness throughout the infection. In one block, E. coli reproductive assays were left for 24 h; we have included these data, as number of offspring produced did not differ from the shorter assay, possibly because females do not lay many eggs overnight. After the mating period, flies were discarded, and vials were left for 14 d to allow resultant offspring time to develop and eclose.

Data were analyzed in R Studio with R version 3.5.1 (59). Survival data were initially analyzed using Cox proportional hazards models; we then used Log-Rank tests for pairwise comparisons. We ran a generalized linear model (GLM) of reproductive success by sex and infection treatment; then, using only those matings resulting in offspring, we performed a GLM on number of offspring produced by sex and infection treatment. Detailed fitness and survival data have been deposited (60). For all other assays, we first tested for normality of data which dictated whether a factorial ANOVA model, Students t test, KruskalWallis ANOVA, or MannWhitney U test was used to calculate differences between treatments with sex and infection status as factors. Initial models included experimental replicate as a factor, which was removed once we failed to observe an effect. When appropriate, we performed post hoc Tukey or Dunn analyses to identify specific differences between treatments.

All data are provided in the paper and supplements; detailed fitness and survival data have been deposited at Research Data Repository (DOI: 10.14469/hpc/8546).

Members of the M.S.D. laboratory, the Imperial South Kensington fly laboratory, and D. Duneau provided useful feedback on the manuscript. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40 OD018537) were used in this study. Fly genetic and genomic information was provided by FlyBase (supported by NIH Grant U41 HG000739 and Medical Research Council (MRC) Grant MR/N030117/1). This work was supported by MRC Research Grant MR/R00997X/1 and Wellcome Trust Investigator Award 207467/Z/17/Z.

See the original post:
Disparate regulation of IMD signaling drives sex differences in infection pathology in Drosophila melanogaster - pnas.org

Read More...

Ninety-nine Percent of all Clarkson University employees are fully vaccinated for COVID-19 – Clarkson University News

August 4th, 2021 1:51 am

Clarkson University announced this past Friday to its campus community that 99% of its more than 750 employees are fully vaccinated for COVID-19 with all employees at all campuses providing documentation or a request for a medical or religious exemption, two days ahead of an internal deadline set for August 1.

As nationally more corporate employers and government entities are requiring vaccination for employees, Clarkson is believed to be among the first private higher education institutions in the nation for its employees to reach this level of readiness to protect themselves as well as their community.

Learning that 99% of employees had received vaccinations was a testament of our employees commitment to the health of our community. I am proud to work at an institution that understands science, believes in safety and acts for the benefit of our community, said Lenn Johns, Founding Dean of the Lewis School of Health Sciences. Dr. Johns earned his PhD in cellular and molecular biology with a focus in immunology and regulation of the immune system.

"Clarkson's achievement of having more than 99% of our employee's vaccinated speaks to the dedication of the University to several of its core values: caring, teamwork, and service. Clarkson is an integral part of a rural community, and setting the example of getting vaccinated and protecting the community is of utmost importance with respect to keeping our community safe and healthy. We hope that we can lead by example in the fight against COVID," said Joan Caruso, MPAS, PA-C, Clarkson Physician Assistant Program Director and Chair, and Clinical Assistant Professor.

Known as a STEM career powerhouse, Clarkson faculty and staff as well as students have been following the science throughout the pandemic.Clarkson faculty have provided regular seminars to the larger University community and have been on the national stage with their expertise, fundamental research and applied innovation regarding the airborne transmission of the virus and other air contaminants.

This has created a community that understands the significance of reducing the risk of infection in order to provide the safest learning and living environment for all students in an in-person, largely residential environment.

Examples of press already covering faculty expertise are below.

The rest is here:
Ninety-nine Percent of all Clarkson University employees are fully vaccinated for COVID-19 - Clarkson University News

Read More...

Mayor Carter and Mayor Frey Issue New Masking Guidance amid Delta Variant Spread and COVID-19 Case Increases in Twin Cities – StPaul.gov

August 4th, 2021 1:51 am

FOR IMMEDIATE RELEASEAugust 3, 2021

Contact:Peter Leggett651-307-8603peter.leggett@ci.stpaul.mn.us

In following latest CDC recommendations, Mayors recommend usage of masks in all indoor public spaces, and requiring masks for local government staff while indoors, as well as all visitors to City-owned buildings

SAINT PAUL, MN Today, Saint Paul Mayor Melvin Carter and Minneapolis Mayor Jacob Frey issued new masking guidance for indoor space in the Twin Cities along with requirements for the local governments staff and City-owned buildings. As data continues to emerge demonstrating the Delta variants heightened rate of transmission among both vaccinated and unvaccinated residents, the mayors are following recommendations from the Centers for Disease Control (CDC) and encouraging everyone to resume masking when indoors and requiring masks for those in City-owned buildings and City staff.

"This pandemic is far from over,said Mayor Melvin Carter.These measures will help protect us as we continue our work to get our entire community vaccinated."

Get vaccinated,said Minneapolis Mayor Jacob Frey.Getting the vaccine will help protect you and your neighbors from a deadly virus and it is the single most important action we can all take to curb the need for further restrictions.

Recent new guidance from the CDC recommends fully vaccinated people wear masks indoors in areas with substantial (50-100 cases per 100,000) or high (100+ cases per 100,000) transmission of COVID-19. On July 29, 2021, the CDC COVID-19 data track changed Ramsey Countys level of community transmission to substantial, triggering the CDC recommendation for fully vaccinated people to wear masks in public indoor settings.

Saint Paul-Ramsey County Public Health officials and city leaders will revisit this recommendation in the coming weeks as they continue to monitor transmission rates, hospitalizations, deaths, and increasing vaccination rates in the City and throughout the region.

Businesses are urged to adopt universal masking requirements for customers entering indoor areas of their businesses to provide better protection to their employees and customers. Also in accordance with CDC guidelines, restaurants and bar owners are encouraged to follow CDCs guiding principles for promoting behaviors that reduce virus spread, maintaining healthy environments and operations, and preparing for when an employee gets sick.

