header logo image


Page 160«..1020..159160161162..170180..»

Welcome to the New Era of Vaccine Acceleration – The New Republic

October 15th, 2021 1:52 am

If we have learned anything about controlling epidemics in the past year, its that its very difficult to halt the spread of disease with vaccines aloneespecially when they first appear. As the vaccines are endorsed, financed, and rolled out, other prevention strategies are key for controlling the illness.

Insecticide-treated bed netsthats what has made the biggest difference in most parts of Africa over the last couple of decades, Clarke said. And they will remain really important, because the insecticide on the bed net kills mosquitoes, and by reducing the number of mosquitoes, even people who dont sleep under the bed net will be protected, whereas a vaccine can only protect the person whos vaccinated.

Anotherstudy published last month found that combining vaccines with preventative drugs roughly doubled protection for kids. This combination can be used in places with clearly defined malaria seasons, particularly tied to the rainy season, where children are at very high risk of dying from the illness. Families were eager to get both the shots and the medications, Clarke said, because they take malaria extremely seriously.

Its imperative to move quickly, particularly when children are dying. Its all the question of investmentif the investment is made into these types of vaccines, it can be done in five years, Kappe said. When you look at, for example, the investments that have been made over a period of a year, a year and a half, in coronavirus vaccinesif the same resources would be thrown at malaria vaccines, I think we would be there already.

Read this article:
Welcome to the New Era of Vaccine Acceleration - The New Republic

Read More...

Telehealth acts as a preview of the imminent digital revolution in healthcare as AI gains popularity – South China Morning Post

October 15th, 2021 1:52 am

[Left to Right] Clark Cahill, Manager of Events and Conferences at SCMP, Dr Ngai-tseung Cheung, Head of Information Technology & Health Informatics for the Hospital Authority, Megan Lam, Co-founder & CEO of Neurum Health, and Dr Matthew Man, Chief Executive Officer of Megasoft Limited took a deep dive into the current state of healthcare including the implementation of AI and the Internet of Things (IoT) into the industry in this series.

Dr Ngai-tseung Cheung, Head of Information Technology & Health Informatics for the Hospital Authority, mentioned how Covid-19 has made the close collaboration between the fields of healthcare, computer science, and machine learning even stronger.

Dr Matthew Man, Chief Executive Officer of Megasoft Limited, proposed the industry should start at the bottom [with] frontline staff [as they] have a lot of pain points.

Co-founder & CEO of Neurum Health, Megan Lam, said health and wellness is one size fits one as opposed to one size fits all.

(Left to Right) Joey Liu, Chief of Staff to the CEO at SCMP, and Dr Kee Yuan Ngiam, Group Chief Technology Officer at National University Health System, discussed how the end goal of medicine is to be more proactive and preventative rather than reactive.

Link:
Telehealth acts as a preview of the imminent digital revolution in healthcare as AI gains popularity - South China Morning Post

Read More...

Opinion/McGonigle: It is time to stop fighting – The Providence Journal

October 15th, 2021 1:52 am

Dr. John McGonigle| Guest columnist

Dr. John McGonigle is an assistant clinical professor of family medicine at the Warren Alpert School of Medicine at Brown University.

I am a board-certified primary care doctor and an assistant clinical professor in family medicine at Brown University. I have been practicing primary care in Rhode Island since starting residency at Memorial Hospital in Pawtucket in 2006. I am educated, trained and schooled in the most powerful system of medicine the world has ever known.

Indeed, I have not infrequently described this system as analogous to the United States military. When Europe was overrun with Nazis, send the U.S. Army in, and tell them to flatten anything that resists. Its great for killing Nazis. As our recently concluded experience in Afghanistan tells us, send the military into a country and ask them to build schools and they will fail miserably. Wrong tool. Unbeatable in war, quiescent in peace.

The United States, Rhode Island, and the rest of the planet have been engaged in an undertaking unparalleled since the Second World War. While the politicians stay at home and dither over strategy, the people go offand fight. We have been asked to operate on a war footing, and whatever our political or social or economic means have enabled us to do we have done. We have cussed, and spit, and sometimes ridiculed higher officers but have done what they have asked, when they have asked, and in whatever spirits we can muster.

Last year was more straightforward in primary care, since it was all triage, all the time. We didnt know much about Sars-Co-V2, and knew less about treatment. Little of its spread, little of its contagion patterns. Our patients knew even less. They brought us unanswerable questions of life and death, and we worked tirelessly keeping the emergency rooms from being tragically overrun. The usual go to the ER for a full assessment when one was uncertain, or too tired to shake the uncertainty, was off limits.

To carry the battlefield the confusion had to be minimized. ER and ICU doctors and nurses fought heroically, in shifts. Primary Care is not adrenaline soaked and filled with mayhem, but it is unrelenting and remorseless. Primary Care makes it possible for ERs and ICUs to function at ALL times, and when Primary Care is overwhelmed like dishes piling up in the restaurant sink the establishment no longer functions anywhere near optimal efficiency.

We are tired from all the fear and we are tired of filling out forms. We are tired of having kept the supply and chow and ambulance lines going to the front for over 21 months now. Like a returning army our people have come home, and many are gravely scarred. For some the wounds are obvious, and the thank you for your services and sorry for your losses are heartfelt. For far too many the wounds are unseeable and barely reachable and require patience, not stitches.

The tidal wave of wounded families that I am seeing is unparalleled in my 15 years of practice. I am seeing the harms within: between parents, parents and children, children, children and schools; between parents and peers; between my patients' blood pressures and their suffocating, sedentary fears; between health-giving practices and the despairs of a war zone.

We have all been hearing about this war we are in and I am tired of hearing about how much preventative care has been deferred and ignored, and how much the mental health and well-being of the nation needs attention. The country is devastated, and to continue to keep it on a war-footing is prolonging the devastation. It is time for COVID to put down its weapons. The eagle has landed. It is time to start building schools.

See the original post:
Opinion/McGonigle: It is time to stop fighting - The Providence Journal

Read More...

Mitsubishi Motors : Unveils 2022 Outlander for 2021 Rebelle Rally; Introduces the Military Veterans Who Will Contest the Event – marketscreener.com

October 15th, 2021 1:52 am

FRANKLIN, Tenn. - Today, Mitsubishi Motors North America (MMNA) unveiled the 2022 Outlander SUV that will carry Team 207 throughout the Rebelle Rally on October 7-16.

* 2022 Outlander livery celebrates 2001 Dakar rally victory of Jutta Kleinschmidt, first woman to ever win the famed event

* U.S. military veterans and a PTSD service-dog named Sammy talk about the invisible scars of war, overseas deployments, returning home, and family

The lightly modified vehicle sports a special livery that pays tribute to the brand's history-making Dakar Rally win twenty years ago, when Jutta Kleinschmidt drove a Mitsubishi Pajero to victory, becoming the only woman ever to win the world-famous Dakar. Before the event even starts, the crew of Team 207 are already winners.

Sisters-in-law Selena 'Mason' Converse and Erin Mason are not afraid of a challenge. As an emergency medical services technician in the U.S. Air Force, Mason provided emergency medical care in both non-combat and combat situations. As an aviation structural mechanic, you could find Erin weaving in and out of incoming plane traffic on U.S. Navy aircraft carriers. They joined the military, right out of high school, to establish their independence, seek adventure, and serve their country.

This October, Mason and Erin, along with Mason's two-and-a-half-year-old, PTSD-trained service dog, Sammy, are embarking on a new adventure, further testing themselves and their 2022 Mitsubishi Outlander. They will represent MMNA and veterans nonprofit Record the Journey (RTJ) on the nine-day, 2000-km, all-women, off-road Rebelle Rally.

Described by veterans who competed with Mitsubishi Motors and RTJ in past years as a 'mini-deployment,' Mason, Erin and Sammy will face a grueling schedule of long days and short nights, challenging and diverse off-road terrain, and the memories of their service - the good and the bad - head on.