Both mayors are exploring options regarding a vaccine requirement.

ABOUT CDC RECOMMENDATIONTo maximize protection from the Delta variant and prevent possibly spreading it to others, wear a mask indoors in public if you are in an area of substantial or high transmission. Wearing a mask is most important if you have a weakened immune system or if, because of your age or an underlying medical condition, you are at increased risk for severe disease, or if someone in your household has a weakened immune system, is at increased risk for severe disease, or is unvaccinated. If this applies to you or your household, you might choose to wear a mask regardless of the level of transmission in your area. You should continue to wear a mask where required by laws, rules, regulations, or local guidance.

ABOUT CITY OF SAINT PAUL EXECUTIVE ORDER 2021-33Executive order 2021-33 requires all individuals regardless of vaccine status at City-Controlled Property to wear a face covering indoors at all times. Employees who are not in a congregate setting and are alone in their assigned workspace may refrain from wearing a face covering. City of Saint Paul employees and visitors are not required to wear a face covering while outdoors, unless at an activity specifically designated and posted by the City as requiring a face covering.

The order will apply to all individuals except young children at risk of suffocation and persons who cannot medically tolerate wearing a face covering. Acceptable face coverings include manufactured or homemade cloth face coverings, and are not required to be medical-grade masks. Face coverings must fully cover a persons nose and mouth.

All businesses are strongly encouraged to require that all individuals, regardless of vaccine status, wear a face covering indoors.

View Executive Order 2021-33here.

Read more here:
Mayor Carter and Mayor Frey Issue New Masking Guidance amid Delta Variant Spread and COVID-19 Case Increases in Twin Cities - StPaul.gov

Read More...

Heres Who Is Hospitalized for Covid in New York City as Cases Rise – The New York Times

August 4th, 2021 1:51 am

Since early July, the average number of coronavirus cases in New York City has quadrupled, from about 250 to more than 1,000 per day, as the more contagious variant Delta has spread.

Hospitalizations are also rising, though not as quickly, thanks to vaccinations and improved treatments.

Still, hospitalizations are up 90 percent since July 4, and more than 300 people are now hospitalized in New York City with Covid-19. They are, for the most part, unvaccinated, or vaccinated but immunocompromised, doctors say.

A week and a half ago, we had 50 patients in our hospital systems, said Dr. Mangala Narasimhan, the senior vice president of critical care for Northwell Health, the states largest health system. Now we have double that.

To shine a light on who is getting hospitalized, city officials provided The New York Times with an age breakdown of people being admitted with Covid-19 between June 15 and July 12. Two of the main hospital systems operating in the New York City area, Mount Sinai and Northwell, also provided demographic and vaccination data for their patient population. Heres what the information shows.

Citywide, young adults, 25 to 34 years old, were the age group with the most people hospitalized with Covid-19 between June 15 and July 12, according to the citys Department of Health. This is in keeping with nationwide trends showing that the average age of Covid patients is skewing younger, largely because more older people are vaccinated.

Of the 627 people hospitalized during that stretch, 18 percent were 25 to 34 years old. The second most common age group for hospitalizations was people over 75. The city did not provide any information about vaccination status.

In the city, the full vaccination rate of people between 25 to 34 is 57 percent, and for people 75 to 84, it is 70 percent.

Hospitalizations among children for Covid-19 in the city remain rare, but they do happen. Over that month, nine children under 4 years old, and 10 children between ages 5 and 12, were hospitalized with Covid-19.

The two private hospital systems said that the average age of people they are admitting is declining, reflecting the citywide trend, though the average age in their systems remains above 50.

The average age among the 109 patients hospitalized as of July 27 in the Northwell system was 63, dropping to 57 among those who were unvaccinated. At Mount Sinai, the average age of hospitalized Covid patients this month was 55, down from 62 earlier in the pandemic.

The coronavirus vaccines are highly effective in protecting against serious disease, but they are not a guarantee. This is especially the case for a subset of elderly and immunosuppressed people whose immune system did not mount a strong response to the shots.

In the regular patient wards of Mount Sinai Hospital and Mount Sinai Queens, there were 14 unvaccinated patients and three partially vaccinated patients as of Wednesday, said David Reich, president of the hospital system. And, perhaps surprisingly, four of the five Covid patients in the intensive care unit were vaccinated.

Aug. 3, 2021, 9:15 p.m. ET

Of those, two are quite elderly, he said, and the other two were organ transplant recipients who had been taking medications to keep their immune system suppressed. The fifth is a person who is younger, morbidly obese and was not vaccinated.

It is a scary time for us, because even though we have highly effective vaccines, nothing is 100 percent, Dr. Reich said. And so it says to us that if you are a vulnerable person, even if you are vaccinated, you should probably take some precautions.

In the Northwell system, 10 to 15 percent of patients hospitalized with Covid-19 in recent weeks have been vaccinated. As at Mount Sinai, those who are vaccinated and severely ill are on chemotherapy, high-dose steroids, elderly or otherwise immunosuppressed.

We really havent seen healthy people who are vaccinated in the hospital with no other problems, said Dr. Narasimhan.

Understand the State of Vaccine Mandates in the U.S.

Even among the elderly, vaccines are still offering a great deal of protection. Nationwide, outbreaks and case rates in nursing homes remain at a fraction of their peaks. There have been several outbreaks in nursing homes locally recently, Dr. Narasimhan said. But for the most part, she said, those sick seemed to be able to deal with the infection in a different way than before being vaccinated and managed to be treated as outpatients.

We are not seeing a lot of severe breakthrough disease in vaccinated elderly yet, she said.

The people most likely to get severely sick now are the same as in previous waves, the hospital executives said. Obesity, diabetes and hypertension, among other factors, predispose people to severe illness.

The racial breakdown of admitted patients also seems similar to earlier waves, with a few exceptions. Northwell noticed a small uptick in the percentage of patients who were unvaccinated and white. Mount Sinai also noticed a small uptick in white patients, and fewer Asian American patients, but cautioned the sample size was too low to draw conclusions yet.