We sat down with the team, before they head out on the Rebelle, to learn more of their stories.

FIVE QUESTIONS WITH U.S. AIR FORCE VETERAN SELENA 'MASON' CONVERSE

Team Record the Journey Driver, Owner of Mason Converse Media

1. On paper, you are a wife, mother, combat veteran and small-business owner. How do you define yourself? I am all of those things with all of my heart. Those titles are a huge part of me and have helped form who I have become. I have not seen any of those titles as a job, rather, an opportunity that I have been gifted. I've grown to know that I am a caretaker. I consider myself as caring and creative and I am the happiest when I am caring for others and/or utilizing my creative talents.

2. You were an emergency medical services technician in the U.S. Air Force - stationed all over the U.S. and once deployed to Afghanistan. Help us understand, as much as a civilian could, what that was like. My job as an EMT for the U.S. Air Force was incredible, and for the most part, very rewarding. I saved lives, cared for countless families and was able to train future medics for the U.S. Air Force and Navy. I was initially trained at the EMT - basic level, and I was able to work in the emergency room, on an ambulance and in multiple specialties around the hospital.

Realizing my love for teaching, I became a certified Nationally Registered EMT (NREMT) Instructor. Eventually, I deployed to Afghanistan and worked in the intensive care unit and the emergency room. I cared for injured U.S. soldiers, our allies, as well as confirmed enemy combatants.

My job at home, when not deployed, was primarily focused on preventative medicine - keeping soldiers (and their families) healthy. My job while I was deployed was rather different. There was no preventative medicine, only reactive medicine to the most traumatic injuries with limited supplies. After returning from Afghanistan, I was hand-selected to become a military training instructor at the Military Education and Training Center in Texas.

3. You left the military after almost 13 years to put down roots and raise your family, and you started your company, Mason Converse Media. Everything was going well. When did you begin realizing you might have PTSD? PTSD came in waves. I didn't just leave the military and feel this intense overwhelming PTSD sensation - it is not quite like that. I experienced traumatic things during my deployment, and they forever changed who I am. But while in the military, we were trained to deal with stress and trauma extremely well.

After leaving the military, I had the mindset that I 'had PTSD,' but I did not 'suffer from PTSD'. I assumed the things I felt were just transition stress and that they would go away on their own. What I did start to notice was that I perceived and dealt with certain things differently than my non-military friends. Things that I worried about, or that caused me anxiety, did not cause others to have the same emotional triggers.

I lost my parents as a child. Since then, I've used the avoidance tactic to manage extreme stress: if I didn't face it, discuss it, or even think about it, then it couldn't affect me. I applied this same tactic to my post-military life, and it 'worked' for quite some time. The pandemic was a huge PTSD trigger for me and a turning point for me to openly evaluate and discuss my PTSD symptoms.

4. You are the proud mother of three human children, and Sammy, a two-and-a-half-year-old, all-black German Shepherd. Tell us how Sammy entered your life. Sammy entered my life as an unexpected blessing. She was born at a time that I was navigating my PTSD symptoms and not openly discussing any of them. At that same time, my husband's canine best friend of 13 (Joe) years was getting to the end-stage of life. A neighbor of ours offered my husband a German Shepherd puppy, Sammy, to help with the transition and eventual loss of his dog. Sammy came to us much sooner than expected, at just four weeks old (another story for another day), and I spent the next four weeks being mom to the tiniest bear-cub looking puppy.

Joe passed shortly thereafter, and Chuck did not yet feel connected with Sammy. We thought it would just take time for the bond to form, so we kept her and spent the next year training her. Sammy was smart and was ready for a meaningful role. At that time, I had begun therapy for PTSD. The idea of having Sammy trained as a service dog came up, and it really became obvious that she was truly meant for me and not my husband.

5. Together, you, Sammy and your sister-in-law Erin make up Team 207, Mitsubishi Motors' entry into the 2021 Rebelle Rally. As you head into the dunes, why is it important for you to tell your story? The biggest key to managing my PTSD was being able to admit the issues and symptoms I was experiencing. When you separate out the individual symptoms or triggers, then you can treat the PTSD more effectively. Many people assume the treatment for PTSD is taking a prescription medicine. It can be, but that's not the treatment for everyone.

Part of my PTSD treatment is the use of a service dog. Service dogs provide treatment of PTSD symptoms, much like a medication could, but other times better than medication can. Service dogs are specifically trained to perform tasks to aid in a person's disability.

As a team of female veterans, I believe it is so important to share our story and help others understand that PTSD does not have to control your whole life - it is possible to live the life you want while managing PTSD. Sammy's participation in the Rebelle Rally will go a long way to doing that.

FIVE QUESTIONS WITH U.S. NAVY VETERAN ERIN MASON

Team Record the Journey Navigator, Owner & Farmer, Mason Wholesale Greenhouses

1. Congratulations (and awe) are in order! You just welcomed a new baby girl, Selena, to your family, and she will be just six weeks old when you head out for the Rebelle. What is motivating you to take this on so soon? By competing in an all-woman rally, I believe I am sending my two young girls a message that anything is possible and that some things are meant to be. A year ago, Rachael Ridenour, founder of veterans non-profit Record the Journey, picked us to go on this adventure to represent her charity and Mitsubishi. Before Mason and I knew it, we were driving across the country to learn technical driving and navigation skills from Rachael, and in between trips to the desert, were on Zoom calls, trying to absorb as much as we could. Around Christmas, I learned I was expecting, and was relieved to learn the due date - I'd be cutting it close, but I could still compete in the Rally. It was a good pregnancy, and even better delivery, so it really feels meant to be. I know my daughter Selena will be cheering me on from home. As if the rally wasn't challenging enough, I will also be pumping so I can return to breast feeding when I get home.

2. You joined the military, in your words, as soon as you could. You were young, wide-eyed and from a small town. What were those first years like for you? Sitting across from the recruiter, signing my papers to join the military, I knew I was leaving my small town for something bigger, and I was right. If you've never seen an aircraft carrier, it's beautiful, the way the planes come in and out. It's like controlled chaos, like synchronized swimming - it's an adrenaline rush. My first years were defined by adventure. My first assignment was Virginia Beach, and I was crossing the seas in an aircraft carrier in no time. I would volunteer for every detachment and work to achieve every qualification, chasing fighter jets across the world, knowing it would mean more adventure, and that's exactly what I wanted.

3. What deployment stands out to you as having the biggest personal impact. My deployment on the USS George H. W. Bush was by far the most impactful time I spent serving my country. It was the ship's maiden deployment - we sailed for eight months, from Virginia, to the Rock of Gibraltar, to the Suez Canal, around the Horn of Africa and into the Arabian Gulf. Along the way, we made stops in England, Italy, France, Spain, Bahrain and Dubai. It was equally thrilling and grueling. I learned what my body was capable of, by operating on minimal sleep and maximum exhaustion. When we arrived back in the States, I quickly came to grips with the mental toll as well, as a good friend from the deployment took his own life. Losing him is one reason I am so passionate about mental health awareness and PTSD advocacy for my military brothers and sisters.

4. You would have stayed in the service longer, if that was an option. Describe your transition out of the military and into civilian life. The year I left, the government was downsizing the military, and was not renewing thousands of service member contracts. I thought I was going to spend my whole life in the Navy, but life had other plans. Navigating the transition was lonely and confusing - all of a sudden, I felt like I didn't have a purpose. In the service, we are a family. We grow together. We experience life and death, births and divorces together. I was a shoulder to cry on when a friend was on a deployment, watching a YouTube video of their baby taking their first steps. I went from traveling the world, to being stuck in one place. Re-entering the civilian world, returning to people who never left... they can't understand what we are going through. It took me a couple years to adjust back to civilian life and to find my identity outside of the military. I became a civilian mechanic... I met my husband, also a veteran, who served in the Air Force. I eventually finished school and started a family. There will always a part of me that can only be filled up by my military family, so I try to be around them as much as I can.