Hospital executives are also noticing how Delta is much more infectious than previous variants of the virus. Dr. Narasimhan said Long Island Jewish Hospital has had two recent situations where adult families grandparents, parents and grown children all developed severe Covid-19 after a relatively brief exposure to an infected relative, such as a 10-minute drive together, or a single meal.

The hospital has also definitely seen cases where vaccinated people have transmitted Covid-19 to unvaccinated people, she said. The Centers for Disease Control and Prevention says that vaccination reduces the risk of getting symptomatic Delta by sevenfold, and severe Covid-19 by twentyfold. Still, vaccinated people can carry substantial amounts of the virus, which is a key reason the C.D.C. now recommends that even vaccinated people in high and substantial transmission areas like New York City and Long Island wear masks indoors.

Amid all the scary developments, there is also hopeful news.

Northwell and other hospital systems are using monoclonal antibodies successfully to keep people with Covid out of the hospital. Under an emergency use authorization, the treatments can only be given to patients who are over 65 or at high risk of progressing to severe Covid.

Like other antivirals, monoclonal antibodies have to be given quickly, within a week of symptom onset. One problem is that some people are not getting tested or seeking treatment until they are short of breath with the onset of pneumonia, which tends to happen around Day 8. At that point its too late, said Dr. Reich.

The message, he said, particularly for those with risk factors, is Get tested, even if you are vaccinated.

Another positive sign is that hospitals are way below their peaks in terms of admitted patients with Covid. (At their height, in April 2020, New York City had almost 19,000 people admitted to hospitals with Covid.) As a result, hospitals are not overwhelmed and can deliver good care.

Despite the increased transmissibility of Delta, both Mount Sinai and Northwell reported that the percentage of patients progressing to intensive care is about the same as in previous waves, another promising development. Dr. Rahul Sharma, chief of emergency medicine at NewYork-Presbyterian/Weill Cornell, said that his doctors are noticing people are coming in earlier and less sick than in earlier waves, giving them a better chance of positive outcomes.

All of these are reasons the death rate in the city and state has remained low so far. About three people per day are dying of Covid-19 in New York City, a rate that has stayed stable for the past month even as cases rise.

Read more from the original source:
Heres Who Is Hospitalized for Covid in New York City as Cases Rise - The New York Times

Read More...

Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study – SciTechDaily

August 4th, 2021 1:50 am

A study released inSTEM CELLS Translational Medicinehas confirmed the safety of a novel type of cellular therapy for knee pain caused by osteoarthritis. Conducted by a multi-institutional team of researchers in Japan who had developed the new therapy, the study was designed to confirm that their treatment which involves transplanting the patients own mesenchymal stem cells (MSCs) into the affected knee did not cause tumors.

The results showed that five years after transplantation, osteoarthritis-related tears to the knee meniscus had healed and, just as importantly, none of the patients experienced any serious side effects from the treatment. The meniscus is a crescent-shaped cartilage in the knee joint that plays a role in shock absorption. Age-related damage to the meniscus often leads to the progression of osteoarthritis of the knee.

Chronic knee pain is a major issue for the aging, affecting approximately 25 percent of all adults, according to the Centers for Disease Control and Prevention (CDC). Osteoarthritis is the most common cause of this condition in people aged 50 and older. Along with pain, which can be debilitating, knee problems can significantly affect the persons mobility and quality of life.

Knee replacement surgery is the gold standard of treatment, with the majority of people experiencing a dramatic reduction in pain and, thus, improvement in their ability to live a normal life. However, though rare, such surgery does come with risks such as the possibility of infection.

Lead investigator Mitsuru Mizuno, DVM, Ph.D. and corresponding author Ichiro Sekiya, M.D., Ph.D. Credit: AlphaMed Press

Cellular therapies are showing great potential as a less invasive way to treat difficult-to-heal knee injuries. The team behind the current study, which included researchers from Tokyo Medical and Dental University, Kyoto University and Kazusa DNA Research Institute, recently developed a therapy involving the transplantation of MSCs derived from the knees soft tissue (the synovium) into the injured meniscus. MSCs are multipotent adult stem cells present in the umbilical cord, bone marrow, fat, dental and other body tissues. Their ability to secrete biologically active molecules that exert beneficial effects on injured tissues makes them a promising target in regenerative medicine.

But some stem cell treatments have been known to cause tumors, which is why the team wanted to ensure that their therapy was free of any negative side effects. In particular, they wanted to investigate the safety of any MSCs that might show a type of chromosomal disorder called trisomy 7.

Trisomy 7 occurs frequently in patients with severe knee disease such as osteoarthritis. The detection of trisomy 7 in epithelial cells has been associated with tumor formation. However, the safety of these cells after transplantation has not been investigated. Thats what we wanted to learn from this study, said corresponding author Ichiro Sekiya, M.D., Ph. D., director and professor of the Center for Stem Cell and Regenerative Medicine (CSCRM) at Tokyo Medical and Dental University.

Mitsuru Mizuno, DVM, Ph.D., assistant professor with CSCRM, served as the studys lead investigator. He reported on the results. We recruited 10 patients for the study and transplanted their own stem cells into the affected knee joints, then followed up with MRIs over the next five years. The images revealed that tears in the patients knee meniscus were obscured three years after transplantation. We also identified trisomy 7 in three of the patients, yet no serious adverse events including tumor formation were observed in any of them.

Dr. Sekiya added, Keep in mind that these were autologous MSCs used in our study, which means that the transplanted MSCs came from the patients themselves. Any problems that might arise in the case of allogeneic cells, which are donated by someone other than the patient, still need to be determined.

Nevertheless, we believe that these data suggest that MSCs with trisomy 7 are safe for transplantation into human knees and show much promise in treating osteoarthritis.

This study highlights the ability of a patients own stem cells to potentially heal torn cartilage in the knee, said Anthony Atala, M.D., Editor-in-Chief ofSTEM CELLS Translational Medicineand director of the Wake Forest Institute for Regenerative Medicine. These outcomes suggest a potential approach that could change the overall physical health of patients who suffer from osteoarthritis and experience debilitating joint pain. We look forward to the continuation of this research to further document clinical efficacy.

Reference: Transplantation of human autologous synovial mesenchymal stem cells with trisomy 7 into the knee joint and 5 years of follow-up 3 August 2021, STEM CELLS Translational Medicine.DOI: 10.1002/sctm.20-0491

See more here:
Safety of Stem Cell Therapy for Chronic Knee Pain Confirmed in New Study - SciTechDaily

Read More...

Multiple myeloma stem cell transplant: What happens and more? – Medical News Today

August 4th, 2021 1:50 am

One potential treatment for multiple myeloma is a stem cell transplant. This involves a person receiving high-dose chemotherapy to kill the cancer cells in the bone marrow. This can also kill healthy cells inside the bone marrow, so the person then receives new, healthy, blood-forming stem cells via a transplant.

The healthy stem cells that a medical professional transplants into a person can come from the person themselves or from a donor. If the stem cells come from the person it is called an autologous transplant. If they come from or a donor it is called an allogeneic transplant.

A stem cell transplant (SCT) may cause multiple myeloma to go into remission, but medical professionals do not consider it to be a cure.

This article looks at types of SCTs, who should have one, what to expect from the procedure, and side effects. It also looks at how effective SCTs are, the recovery and outlook, and alternatives.

There are two types of SCT that people can receive for multiple myeloma:

In an autologous transplant, a doctor removes a persons own stem cells from their bone marrow or peripheral blood. They then store the cells until they need them for the procedure.

A doctor will give the person high-dose chemotherapy, sometimes with radiation, to kill the cancer cells. The doctor will then give the stored, healthy stem cells to the person through a catheter, similar to a blood transfusion.

This treatment is common for people with multiple myeloma. The cancer often returns, so the procedure is not a cure, but it can make a persons cancer go into remission for a period of time that may last a number of years.

Doctors sometimes recommend that a person has two autologous transplants. These will often take place 612 months apart. This is called a tandem transplant. Research shows that this approach can be more effective than a single transplant. However, a tandem transplant can cause more side effects and may be riskier.

In an allogeneic transplant, a person receives blood-forming stem cells from a donor.

A person will experience the best results if they are given cells that closely match their own type. For this reason, the best donors are often closely related to the person.

Allogeneic transplants carry a higher risk than autologous transplants. However, some studies suggest they may provide better results. This is because the transplanted cells from the donor may actually help destroy myeloma cells. This is called a graft tumor effect.

Studies have shown that people who receive allogeneic transplants may not do as well as those who receive autologous transplants in the short term. Allogeneic transplants are not considered a standard treatment for multiple myeloma, however, medical professionals may give them as part of a clinical trial.

People who are young and are in the early stages of cancer, as well as those who have not already gone through much treatment, often handle STCs better. For this reason, some transplant centers set age limits. This may not be especially helpful to people with multiple myeloma, who are on average 65 years old at diagnosis.

People with other major health issues may not be eligible for STCs. These can include:

A doctor is likely to perform a variety of tests on the person first, to see if they will be able to handle the process of an STC. These may include:

A doctor is also likely to discuss the related costs a person might incur and the scope of their health insurance coverage. STCs can be expensive, and may cost between $140,792 and $289,283.

Medicare covers part of the costs of two types of FDA-approved stem cell therapy, or transplants. These types are allogeneic hematopoietic stem cell transplantation (Allo-SCT) and autologous stem cell transplantation (Au-SCT).

The transplant team at the hospital will decide if the person needs to have the transplant in the hospital or in an outpatient center. If the person needs to be in hospital, they may have to start their stay the day before any chemotherapy or radiation treatment begins.

Conditioning treatment is also known as bone marrow preparation, pre-transplant treatment, or myeloablation. It usually involves a doctor giving the person high-dose chemotherapy treatment, radiation treatment, or both. This treatment usually takes 12 weeks.

Conditioning takes place for several reasons. These include:

Conditioning treatment will be different for each person, and depends on their cancer, any radiation, or chemotherapy treatment they have had in the past, and the type of transplant they are having.

This phase of the treatment can be difficult and uncomfortable, as doctors will use high doses of chemotherapy and radiation. It can make people feel very ill, and it may take months for them to recover.

Side effects of the preparation treatment can include:

After the conditioning treatment, a doctor will give a person a couple of days to rest before giving them the new stem cells.

A doctor will give the stem cells through a central venous catheter, similar to a blood transfusion. The doctor may also give the person drugs to reduce the risk of a reaction to preservatives in the stem cells, if they are using previously frozen stem cells.

The length of the process depends on how much liquid the stem cells are in. This part of the process is painless, and people are awake for it.

Side effects from the transplant itself are rare, and are usually mild.

The preserving agent used when the stem cells are frozen may cause side effects. These may include a person tasting garlic, and their body smelling different or unpleasant. These side effects last for a few days and then go away.

Other side effects can include:

The most serious side effect from an allogeneic transplant is called graft-versus-host disease (GVHD). This occurs when the new immune cells from the donor attack the persons tissue, as they see it as a harmful foreign body. GVHD can be life-threatening.

A 2019 review reports that SCTs improve the survival rate of people compared with treatment that just involves chemotherapy.

As complementary treatments have improved, SCTs have become increasingly effective at treating certain types of cancer.

A persons blood count should return to normal in about 26 weeks. They should visit the transplant center daily for a number of weeks.

A person may have to take antibiotics to prevent infection while their red and white blood cell count is still low.

People may experience side effects, as well as feelings of anxiety, depression, joy, or anger. People may also require a period of rehabilitation following their STC.

People often feel tired, and experience poor mental and physical health following an STC. Doctors will monitor people carefully during the rehabilitation period. They may suggest daily or weekly blood tests and exams.

People may also require platelet and blood transfusions, antibiotics, and other treatments during rehabilitation.

A person may need to see their transplant team frequently, even daily, for a period that may last between 612 months. During this time, they may experience problems including:

During what may be a difficult period of rehabilitation and recovery, a person should be in close contact with their transplant team for support.

Types of treatment will depend on the type of cancer the person has, as well as their preferences, and their ability to withstand certain treatments.