5. Now, you run Mason Wholesale Greenhouses with your husband - also former military. Tell us about the business and how you got started. We started when my husband was transitioning out of the military. He worked at a nursey in high school and has a real way with plants. I found a place called Archi's Acres in Southern California that has a six-week course, designed to introduce veterans to sustainable agriculture, and I signed us both up. While we were there, my husband received a call that his former boss, the nursery owner, passed away, and his wife wanted to sell the property to us! Now in East Texas, we grow organic produce and crops in greenhouses. We aim to keep a small carbon footprint and really enjoy sharing our passion for sustainable agriculture with our community. The soil therapy has been so good for me! In the future, we hope to invite other veterans to our property for off-grid retreats, to help others find the same peace.

FIVE QUESTIONS SAMMY THE SERVICE DOG

PTSD-Trained, 2.5-Year-Old, All-Black German Shepherd

1. Describe your perfect day. I love to go on adventures with my family - my mom, dad, my human sisters and my brother. My mom owns a 4x4 off-road adventure photo and video company, so it is kind of part of the territory. We go to lakes, where I am learning to fetch rocks and sticks off of the lake bottom, and we go to the desert, where I am learning to help mom dig big trucks out of the sand. (Should come in handy for Rebelle, right?) By nature, I am curious, confident and loyal, making me the pawfect adventure partner. Oh, and I absolutely love frisbee. I could play frisbee for hours. At the end of a long day of adventures, or a long day on PTSD-service duty, I love my quiet time. Did I mention I love frisbee?

2. What does it mean to be a PTSD-trained service animal? My mom is my hero. She served in the U.S. Air Force for 13 years. (Planes are like frisbees, but much bigger.) As an emergency medical services technician, she skillfully and bravely attended to men and women on both sides of armed conflict. But when she came home, it was hard for her to really feel at home. She had flashbacks and nightmares; sometimes she felt sad, isolated, angry and scared. Not to brag, but I am pretty intelligent and observant, and I take direction really well, so I am kind of the perfect service animal. I went through intense training, learning about all of the things that could trigger my mom's anxiety, and how to make her, and my whole family, feel safe. Now, everywhere they go - on adventures, to the grocery store, to bed at night - I have their back.

3. And we understand your vest isn't just a fashion accessory... It is a very cool vest, yes, but it is much more. It is like a super-hero cape. When I put on my vest, it makes me feel powerful, and it reminds me of my training. It means that I am on duty, and no one can mess with me or my family. When I take off my vest, I am just your average 2.5-year-old puppy. I like to play frisbee... run, jump, roll, scratch and snuggle with my siblings. I take my job seriously; I take my play time seriously, and I take my down time seriously. You have to, in this business. Sometimes, it is important for me to find a quiet space, sit, and reflect on the day.

4. All-black German Shepherds are extremely rare. How do you keep that beautiful coat so clean? Why, thank you. It's true, my line of work can be ruff on hair, skin, nails and teeth. To keep me looking and feeling good on the Rebelle, pet wellness company Skout's Honor has loaded down our 2022 Mitsubishi Outlander with array of probiotic grooming and wellness essentials, including Probiotic Shampoo + Conditioner, Prebiotic Pet Balm, Probiotic Deodorizer and Paw Spray. Also, Mitsubishi has outfitted us with some pretty cool, Team 207 swag, including a custom bandana from http://www.mymitsubishistore.com. Shout out to my sponsors!

5. What are you most looking forward to about Rebelle Rally? Well, I have done my research, and there are a lot of car commercials with dogs in them, but none can do what I can. I don't see any other pups protecting their mom from danger, or digging their team out of sand dunes. I will be the first animal to ever compete in the Rally, just saying... In all seriousness, I really identify with the spirit of Rebelle - the adventure, the strategy, the girl power! My mom can do anything, with me at her side. I hope her story inspires others to be authentic, brave and embrace adventure - just like us.

For more information on the 2022 Mitsubishi Outlander, visit https://www.mitsubishicars.com/outlander/2022.

About Mitsubishi Motors North America, Inc.

Through a network of approximately 330 dealer partners across the United States, Mitsubishi Motors North America, Inc., (MMNA) is responsible for the sales, marketing and customer service of Mitsubishi Motors vehicles in the U.S. MMNA was the top-ranked Japanese brand in the J.D. Power 2021 Initial Quality study, ranking third overall and tied with Lexus. In its Environmental Targets 2030, MMNA's parent company Mitsubishi Motors Corporation has set a goal of a 40 percent reduction in the CO2 emissions of its new cars by 2030 through leveraging EVs - with PHEVs as the centerpiece - to help create a sustainable society.

With headquarters in Franklin, Tennessee, and corporate operations in California, Georgia, Michigan, New Jersey, Texas, Florida and Virginia, MMNA directly and indirectly employs more than 8,000 people across the United States.

For more information on Mitsubishi vehicles, please contact the Mitsubishi Motors News Bureau at 615-257-2698 or visit media.mitsubishicars.com.

Contacts

Jeremy Barnes

Senior Director, Communications and Events

jeremy.barnes@na.mitsubishi-motors.com

Mobile: 714-296-1402

Lauren Ryan

Manager, Communications and Events

lauren.ryan@na.mitsubishi-motors.com

Mobile: 404-862-8286

Read this article:
Mitsubishi Motors : Unveils 2022 Outlander for 2021 Rebelle Rally; Introduces the Military Veterans Who Will Contest the Event - marketscreener.com

Read More...

Human genetic enhancement – Wikipedia

October 5th, 2021 6:34 pm

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease[1] (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence.These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community).[2]

Genetic modification in order to cure genetic diseases is referred to as gene therapy. Many such gene therapies are available, made it through all phases of clinical research and are approved by the FDA. Between 1989 and December 2018, over 2,900 clinical trials were conducted, with more than half of them in phase I.[3] As of 2017, Spark Therapeutics' Luxturna (RPE65 mutation-induced blindness) and Novartis' Kymriah (Chimeric antigen receptor T cell therapy) are the FDA's first approved gene therapies to enter the market. Since that time, drugs such as Novartis' Zolgensma and Alnylam's Patisiran have also received FDA approval, in addition to other companies' gene therapy drugs. Most of these approaches utilize adeno-associated viruses (AAVs) and lentiviruses for performing gene insertions, in vivo and ex vivo, respectively. ASO / siRNA approaches such as those conducted by Alnylam and Ionis Pharmaceuticals require non-viral delivery systems, and utilize alternative mechanisms for trafficking to liver cells by way of GalNAc transporters.

Some people are immunocompromised and their bodies are hence much less capable of fending off and defeating diseases (i.e. influenza, ...). In some cases this is due to genetic flaws[clarification needed] or even genetic diseases such as SCID. Some gene therapies have already been developed or are being developed to correct these genetic flaws/diseases, hereby making these people less susceptible to catching additional diseases (i.e. influenza, ...).[4]

In November 2018, Lulu and Nana were created.[5] By using clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9, a gene editing technique, they disabled a gene called CCR5 in the embryos, aiming to close the protein doorway that allows HIV to enter a cell and make the subjects immune to the HIV virus.

Athletes might adopt gene therapy technologies to improve their performance.[6] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[7]

Other hypothetical gene therapies could include changes to physical appearance, metabolism, mental faculties such as memory and intelligence.

Some congenital disorders (such as those affecting the muscoskeletal system) may affect physical appearance, and in some cases may also cause physical discomfort. Modifying the genes causing these congenital diseases (on those diagnosed to have mutations of the gene known to cause these diseases) may prevent this.

Also changes in the mystatin gene[8] may alter appearance.