The use of medication to destroy cancer cells is called systemic therapy. Doctors give this type of treatment through the bloodstream to reach cancer cells throughout the body.

An oncologist may prescribe systemic therapy for multiple myeloma. Systemic therapy may include:

Multiple myeloma is a cancer that affects the plasma cells in the bone marrow, causing them to grow and divide more than usual. This crowds out healthy cells, causing tumors to form in the bone marrow.

Doctors may treat multiple myeloma with stem cell transplants. This involves killing cancer cells with high-dose chemotherapy or radiation, then giving a person new stem cells. The two types of stem cell transplant are an autologous transplant, using stem cells from the person, or an allogeneic transplant, using donor cells. Autologous transplants are much more common.

People with kidney, heart, and lung problems, or people who have had a lot of cancer treatments previously, may not handle a stem cell transplant well. Young people who have no other illnesses are best suited to a stem cell transplant.

A stem cell transplant can increase a persons chances of survival, but it is not a cure, and may only send the cancer into remission.

People may experience side effects. The worst side effects are likely to come from the chemotherapy and radiation. Side effects of the actual transfusion are rare and usually mild.

Recovery can take a year or more. People should remain in close contact with their transplant team and go for regular check-ups.

Alternative treatments to stem cell transplants include systemic treatment, which involves taking medication to kill the cancer cells.

Excerpt from:
Multiple myeloma stem cell transplant: What happens and more? - Medical News Today

Read More...

Animal Stem Cell Therapy Market Research 2021-2027 With Medivet Biologics LLC, VETSTEM BIOPHARMA, J-ARM, US Stem Cell The Manomet Current – The…

August 4th, 2021 1:50 am

The updated report on the Animal Stem Cell Therapy market gives a precise analysis of the value chain assessment for the review period of 2021 to 2027. The research includes an exhaustive evaluation of the administration of the key market companies and their revenue-generating business strategies adopted by them to drive sustainable business. The Animal Stem Cell Therapy industry report further enlists the market shortcomings, stability, growth drivers, restraining factors, opportunities for the projected timeframe.

Get Sample Report with Latest Industry Trends Analysis: http://www.a2zmarketresearch.com/sample?reportId=526842

The top companies in this report include:

Medivet Biologics LLC, VETSTEM BIOPHARMA, J-ARM, U.S. Stem Cell, Inc, VetCell Therapeutics, Celavet Inc., Magellan Stem Cells, Kintaro Cells Power, Animal Stem Care, Animal Cell Therapies, Cell Therapy Sciences, Animacel

The Global Animal Stem Cell Therapy market is expected to register a prominent% of market expansion during the review period owing to the largest market value in 2019. The market study provides a measure of the effectiveness of the product, real-time Animal Stem Cell Therapy market scenario, along custom ease. The study further offers market analysis, strategies and planning, R & D landscape, target audience management, market potential, due diligence, and competitive landscape.

Market Segmentation

Segment By Type

Dogs Stem Cell Therapy, Horses Stem Cell Therapy, Others Animals

Segment By Application

Veterinary Hospitals, Research Organizations

Scope of the report

A thorough analysis of statistics about the current as well as emerging trends offers clarity regarding the Animal Stem Cell Therapy market dynamics. The report includes Porters Five Forces to analyze the prominence of various features such as the understanding of both the suppliers and customers, risks posed by various agents, the strength of competition, and promising emerging businesspersons to understand a valuable resource. Also, the report spans the Animal Stem Cell Therapy research data of various companies, benefits, gross margin, strategic decisions of the worldwide market, and more through tables, charts, and infographics.

The Animal Stem Cell Therapy report highlights an all-inclusive assessment of the revenue generated by the various segments across different regions for the forecast period, 2021 to 2027. To leverage business owners, gain a thorough understanding of the current momentum, the Animal Stem Cell Therapy research taps hard to find data on aspects including but not limited to demand and supply, distribution channel, and technology upgrades. Principally, the determination of strict government policies and regulations and government initiatives building the growth of the Animal Stem Cell Therapy market offers knowledge of what is in store for the business owners in the upcoming years.

Request For Customized Report: http://www.a2zmarketresearch.com/enquiry?reportId=526842

Geographic analysis

The global Animal Stem Cell Therapy market has been spread across North America, Europe, Asia-Pacific, the Middle East and Africa, and the rest of the world.

COVID-19 Impact Analysis

The pandemic of COVID-19 has emerged in lockdown across regions, line limitations, and breakdown of transportation organizations. Furthermore, the financial vulnerability Animal Stem Cell Therapy Market is a lot higher than past flare-ups like the extreme intense respiratory condition (SARS), avian influenza, pig influenza, bird influenza, and Ebola, inferable from the rising number of contaminated individuals and the vulnerability about the finish of the crisis. With the rapid rising cases, the worldwide Animal Stem Cell Therapy refreshments market is getting influenced from multiple points of view.

The accessibility of the labor force is by all accounts disturbing the inventory network of the worldwide Animal Stem Cell Therapy drinks market as the lockdown and the spread of the infection are pushing individuals to remain inside. The presentation of the Animal Stem Cell Therapy makers and the transportation of the products are associated. If the assembling movement is stopped, transportation and, likewise, the store network additionally stops. The stacking and dumping of the items, i.e., crude materials and results (fixings), which require a ton of labor, is likewise vigorously affected because of the pandemic. From the assembling plant entryway to the stockroom or from the distribution center to the end clients, i.e., application ventures, the whole Animal Stem Cell Therapy inventory network is seriously compromised because of the episode.

The research provides answers to the following key questions:

Buy Exclusive Report: http://www.a2zmarketresearch.com/buy?reportId=526842

Contact Us:

Roger Smith

1887 WHITNEY MESA DR HENDERSON, NV 89014

sales@a2zmarketresearch.com

+1 775 237 4147

Read more:
Animal Stem Cell Therapy Market Research 2021-2027 With Medivet Biologics LLC, VETSTEM BIOPHARMA, J-ARM, US Stem Cell The Manomet Current - The...

Read More...

Global Stem Cell Therapy Market to witness exponential proliferation during 2020-2026 The Manomet Current – The Manomet Current

August 4th, 2021 1:50 am

TheGlobal Stem Cell Therapy Market To Garner Immense Returns Over 2020-2026A fundamental outline of theStem Cell Therapy Marketniche is presented by the Stem Cell Therapy Market report that entails definitions, classifications, applications together with industry chain framework. TheStem Cell Therapy Marketreport provides a far-reaching evaluation of necessary market dynamics and the latest trends. It also highlights the regional market, the prominent market players, as well as several market segments [Product, Applications, End-Users, and Major Regions], and sub-segments with a wide-ranging consideration of numerous divisions with their applications.

FREE | Request Sample is Available @https://www.zionmarketresearch.com/sample/stem-cell-therapy-market

Some of the Major Market Players Are:

Anterogen Co., Ltd., RTI SurgicalInc., Pharmicell Co., Ltd., MEDIPOST Co., Ltd., JCR Pharmaceuticals Co., Ltd., Holostem Terapie Avanzate S.r.l., NuVasiveInc., and AlloSource.

Further, the report acknowledges that in these growing and promptly enhancing market circumstances, the most recent advertising and marketing details are very important to determine the performance in the forecast period and make essential choices for profitability and growth of the Stem Cell Therapy Market. In addition, the report encompasses an array of factors that impact the growth of the Stem Cell Therapy Market in the forecast period. Further, this specific analysis also determines the impact on the individual segments of the market.

Furthermore, the study assessed major market elements, covering the cost, capacity utilization rate, growth rate, capacity, production, gross, usage, revenue, export, supply, price, market share, gross margin, import, and demand. In addition, the study offers a thorough segmentation of the global Stem Cell Therapy Market on the basis of geography [ Latin America, North America, Asia Pacific, Middle & East Africa, and Europe] , technology, end-users, applications, and region.

The Stem Cell Therapy Market report is a collection of pragmatic information, quantitative and qualitative estimation by industry experts, the contribution from industry connoisseurs and industry accomplices across the value chain. Furthermore, the report also provides the qualitative results of diverse market factors on its geographies and segments.

Download Free research report Brochure @https://www.zionmarketresearch.com/requestbrochure/stem-cell-therapy-market

The Stem Cell Therapy Market report is an appropriate compilation of all necessary data for the residential, industrial. & commercials buyers, manufacturers, governments, and other stakeholders to implement their market-centric tactics in line with the projected as well as the prevailing trends in the Stem Cell Therapy Market. Apart from this, the report also provides insightful particulars of the existing policies, laws, together with guidelines.

Promising Regions & Countries Mentioned In The Stem Cell Therapy Market Report:

Chapters Covered in Research Report are :

Chapter 1,2 :The goal of global Stem Cell Therapy Market covering the market introduction, product image, market summary and development scope.

Chapter 3, 4 :Global Market Competitions by Manufacturers, Sales Volume and Market Profit.

Chapter 5,6,7:Global Supply (Production), Consumption, Export, Import by Regions like United States, Asia-Pacific, China, India, Japan. Conducts the region-wise study of the market based on the sales ratio in each region, and market share from 2021to 2027

Chapter 8,9,10:Global Market Analysis by Application, Cost Analysis, Marketing Strategy Analysis, Distributors/Traders

Chapter 11,12 :Market information and study conclusions, appendix and data sources.

The market report also identifies further useful and usable information about the industry mainly includes Stem Cell Therapy Market development trend analysis, investment return and feasibility analysis. Further, SWOT analysis is deployed in the report to analyze the key global market players growth in the Stem Cell Therapy Market industry

Inquire more about this report @https://www.zionmarketresearch.com/inquiry/stem-cell-therapy-market

Purposes Behind Buying Stem Cell Therapy Market Report:-

Key questions answered in this comprehensive study Global Stem Cell Therapy Market Size, Status and Forecast 2026

Also, Research Report Examines:

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

Read More Report:Clinical Risk Grouping Solutions Market

See the original post here:
Global Stem Cell Therapy Market to witness exponential proliferation during 2020-2026 The Manomet Current - The Manomet Current

Read More...

Need a Boost on Your Eye Exam? Study Provides Early Evidence that Cocoa Sharpens Vision for Adults with Healthy Eyes – One Green Planet

July 21st, 2021 1:48 am

The Journal of Functional Foods published a recent study demonstrating that, if adults have healthy eyes, cocoa may help to increase their visual acuity. The study assessed thirty-seven young adults with healthy eyes. Over three visits to the Faculty of Optics and Optometry, the participants drank either (1) a glass of milk, (2) a drink with red-berries, or (3) a drink with cocoa. Then, during each visit, they took a series of tests to check their vision and their eyes ability to adjust to the dark.

Why cocoa and red-berries? Both foods are good sources of polyphenols. Polyphenols are non-nutrient food components that have antioxidant, anti-inflammatory and vasoactive properties associated with protection against cardiovascular and neurological conditions. Other recent research has also suggested that dark chocolate, which contains polyphenols, can improve visual acuity.

Supporting this prior research, the study found that participants who drank cocoa were significantly better at reading eye charts. Participants who drank the red-berries also trended towards performing better on their vision tests, but the trend was not significant. There was no evidence that either cocoa or red-berries helped participants eyes to adjust to the dark.

More research is needed to determine why cocoa improved visual acuity. Researchers confirmed (yes, through urine samples) that participants polyphenol levels rose after drinking both red-berries and cocoa. Participants who drank cocoa also showed higher levels of theobromine. And cocoa, of course, also has caffeine. Based on these findings, the researchers speculate that polyphenol, coupled with theobromine and/or caffeine, is responsible for the improvement in visual acuity.

The best part of the study? Since researchers gave participants only one cup of cocoa (rather than force-feeding participants ten cups to get results . . . Im sure it happens), the study appears to have real-world implications. If youre an adult with healthy eyes, a cup of cocoa just may sharpen your vision. (And you may be able to cheat on your next eye exam.)