Behavior may also be modified by genetic intervention.[9] Some people may be aggressive, selfish, ... and may not be able to function well in society.[clarification needed] There is currently research ongoing on genes that are or may be (in part) responsible for selfishness (i.e. ruthlessness gene, aggression (i.e. warrior gene), altruism (i.e. OXTR, CD38, COMT, DRD4, DRD5, IGF2, GABRB2[10])

There is some research going on on the hypothetical treatment of psychiatric disorders by means of gene therapy. It is assumed that, with gene-transfer techniques, it is possible (in experimental settings using animal models) to alter CNS gene expression and thereby the intrinsic generation of molecules involved in neural plasticity and neural regeneration, and thereby modifying ultimately behaviour.[11]

In recent years, it was possible to modify ethanol intake in animal models. Specifically, this was done by targeting the expression of the aldehyde dehydrogenase gene (ALDH2), lead to a significantly altered alcohol-drinking behaviour.[12] Reduction of p11, a serotonin receptor binding protein, in the nucleus accumbens led to depression-like behaviour in rodents, while restoration of the p11 gene expression in this anatomical area reversed this behaviour.[13]

Recently, it was also shown that the gene transfer of CBP (CREB (c-AMP response element binding protein) binding protein) improves cognitive deficits in an animal model of Alzheimers dementia via increasing the expression of BDNF (brain-derived neurotrophic factor).[14] The same authors were also able to show in this study that accumulation of amyloid- (A) interfered with CREB activity which is physiologically involved in memory formation.

In another study, it was shown that A deposition and plaque formation can be reduced by sustained expression of the neprilysin (an endopeptidase) gene which also led to improvements on the behavioural (i.e. cognitive) level.[15]

Similarly, the intracerebral gene transfer of ECE (endothelin-converting enzyme) via a virus vector stereotactically injected in the right anterior cortex and hippocampus, has also shown to reduce A deposits in a transgenic mouse model of Alzeimers dementia.[16]

There is also research going on on genoeconomics, a protoscience that is based on the idea that a person's financial behavior could be traced to their DNA and that genes are related to economic behavior. As of 2015, the results have been inconclusive. Some minor correlations have been identified.[17][18]

George Church has compiled a list of potential genetic modifications based on scientific studies for possibly advantageous traits such as less need for sleep, cognition-related changes that protect against Alzheimer's disease, disease resistances, higher lean muscle mass and enhanced learning abilities along with some of the associated studies and potential negative effects.[19][20]

Link:
Human genetic enhancement - Wikipedia

Read More...

Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform – WWNY

October 5th, 2021 6:34 pm

Published: Oct. 5, 2021 at 8:00 AM EDT|Updated: 10 hours ago

EMERYVILLE, Calif. and BOULDER, Colo., Oct. 5, 2021 /PRNewswire/ -- Amyris, Inc. (Nasdaq: AMRS), a leading synthetic biotechnology company active in the Clean Health and Beauty markets through its consumer brands, and a top supplier of sustainable and natural ingredients, today announced that Amyris has licensedthe Onyx genome engineering platform from Inscripta, a leading gene editing technology company. Amyris and Inscripta will also explore joint research and development opportunities to expand the Onyx platform functionality.

Amyris' product development and formulation teamuses a proprietaryLab-to-Market operating system to develop and scale a growing portfolio of sustainable ingredients. The Onyx platform automates benchtop biofoundry activity and will bring greater genetic diversity and value to Amyris' ingredient development pipeline, complementing Amyris' existing Lab-to-Market operating systemwith the goal of improving efficiency and reducing timelines for the development of future molecules. To date, Amyris has successfully commercialized 13 sustainable ingredients, which are formulated in over 20,000 products and used by over 300 million consumers, demonstrating the growing demand for sustainable products with clean and effective ingredients.

Automated, high-throughput gene editing is revolutionizing the writing of genomes the way next-generation sequencing transformed the reading of genomes. Inscripta is the first company to deliver an integrated and intuitive benchtop platform that will expand access to scalable, robust genome engineering and help scientists develop solutions to some of today's most pressing challenges.

"Amyris has shown the world how new products can be made more sustainable through biology. Their team has high proficiency in utilizing cutting-edge technology, and we are excited they will be pioneering the use of our platform," said Sri Kosaraju, President and CEO of Inscripta. "We have great regard for Amyris' mission, and we are committed to seeing the Onyx platform become a substantial contributor to new clean chemistry products in the future."

"The Onyx platform offers significant potential for generating greater genetic diversity in our projects, which we expect to lead to more efficient product innovation," said Sunil Chandran, Senior Vice President of Research and Development at Amyris. "Inscripta's platform seamlessly integrates with our own and opens up new experimentation avenues for our scientists to continue bringing unique bio-based products to customers. We pride ourselves on continuous innovation and expect Onyx to help us expand our pipeline, while achieving lower costs and reducing time to market."

For more information about Amyris visit amyris.comand to learn about Onyx, visitwww.inscripta.com/products.

About InscriptaInscripta is a life science technology company enabling scientists to solve some of today's most pressing challenges with the first benchtop system for genome editing. The company's automatedOnyx platform,consisting of an instrument, consumables, assays, and software, makes CRISPR-based genome engineering accessible to any research lab. Inscripta supports its customers around the world from facilities in Boulder, Colorado; San Diego and Pleasanton, California; and Copenhagen, Denmark. To learn more, visitInscripta.comand follow@InscriptaInc.

About AmyrisAmyris (Nasdaq: AMRS) is a science and technology leader in the research, development and production of sustainable ingredients for the Clean Health & Beauty and Flavors & Fragrances markets. Amyris uses an impressive array of exclusive technologies, including state-of-the-art machine learning, robotics and artificial intelligence. Our ingredients are included in over 20,000 products from the world's top brands, reaching more than 300 million consumers. Amyris is proud to own and operate a family of consumer brands - all built around its No Compromise promise of clean ingredients: Biossanceclean beauty skincare, Pipetteclean baby skincare, Purecane, a zero-calorie sweetener naturally derived from sugarcane, Terasanaclean skincare treatment, Costa Brazil luxury skincare, OLIKA hygiene and wellness, Rose Inc. clean color cosmetics and JVN clean haircare. For more information, please visit http://www.amyris.com.

Amyris, the Amyris logo, No Compromise, Biossance, Pipette, Purecane, Terasana, Rose Inc. and Lab-to-Market are trademarks or registered trademarks of Amyris, Inc. in the U.S. and/or other countries.

Forward-Looking StatementsThis release contains forward-looking statements, and any statements other than statements of historical fact could be deemed to be forward-looking statements.These forward-looking statements include, among other things, statements regarding Amyris' expectation of exploring additional research and development opportunities with Inscripta in the future and its expectation that Onyx will help Amyris expand its pipeline while achieving lower costs and reducing time to market. These statements are based on management's current expectations and actual results and future events may differ materially due to risks and uncertainties, including risks related to any delays or failures in the successful launch of a clean skincare brand; potential delays or failures in development, production, regulatory approval and commercialization of products, risks related to Amyris' reliance on third parties; Amyris' liquidity and ability to fund operating and capital expenses; and other risks detailed from time to time in filings Amyris makes with the Securities and Exchange Commission, including Annual Reports on Form 10-K, Quarterly Reports on Form 10-Q and Current Reports on Form 8-K. Amyris disclaims any obligation to update information contained in these forward-looking statements, whether as a result of new information, future events, or otherwise.

View original content to download multimedia:

SOURCE Amyris, Inc.

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Visit link:
Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY

Read More...

Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop…

October 5th, 2021 6:34 pm

Although acreage under GMO crop cultivation has expanded rapidly worldwide since GMOs first began to be grown in the mid to late 1990s, production remains highly concentrated in a handful of crops such as cotton, soybeans and corn which are grown in a few countries. Of the 190.4 million hectares (469.5 million acres) of GMO crops planted in 2019 for example, the US, Brazil, Argentina and Canada accounted for 84.5% of the total.

[su_panel color=#3A3A3A border=1px solid #3A3A3A radius=2 text_align=left]This is the first part of a two-part series.[/su_panel]

Most of the developing world has spurned the planting of GMO crops for a variety of reasons. First is their historical colonial links to countries in Europe, where GMOs are shunned because of a perception they are not natural. A reliance on the precautionary principle to prevent any possible risks to the health of humans and animals and the environment and active opposition by the influential organic food and anti-GMO lobby have also inhibited the development of GMO crops in Europe.

This reluctance of European nations to embrace GMOs has influenced developing countries, particularly as the EU is a major export market for many of them. The EUs strict regulatory approval system and stringent labeling requirements clearly are an inhibiting factor restraining the development of GM crops in many developing nations.

In 2020, the European Academies Science Advisory Council noted:

The EU over-regulation of GMOs had negative impact on science and innovation in developing countries who feared for their export markets and who were inclined to look to the EU to express leadership in research and development.

Unlike the US, the EU does not encourage or promote the development of GMOs in its foreign assistance programs to developing countries. A FDA website entitled, How GMO Crops Impact our World for example specifically states, The U.S. Agency for International Development (USAID) is working with partner countries to use genetic engineering to improve staple crops, the basic foods that make up a large portion of peoples diets. The USDA also publishes annual agricultural biotechnology reports for many developing countries that track their receptiveness to developing GE crops.

Second, the antipathy of many major western NGOs such as Greenpeace and Friends of the Earth to GMOs has influenced many developing countries. Many of these NGOs have operations or affiliates or contribute money to NGOs in the developing world. As a result, many environmental and food NGOs in developing nations also vehemently oppose the development of GMO crops. They are following the lead of their counterparts in western nations. According to Greenpeace, one of the most influential environmental NGOs:

Genetically modified crops encourage corporate control of the food chain and pesticide-heavy industrial farming. GM plants can also contaminate other crops and lead to super weeds. This technology must be strictly controlled to protect our environment, farmers and independent science.

Finally, a paper published in Food and Chemical Toxicology by the French molecular biologist Gilles-ric Sraliniin 2012 that purported to link consumption of GMOs to cancer influenced many developing countries to restrict their development as it seemed to highlight the worst fears of the opponents of GMOs. Kenya for instance, imposed a strict import ban in 2012 on GMOs citing the Seralini study. Although the study was subsequently debunked and retracted, the damage was done. The discredited paper was nonetheless promoted by GMO opponents and the perception that GMOs were dangerous lingered on for many years.

In recent years however, it has become increasingly apparent to many developing nations that genetic engineering of crops can be an important tool in helping feed a growing population at a time of climate change and when urbanization and desertification are reducing the amount of land for farming. Without a more productive farming sector, many developing nations will face a rising food import bill because of a swelling population. This is in sharp contrast to the developed world, where the population is growing at a very marginal rate or is actually shrinking:

As a result, it is imperative that many developing nations find a means of increasing their agricultural production, boost farm income and curb the cost of food imports. Genetic engineering offers that means.

This was Part One of a two-part post on the growing acceptance of GM foods and crops in the developing world. Part Two will review what specific actions countries are taking with certain foods.

Steven E. Cerier is a freelance international economist and a frequent contributor to the Genetic Literacy Project.

See the original post here:
Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop...

Read More...

Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -…

October 5th, 2021 6:34 pm

While plenty of established companies have expertise in cultures for use in products such as yogurt and beer, Kingdom Supercultures is deploying computational biology to interrogate a vast database of microorganisms (yeast, bacteria, fungi etc) to identify combinations of microbes that will deliver specific functional or nutritional benefits, chief science officer Ravi Sheth told FoodNavigator-USA.

While the microbes may help improve the nutritional profile of certain products for example by enabling the production of kombuchas with less sugar - Kingdom Supercultures is not really a probiotics company, he stressed.

Nor is it a synthetic biology or precision fermentation company thats genetically engineering microbes to produce target proteins or other compounds and then engaging in complex downstream extraction and purification processes, explained Sheth. The combinations of cultures themselves which are all Non-GMO are the ingredients it plans to sell.

Were taking cultures already found in nature and combining them into specific novel combinations, and so we don't actually have to use any genetic engineering.

He added: Only in the last few years or so has it been possible to sequence these foodborne microorganisms, identify them, and predict their metabolic functionality, and so we've been able to leverage technologies from only the last couple of years, and build a biobank containing tens of thousands of microorganisms that are much broader in diversity than the kind of culture collections these legacy companies have.

The second thing we bring is the computation and data science capability, so were mining this data and using a number of novel algorithms and approaches we have internally to narrow down this design space and get to very specific cultures, in very specific ratios, that lead to these emergent functionalities, he explained.

We look at these almost like Lego building blocks, which we can rearrange into different combinations, and then create a community of them that delivers an emergent functionality that the individual strains don't have. Its like one plus one equals three.

Kingdom Supercultures has two main types of products, added Sheth, who said the firm is inactive R&D work with some of the largest most innovative CPG companies... and some of these projects are pretty late stage.

The first product type is starter cultures that can be used for things like plant based yogurts, cheeses, beers and wines. The second type is bioactives or other functional ingredients that can act as preservatives or elicit some sort of functional impact on the microbiome, exert nutritional benefits.

If you want to describe what the company does in a nutshell, he added:It took our ancestors hundreds of thousands of years to discover that hey, if I leave milk out it turns into yogurt or if I leave sugar tea out it turns into kombucha, what we can do is rationally design that process.

* This follows a $3.5M seed round with participation from Sequoia, Y-Combinator, Lakehouse Ventures, and Brand Foundry Ventures in 2020.

Follow this link:
Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -...

Read More...

Fact check: Genetically engineering your salad with the COVID-19 vaccines? We’re not there yet. – USA TODAY

October 5th, 2021 6:34 pm

NYC demonstrators rally against COVID-19 vaccine requirements

NY Gov. Kathy Hochul has said she will take steps to replace medical personnel who refuse to meet the vaccination requirement.

USA TODAY, Associated Press

As COVID-19 vaccine mandates take effect across the U.S., one article circulating on social media claims getting jabbed in the arm may no longer be necessary.

"Vaccine Hesitant?" reads the headline of the Sept. 21 article published by an online outlet called Vision Times. "US Researchers Are Engineering Lettuce and Spinach to Carry mRNA COVID Jabs."

A University of California, Riverside research group, in collaboration with the University of California San Diego and Carnegie Mellon University, is reported as spearheading the scientific effort. The article details the study's research plans but makes no additional mention of the headline's reference to COVID-19 vaccines aside from describing how the mRNA vaccines work.

Fact check: Inhaling hydrogen peroxide for COVID-19 is dangerous, experts warn

The potential for splicing COVID-19 vaccines into food was echoed by former National Security Adviser Michael Flynn during a recent appearance on a podcast called "Thrivetime Show: Business School Without the B.S." In a viral clip shared to Twitter on Sept. 22, Flynn says he read an article where "they're talking about putting the (COVID-19) vaccine into salad dressings or salad."

As far-fetched as vaccine-infusedspinach and lettuce sounds, the claim is not entirely unfounded.

Researchers at UC Riverside and its collaborating universities are working on potentially turning plants into edible vaccine factories. But they'renot doing itfor COVID-19 specifically, and such foods won't be available in your local supermarket anytime soon.

USA TODAY reached out to Vision Times and Flynn for comment.

The National Science Foundation gave a UC Riversideresearch group $500,000 to study genetically engineering plants with mRNA, a molecule contained in the Pfizer-BioNTech and Moderna COVID-19 vaccines that isnormally used by our cells to make protein.