Read more about eye health in One Green Planet, including plant nutrients that can help eye health as well as veggies and plant-based recipes to improve eyesight.

Eating more plant-based foods is known to help with chronic inflammation, heart health, mental wellbeing, fitness goals, nutritional needs, allergies, gut health, and more! Dairy consumption also has been linked to many health problems, including acne, hormonal imbalance, cancer, prostate cancer, and many otherside effects.

Interested in joining the dairy-free and meatless train? We highly recommend downloading the Food Monster App with over 15,000 delicious recipes it is the largest plant-based recipe resource to help reduce your environmental footprint, save animals, and get healthy! And, while you are at it, we encourage you to also learn about the environmental and health benefits of a plant-based diet.

For more Animal, Earth, Life, Vegan Food, Health, and Recipe content published daily, subscribe to the One Green Planet Newsletter! Lastly, being publicly-funded gives us a greater chance to continue providing you with high-quality content. Please consider supporting us by donating!

More:
Need a Boost on Your Eye Exam? Study Provides Early Evidence that Cocoa Sharpens Vision for Adults with Healthy Eyes - One Green Planet

Read More...

How to Use Your iPhone to Check Eyesight and Renew Your Prescription – TechTheLead

July 21st, 2021 1:48 am

Share

Share

Share

Email

Want to quickly renew your prescription or check your vision without visiting the doctor? Theres a way to do so now. It involves your iPhone, a fun app, and of course, a test.

The Virtual Vision Test is the new version of Warby Parkers Prescription Check app. It allows any prescription glasses wearer to quickly eliminate all doubts regarding their worsening vision.

All someone needs to do is download the iOS app and take the test in a quiet, well-lit space. Of course, that is if they already have on hand their current glasses or contacts, as well as a copy of the current prescription.

Reframd Eyewear Digitally Creates Your Frames To Fit Your Face

From about 10 feet away, users will be able to take the well-known vision test only in the comfort of their own home, this time. While the process avoids a visit to the doctors office, it doesnt exclude medical staff completely from the equation. Users will still need to validate the results of the test with an eye doctor.

If the results indicate good vision, then a $15 fee will be charged for a prescription renewal.

Bose Brings 3 New Audio Sunglasses with Speakers Built-in

If not, users will receive a recommendation to visit their doctor. And theres one more thing to take into account; the app will work only for people between 18-65 years old who have a single-vision distance prescription and no chronic eye diseases or who are under treatment.

Will there soon be an equivalent Android app? The company is considering it but the OS would need something similar to iOS Vision Framework for it to function.

Facebook Twitter LinkedIn Reddit Pinterest

Subscribe to our website and stay in touch with the latest news in technology.

You will soon receive relevant content about the latest innovations in tech.

There was an error trying to subscribe to the newsletter. Please try again later.

More:
How to Use Your iPhone to Check Eyesight and Renew Your Prescription - TechTheLead

Read More...

10 foods that are good for kids’ eyesight – Free Press Journal

July 21st, 2021 1:48 am

The coronavirus pandemic has been hard on all of us especially with the damage the disease has done to our physical and mental health, and the way we lived our life, in general. Everyone is restricted to their houses and are experiencing increased screen time due to online classes and work from home. Even the time that used to be spent doing other things is now being spent in front of a TV, or on the mobile phone.

As parents, we often worry about our childrens nutrition. Screen time has always been a worrisome subject, especially with the new generation, as the use of tablets, laptops, TV, and phones has gone up among children. According to reports, eye-specialist consultations have gone up during the lockdown due to increased screen time. However, the diet that your child consumes can play an important role in keeping his/her eyes healthy. There are 10 things that we can ensure our child is consuming on a regular basis for their healthy eyes.

Carrots: Carrots are rich in vitamin A (also known as retinol) in the form of beta carotene which is key in maintaining good eye health and by extension, eyesight.

Leafy greens: Spinach and other leafy greens hold the iconic antioxidant duo - lutein and zeaxanthin; two important plant-pigments key in maintaining good eye health. Theyre also highly effective in preventing serious eye conditions, like cataracts and age-related macular degeneration.

Omega 3: Omega 3 plays an important role in eye health throughout our lives. The DHA (docosahexaenoic acid) part of omega 3 is key in eye development for children, and for maintaining healthy eyes as adults. Chia seeds, flax seeds and walnuts are good plant-based sources of Omega 3.

Bell peppers: Bell peppers give you the most vitamin C per calorie. That's good for the blood vessels in your eyes, and science suggests it could lower your risk of getting cataracts. Red coloured peppers also pack eye-friendly vitamins A and E apart from many immunity boosting properties.

Sweet potatoes: Sweet potatoes are rich in vitamin A, beta-carotene, potassium, and fiber, just like carrots, so they're also good for your eye health.

Fresh Pineapple: Pineapples contain vitamin C, i.e. an antioxidant that can inhibit lens oxidation and prevent cataracts.

Dried apricot: Dried Apricots are particularly beneficial to eye health because they contain vitamins A, C and E and carotenoids, which serve to absorb damaging blue and near-ultraviolet light in order to protect the retina part of the eye.

Okra/Bhindi: Okra / Bhindi contains vitamin A content which keeps your eyes and optic nerve safe. Hence, it keeps your eyesight good. Vitamin A is also a potent antioxidant vitamin which plays an important role in reducing the impact of free radicals and is even associated with reduced cataract development.

Broccoli: Broccoli is packed full of lutein and zeaxanthin. These are two of the most important nutrients that your eyes can have because of the ability to prevent oxidation of the retina and age-related degeneration. There is also an antioxidant that is found in broccoli that may prevent blindness called sulforaphane.

Purple Cabbage: Vitamin A in purple cabbage makes the eyes healthy and improves vision. It also reduces the risk of macular degeneration and cataract. The nutrients in the vegetable keep the eyes healthy even during old age.

When it comes to creating good health and good eyes, right nutrition is of utmost importance. And the best part of eating right is that it also helps in overall growth and development of our children. Needless to say, that even the immunity of our children heavily depends on the right nutrition that they consume after all 85% of our immunity lies in our gut.