The effort was announced in a Sept. 16 press release.

Fact check: COVID-19 vaccination has no effect on blood color

But the study is looking generally toward all mRNA vaccines not COVID-19 specifically andwon't be available for human useanytime soon, said lead researcher Juan Pablo Giraldo, associate professor in the department of botany and plant sciences.

"This research will take a couple of years to show proof of concept of the technology," he wrote in an email to USA TODAY. "If successful, it will need more studies and several more years for people to use leafy greens as mRNA vaccine factories."

The idea behind using plantshas to do with mRNA vaccines' temperature requirements. Because the molecule needs to be transported and stored under cold conditions to maintainstability, researchers hope their study will help overcome this challenge and enable storage at room temperatures, according to the press release.

Fact check: False claim that cancer has spiked as a result of COVID-19 vaccines

In order to achieve this, genetic material contained in mRNA vaccines will be inserted into small, disk-like structures within plant cells called chloroplasts, solar panel-like structures that convert sunlight into chemical energy.

"Ideally, a single plant would produce enough mRNA to vaccinate a single person," Giraldo said in the release. "We are testing this approach with spinach and lettuce and have long-term goals of people growing it in their own gardens. Farmers could also eventually grow entire fields of it."

Based on our research, we rate PARTLY FALSE the claim spinach and lettuce are being genetically engineered with COVID-19 mRNA vaccines. Researchers at UC Riverside are indeed studying whether edible plants like spinach and lettuce can be genetically engineered to produce genetic material contained in mRNA vaccines. But thestudy isn't geared specifically toward COVID-19 vaccines. And the effort is in its infancy,meaning a product in this vein is years away from becoming reality.

Thank you for supporting our journalism. You can subscribe to our print edition, ad-free app or electronic newspaper replica here.

Our fact-check work is supported in part by a grant from Facebook.

Read more from the original source:
Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY

Read More...

Is The New York Times Finally ‘Learning To Love GMOS’? – American Council on Science and Health

October 5th, 2021 6:34 pm

Genetically engineered (GE) crops, which have been commercially available for 25 years, have been widely misunderstood and under-appreciated, especially by certain news outlets. Arguably, the worst offender among the mainstream media has been the New York Times, whose manifold shortcomings in reportage and commentaries over many years are describedhereandhere.

Perhaps some glimmer of enlightenment toward genetic engineering is belatedly emerging. We were somewhat encouraged recently by Learning to Love GMOs, from science writer Jennifer Kahn in the New York Times Magazine in July. (GMO, or genetically modified organism, is a rather fluid, meaningless term used to refer to an organism modified with highly precise and predictable molecular techniques.)

At the risk of nitpicking, however, we felt that she over-emphasized the handful of genetically engineered farm products intended to be sold directly to consumers, while omitting the more important but less sexy story: the huge, palpable, proven benefits that GE crops have provided since they first hit the marketplace. Not surprisingly, there was also no mention of her newspapers decades-long, ugly history of disparaging and misrepresenting genetic engineering.

The big picture here is important, especially to Americas preeminence in the science, technologies, and application of genetic engineering. The U.S. is an agricultural powerhouse, but it is plagued by the eternal menaces to farming, including drought, floods, weeds, and pestilenceall of which are approachable by GE, in which America leads the world. Moreover, as valuable as GE is to the economic development of advanced countries, it is literally a life-saver to less developed ones. Kahn broaches none of this.

Kahn begins with a lively description of plant biologist and British professor Cathie Martin and her fabulous,GE cancer-fighting tomatoes. These fruits, dark purple in color, produce high amounts ofanthocyanins, compounds usually associated with blueberries and containing antioxidant activity. Professor Martin was able to demonstrate that cancer-prone mice fed these tomatoes lived 30% longer and were also less susceptible to inflammatory bowel disease than mice fed ordinary, non-engineered tomatoes.

The article discusses other GE specialty fruits, such as virus-resistantRainbow Papayas(which rescued Hawaiis papaya industry from oblivion) and non-browningArctic Apples, which have found valuable niches in todays market. Kahn also makes honorable mention of other GE fruits and vegetables in development, such as tastier berries and sweeter, kid-friendly kale, among many others.

Readers are left with the impression that such new crop varieties that will tickle consumers taste buds and satisfy their nutritional needs are the goaland the real valueof GE, and that these developments are just around the corner thanks to plant genetic engineering. Could that, Khan speculates, spell the turning point for widespread public acceptance of genetically engineered crops?

The problem is that Khan misidentifies the consumers who most need and would benefit from GE advances. Since their introduction in the mid-1990s, she writes, GMOs have remained wildly unpopular with consumers, who see them as dubious tools of Big Ag, with potentially sinister impacts on both people and the environment. Kahn frames the problem of GE production as the plight of small, artisanal food growers due to federal regulation that favors global agricultural conglomerates. [J]ust to go through the FDA approval process would cost a million dollars. Adding USDA approval could push that amount even higher, she writes. The regulatory barriers are, in fact, astronomical: it costs about$136 millionto bring a GE crop plant to market. This is the primary reason more than 99% of such crop plants are those that are grown at huge scale. (What makes this absurd is that plants modified with less precise, less predictable, conventional,pre-moleculartechniques arevirtually unregulated.)

The solutionadvances in the development of small-scale, bespoke GMO produceis inviting to Kahn, whose efforts seem directed at convincing WWWs:

[Professor] Martin is perhaps onto something when she describes those most opposed to GMOs as the WWWs: the well, wealthy, and worried, the same cohort of upper-middle-class shoppers who have turned organic food into a multibillion-dollar industry. If youre a WWW, the calculation is, GMOs seem bad, so Im just going to avoid them, she said. I mean, if you think there might be a risk, and theres no benefit to you, why even consider it?

Although its true that the potential for new, delicious, nutritious GE fruits and vegetables is vast, Kahn ignores the enormous success of genetically engineered crops across much of the world over the past three decadesimportantly, for more than just the well, wealthy, and worried. GE crops have in fact made food more affordable and proved to be a vital life-saving source of food and agricultural inputs for much of the developing world. Its time to set the record straight.

WORLDWIDE IMPACTS OF GE INNOVATION

Kahn laments that much of the effort in plant genetic engineering has been to produce improved varieties of our most commercially important crops, such as pest-resistant corn and cotton, herbicide-tolerant soybeans and canola (in order that weeds can be controlled more safely and effectively than by foliar spraying), and other agronomic traits such as resilience to flooding or drought. Although consumers may be unaware of these achievements, they have been eagerly embraced by farmers and critical to progress in agriculture. The acreage farmed with genetically engineered crops, which reached almost ahalf-million acres worldwide in 2018, increases every year, particularly in developing countries. (And that figure is only the official acreage; there is a great deal more cultivation with seeds obtained on theblack marketby farmers in countries where theyre not yet approved.)

In fact, the economic and environmental impacts of corn, cotton, canola, soybeans, and sugar beets alone have been enormous across the globe. According to economistsBrookes and Barfoot (2020), GE insect-resistant and herbicide-tolerant crops have reduced pesticide spraying by 775.4 million kg. This, in turn, has resulted in a decrease in the use of fuel and tillage, which is equivalent to a reduction of greenhouse gas release on the order of removing 15.27 million cars from the roads.

Improved environmental impacts coincide withsignificant economic benefits to farmersin the form of improved yields (72%) and savings in farming costs (28%) resulting from reduced use of agricultural inputs such as chemicals. Financial gains have exceeded $225 billion since genetically engineered crops first became commercially available, with the most gains realized by farmers in developing countries. Brookes and Barfoot estimate that for every dollar invested in the seeds of GE crops, farmers in developed countries received on average $3.24 extra income. This return on investment increased to $4.41 for farmers in developing countries, where such benefits can be the difference between subsistence farming and being able to sell some of their harvests.

It is unfortunate that a technology that has been so beneficial for so many farmers has been vilified since its beginnings (including, early and often, by reporters, columnists, and commentators in the New York Times), and we wish that Kahns article had put more emphasis on the extant, significant achievements.

The impressive data collected and reported by Brookes and Barfoot are only the beginning. The opportunities for genetically engineered crops to reduce malnutrition and increase farmers profits are endless. Kahn does mention in passingGolden Rice, which produces a precursor of vitamin A and prevents vitamin A deficiencya scourge of children that causes blindness and death in countries where most of their calories come from ricewhich was recentlyapproved for cultivation in the Philippines. (And which has been relentlesslyopposedby activists for decades.) But there are many more such examples, includingstaple engineered cropssuch as rice biofortified withiron,zinc, andfolate.

Besides higher yields and direct economic benefits, the cultivation of insect-resistant and herbicide-tolerant crops also has significant collateral effects in developing countries, such as reducing laborious tasks of women and girls in the field, improved childrens literacy, and greater gender equality. These, in turn, foster improved economic growth and quality of life for communities.

In addition, decreased crop losses due to pests lead not only to improved yields and farmers incomes, but,especially compared to organic farming, also reduce levels of food waste and lower the risk ofcancer,spina bifida in newborns, and other health problems caused by thefungal toxinsaflatoxinandfumonisin, respectively, which are less likely to accumulate in crops that are protected from predation by insects. Improved crop quality and yields and lower agronomic inputs also translate intoless release of greenhouse gases(and, thus, a lower carbon footprint) and less conversion of land to farming.

Unlike the spraying of chemical pesticides, the cultivation of crops like Bt-cotton and Bt-brinjal (eggplant), which contain a protein (from the bacteriumBacillus thuringiensis) toxic to certain insects, does not impactnon-target insects. They are helpful, therefore, for maintaining and restoring the health of natural ecosystems and the sustainable management of wilderness areas. At the same time, genetic engineering technologies related to biomass production using crops ranging fromsugarcanetoswitchgrass, and evenalgae, are helping to produce affordable, attainable energy.

Underscoring their significance, particularly for poor farmers in developing countries, many of these improvements fall under thesustainable development goalsestablished by the United Nations.

PUTTING SCIENCE AND INNOVATION FIRST

It seems that American consumers crave technology in every aspect of their lives except in food production. Why is that? We believe it is the result of a multi-decade, multi-national, multi-billion dollarfear-and-smearcampaign against GE crops and foods by what amounts to an anti-genetic engineering industry.

Technology has helped to double food production in the last 50 years. We have the cheapest, safest, most abundant food supply in history, but now, those seeking to increase the market for organic/natural products, abetted by the woke media, want to force agricultural science to a more primitive, less productive time by embracinginefficient practices. Although they have been successful in creating a niche for their products, we cannot let this way of thinking stymie or reverse the stunning scientific, economic, and environmentaladvancesthat have come from genetic engineering and gene editing technologies, in which the U.S. is preeminent.

Regulators permitting, the next wave of important developments could be in the genetic engineering of animals, in particular the creation of new varieties resistant to devastating, economically crippling diseases. These include pigs resistant to the devastatingPorcine Reproductive and Respiratory Syndrome Virus, the cause of losses to U.S. pig farmers of more than $600 million annually. The foreseeable development of chickens with genetic resistance to avian influenza will be a monumental breakthrough because there is no vaccine against it, and outbreaks result in the culling of tens of millions of birds annually. This field has the potential to create the Next Big Things in agricultureif only innovation were not strangled by unnecessary, misguided government regulation, abetted by an antagonistic media and highly organized, vocal activists.

Americans are experiencing shocking inflation in food prices, and the wider adoption of innovative GE technologies can help to stem it. Insect predation, weeds, and unpredictable weather events are the perennial enemies of farmers but, as discussed above, GE has already made significant strides to mitigate them. The greater exploitation of drought- and flood-resistant crop plants and the prevention of viral diseases in food animals can also aid food production in the parts of the nation plagued by those natural disruptions.

Putting America first means putting science and innovation first.

Billions in potential revenue and life-saving technologies have already been lost to us because of our failure to adopt this attitude. Consider biopharmingthe once-promising biotechnology area that uses genetic engineering techniques to induce crops such as corn, tomatoes ,and tobacco to produce high concentrations of high-value pharmaceuticals (one of which is the Ebola drug, ZMapp). The entire field is moribund because of the Agriculture Departments extraordinary regulatory burdens. And thanks to EPAs policies, which discriminate against organisms modified with the most precise and predictable techniques, the high hopes for genetically engineered biorational microbial pesticides and microorganisms to clean up toxic wastes have evaporated.

As a result, the potential for innovation that modern genetic engineering holds for long-term, robust U.S. economic growth and higher living standards has been drastically reduced. Amazon CEOJeff Bezosalso made this point in the context of developing commercial drones at a conference in 2014. Technology is not going to be the long pole, hesaid. The long pole is going to be regulatory. And yet, regulatory agencies seem to be becoming more imperious and politicized. If U.S. policymakers fail to seize the day, we will likely be overtaken by China, which is fast becoming a significant player. As University of Pennsylvania political scientist Scott Moore haswritten, Chinas progress has implications that span national security, data security, and economic competitiveness.

None of the big picture appeared on Kahn or the New York Timess radar screen. We hope, however, to see a follow-up from her that tells the whole storythat over four decades, genetic engineering has delivered myriad critical economic, health, humanitarian, environmental, and scientific benefits. That we need more of it, regulated more rationally. And that its critics, including her colleagues at the Times, are misinformed and misguided.

Kathleen Hefferon, Ph.D., teaches microbiology at Cornell University. Find Kathleen on Twitter@KHefferon. Henry Miller, a physician and molecular biologist, is a senior fellow at the Pacific Research Institute. He was a Research Associate at the NIH and the founding director of the FDA's Office of Biotechnology. Find Henry on Twitter@henryimiller.

#Reprinted with permission. The original article can be found here.

Read more here:
Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health

Read More...

Making the Transition from an Academic to a Biobusiness Entrepreneur – Genetic Engineering & Biotechnology News

October 5th, 2021 6:34 pm

By William A. Haseltine, PhD

When I became an assistant professor at Harvard in the mid-1970s, creating a company was never part of my plan. I had only a dim understanding of how corporations were organized and no understanding of finance. But I was slowly becoming aware of how biotech businesses could be a positive force for health.

I had been keeping tabs as close friends from various universities gave up their tenured positions to join nascent companies gaining an early foothold in the new field of biotechnology. All were racing to apply the new techniques of recombinant DNA (gene splicing) to make new drugs and vaccines. I was beginning to realize that the work I was doing as a research scientist might create a conceptual breakthrough, but the businesses were the ones taking that breakthrough and delivering it in the form of drugs to patients in need.

I was working at the time on retroviruses and their potential role as a cancer-causing agent in animals. Id planned a trip to the West Coast to build up my collection of mouse leukemia viruses, which is where I learned from my friend Richard Lerner, a research chemist at Scripps who had been studying protein structures, that you could accelerate an antibody response by using peptide fragments, as opposed to using whole viruses or virus proteins. I understood the impact of the discovery immediately: using peptide fragments would be a faster, cheaper way to make vaccines.

That was the tipping point. I knew that this knowledge could shorten the time it took to develop new drugs, which at that time required at least ten years and many tens of millions of dollars. I also knew that pets and livestock suffered serious viral infections. If we could test the idea in animals, we wouldnt need to go through the FDA. I could create a company that would be a shortcut to demonstrate that a vaccine can prevent retrovirus infections that cause cancer.

I worked with Deborah Ferris, who had helped get Biogen off the ground, to develop the business plan for a company that would develop animal vaccines with this new technology. I went to every Wall Street banker and venture capitalist I knew, and I eventually landed myself a $5 million commitment. These financiers understood the power of knowledge and the economic benefits it could bring.

I thought, after securing financing, that I had jumped over the hardest and highest hurdle in the process, but I was wrong. I didnt yet realize the political hurdles I still had to jump at Harvard. There was no precedent for a Harvard assistant professor starting a company. Even for full professors, the idea was highly controversial. Harvards president had voiced skepticism, and faculty across the university grumbled, some with outrage, at the notion that biologists or biochemists might turn discoveries developed at Harvard into a personal fortune. This, despite the fact that many of the universitys history and economics professors were making tens of thousands from the sale of their books.

I was faced with many setbacks but managed to overcome them after a bit of luck followed me onto a plane flying from New York to Boston early the next year. I ended up seated beside Larry Fouraker, dean of the Harvard Business School at the time. I pitched him my idea for a company and explained the challenges I was running into at the university. He told me something I had not realized: thanks to the Bayh-Dole Act, which had been passed during a lame-duck session of Congress just months before, universities were now required to create a technology transfer office to turn new ideas into companies.

The laws intent was to promote commercialization of research funded by the federal government. Birch Bayh, Democrat of Indiana, and Bob Dole, Republican of Kansas, were the legislations sponsors in the Senate. Jimmy Carter signed the bill into law. The law states that all universities and research institutes that receive federal funding must file patent applications on all discoveries with practical application and must make best efforts to transfer the technology to businesses for commercial development.

That was my green light. Larry became a close friend and mentor to me. The only requests he ever made of me were to speak to his students at the business school from time to time about entrepreneurship and to pledge some shares of the company I would found, Cambridge BioScience, to the universitys endowment fund. I ended up offering Harvard 5% equity, but they turned it down. They hadnt worked out what they thought the ethics might be of such a transaction. I can assure you that by now they have.

Far from harming my career, creating Cambridge BioScience turned out to be a huge plus. I developed powerful relationships with some of the department chairs and became a role model and adviser to other faculty members in starting their companies. Eventually, Harvards governing board and administration embraced the benefits of professors starting companies, and I was asked to chair a university-wide committee that would clarify the rules governing relationships between professors and the companies they seek to start.

Ironically, the university now requires faculty to pledge a percentage of the founding shares as well as royalties received for startups based on a professors patents. As I noted earlier, Harvard never accepted my 5% offer. But after Cambridge BioScience went public, I sold the 5% and donated the cash. They were happy to accept it.

I learned through the process that our scientific reputation is our capital. I also learned that no person or company ever becomes a success without people like Larry to support and mentor them. This is why I am so pleased to have been invited to contribute to this commemorative, 40th Anniversary edition of GEN. The magazines founder, Mary Ann Leibert, has been a great support to me over many years, but especially at two inflection points in my life.

The first was in the early years of the HIV/AIDS crisis, when I suggested that we create a journal to help cover some of the most exciting, but often neglected, developments in the field. Mary Ann jumped at the idea and took no more than two seconds to agree, and we founded the Journal of AIDS Research and Human Retroviruses.

Fifteen years later, I conceived of the idea of regenerative medicine and began to work with Tony Atala and others to create awareness of the new field and its motto: Regenerative medicine is any medicine designed to restore a person to normal health, including cell and stem cell therapies, gene therapy, tissue engineering, genomic medicine, personalized medicine, biomechanical prosthetics, recombinant proteins, and antibody treatments.

Mary Ann responded immediately and positively once again, offering to create the Society of Regenerative Medicine and another new journal, initiatives that were soon launched. Mary Ann, through her journals, publishing company, and GEN, has always been the wind in the sails of the biotechnology industry.

William A. Haseltine, PhD, is known for his groundbreaking work on HIV/AIDS and the human genome. Haseltine was a professor at Harvard Medical School, where he founded two research departments on cancer and HIV/AIDS. Haseltine is a founder of several biotechnology companies, including Cambridge BioSciences, the Virus Research Institute, ProScript, LeukoSite, Dendreon, Diversa, X-VAX, and Demetrix. He was a founder, chairman, and CEO of Human Genome Sciences, a company that pioneered the application of genomics to drug discovery.

Haseltine is the president of the Haseltine hivFoundation for Science and the Arts and is the founder, chairman, and president of ACCESS Health International, a not-for-profit organization dedicated to improving access to high-quality health worldwide. He was listed by Time Magazine as one of the worlds 25 most influential business people in 2001 and one of the 100 most influential leaders in biotechnology by Scientific American in 2015.

See the original post here:
Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News

Read More...

Gene editing, joke theft and manifesting – The Week UK

October 5th, 2021 6:34 pm

Olly Mannand The Week delve behind the headlines and debate what really matters.

You can subscribe to The Week Unwrapped wherever you get your podcasts:

In this weeks episode, we discuss:

The UK government has announced plans to allow gene-editing to be used in agricultural crops, diverging from an EU-wide ban on any genetic modification. Proponents of the technique say that it is more like accelerated selective breeding than genetic engineering - and that it could help farmers grow more produce while using fewer pesticides. But its opponents are worried that it will pave the way for riskier experiments.

A landmark legal case has begun between two stand-up comedians over who owns the rights to a comedy routine. One has hired Harbottle & Lewis, the lawyers best known for representing the Queen, to argue his case. So are we going to see lots of comedians taking one another to court? And how can you really establish who owns a joke anyway?

TikTok videos with the manifestation hashtag have been viewed a whopping ten billion times on TikTok, making it a buzzword of 2021. Its the latest incarnation of cosmic ordering - the practice of asking the universe to deliver what you expect from it, whether thats exam success or romantic fulfilment. Is it just harmless fun, or does it have a darker side to it?

Read the original here:
Gene editing, joke theft and manifesting - The Week UK

Read More...

Opinion: Saving lives through real social justice – Agri-Pulse

October 5th, 2021 6:34 pm

The University of Missouri at Kansas City (UMKC) has invited Vandana Shiva to speak on October 7th.According to a speaker booking website, her asking price for a lecture is a cool 100k.Lets give UMKC the benefit of the doubt, and assume they got a deal.It is hard to imagine a price for this world famous charlatan that gives good value.

It is a safe bet that most of us have never heard of Vandana Shiva, and this is, on balance, a good thing. Shiva has earned a measure of fame and a great deal of fortune railing against the use of modern technology in agriculture. She burst upon the scene by arguing that genetically modified cotton was causing hundreds of thousands of suicides amongst Indian farmers. Farmers have many reasons to be depressed, Dr. Shiva amongst them, but I can guarantee you that a technology that safely controls bugs that used to eat your crops isnt one of them. A 2011 study published in India found no correlation between genetically modified cotton seeds and farmer suicide, a conclusion which will surprise no one whose livelihood doesnt depend on believing the opposite, at one hundred thousand dollars per Zoom call.

In 1999, a cyclone caused ten thousand deaths in India. The U.S. sent grain and soybeans to help feed survivors. Shiva held a news conference to protest the donation, accusing the U.S. of using the victims of the cyclone as guinea pigs for genetically engineered products. When India accepted the food donations, she was highly critical. Better starvation than the unthinkable alternative of eating food that has been safely consumed billions of times.

Shiva has long been opposed to the introduction of Golden Rice, a genetically modified rice that helps prevent blindness by increasing vitamin A in the rice. Every year, about five hundred thousand children lose their sight because of vitamin A deficiency, and 70% of those children die within a year.Shiva has called the technology a hoax. Her appearance at UMKC is part of something called the Social Justice Book and Lecture series.Although social justice may be hard to define, Shivas position on this life-saving technology would surely be its opposite.

Agriculture owes a great debt to those who have worked so hard and so long to counter the arguments of Shiva and others against genetic engineering. For most of us the issue was long ago settled, the arguments stale, the battle won, and it was time to move on.

However