(Karan Kakkad is a Disease Reversal expert based in India. He is the Founder & CEO of Reverse Factor. To know more call 8100550660 or visitwww.reversefactor.in)

Read the rest here:
10 foods that are good for kids' eyesight - Free Press Journal

Read More...

Reduce Eye Strain While Working From Home: Ayurveda Remedies To Deal With Computer Vision Syndrome – TheHealthSite

July 21st, 2021 1:48 am

A senior Ayurveda expert with The Art of Living's Sri Sri Tattva Panchakarma shares a few tips to boost vision health while working from home.

Written by Jahnavi Sarma | Updated : July 16, 2021 1:41 PM IST

Due to the COVID-19 pandemic, today, many people are working from home. In fact, according to a survey conducted by a Chennai-based firm, almost 95 per cent of Indian firms are planning to allow their employees to continue working from home for the next 2 years. Now, as we all know, this means spending long hours staring at a computer screen. According to a CMR study, the average screen time for Indians shot up by 25 per cent to up to 6.5 hours last year and as many as 23 per cent respondents complained of weaker eyesight owing to increased screen time, cataract and other age-related vision problems. But the numbers are likely to be much worse this year as people continued to use their devices for work, school and social networking during the pandemic. In this article, we share some very useful tips and home remedies for reducing eye strain and maintaining eye health by Dr. Champavathi, senior Ayurveda expert with The Art of Living's Sri Sri Tattva Panchakarma.

As we stay glued to our tablets and smart phones, laptops and television sets ever since the lockdowns began, prolonged exposure to blue light emitted from these devices can result in repetitive strain to the eyes. Our eyes are the fastest and the most active muscle in the human body. We know yoga, an hour of brisk walk or lifting free weights in the gym can strengthen our muscles, support cardiovascular health and improve blood circulation. But what about the eyes? Often, we tend to neglect eye health unless we notice that there is something really wrong with our vision.

Studies suggest that 50 per cent to 90 per cent of people who work on the computer screen show symptoms of computer vision syndrome (CVS) also known as digital eye strain. The screen forces the eye to focus and refocus all the time causing headaches, dry red eyes, constant itching, tearing and blurred vision. Overtime, the constant flickering and glare from the screen make your eyes work harder causing damage to the eye muscle. Normally, in a minute, we blink about 16 to 18 times. But when you read or stare at the screen, you tend to blink only about 8-10 times. Why is blinking so important? Dr. Champavathi says that when we blink, tears spread over the cornea. Tears contain certain proteins that provide the much-required nourishment for the eye. Intermittent blinking also provides rest to the macular- a part of the retina responsible for our central vision.

Exposure to environment-related irritants like pollen, air pollution, temperature variations and ultraviolet radiations are hazardous for healthy vision. Poor lifestyle habits like consumption of junk food or a high fat diet, alcohol, tobacco and prolonged exposure to bright light quickens the pace of decline in eye health. A habit like smoking, for example, can reduce night vision and leads to degenerative eye problems at an early age, sometimes as early as 28.

Ayurveda-based home remedies and tips can naturally nourish the eye. Dr. Champavathi shares a few tips here.

This is an ancient technique in Ayurveda that provides instant relaxation to the eyes, keeping them away from all light stimuli. First, rub your palms vigorously. Close your eyes and place the warm palms on your eyes. Make sure your palms are cupped so you don't add pressure to your eyeball. Take a slow deep breath in and exhale from your nose. Do this for about 2 to 3 minutes. The best time to practice palming is before bedtime. It will also enhance sleep quality.

Ice is considered to be sheeta satmya in Ayurveda. To counteract the effect of excessive heat in the eye, soak cotton balls or a piece of gauze in milk/rose water and place them on your eye lids for about 5 minutes. This will immediately relieve the eye of any strain.

Of the great elements that matter is made of, the eye is related to light and fire. So, to maintain good eye health, Ayurveda recommends that water used for bathing should not be too hot or too cold but lukewarm. Bathing in hot water causes an imbalance in the fire element.

These are very simple hand gestures and, to practice them, you need not sit in lotus position and meditate upon them (though meditating and pranayamas with mudras is extremely effective). You can practice most Mudras lying down or sitting. But even with normal breath, you will see the results. Mudras are defined as healing modality in oriental systems of wellness. It is made by bringing the tips of the fingers in contact with each other in specific formations to give the desired result. When practiced along with breathing exercises, it increase the flow of life force in the body, leaving you energized and relaxed with just a few minutes of practice.

Keep your spine erect, body relaxed and keep your palms open on your lap before closing your eyes. Gently join the tip of your little finger and ring finger to the tip of your thumb and straighten your other fingers. Breathe normally. Practice this Prana Mudra regularly for about 15 minutes. It helps improve vision and heals eye irritation.

Splash tap water about 3-5 times on the eye to activate the facial arteries and nerves.

Create positive changes in your life by breaking a habit that can unnecessarily create more strain for your eyes. Take off your glasses during mealtime or when you are in conversation with a friend. Spectacle is not a treatment, it is an aid.

Interestingly, Ayurveda connects anger and frustration with eyesight. Anger as an emotion is said to release adrenaline to our blood which dilates the pupil and allows more light to enter the eye than is ideal. So, managing your anger issues can also help reduce eye strain. Take a few slow deep breaths or try and diffuse that temper with humor. You can also practice pranayama such as alternate nostril breathing to calm down the nervous system.

Here's a checklist shared by Dr. Champavathi. Make sure you tick off items from the list before you begin your day.

Eye diseases do not come with a warning sign. Symptoms usually appear suddenly and worsen rapidly. People with diabetic retinopathy or glaucoma may not even notice vision problem in its infancy. Sudden blurriness or trouble seeing colors and fine details are signs of age-related macular degeneration (AMD). Eventually some of these diseases can even cause blindness.

Join us on

See more here:
Reduce Eye Strain While Working From Home: Ayurveda Remedies To Deal With Computer Vision Syndrome - TheHealthSite

Read More...

Page 183«..1020..182183184185..190200..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick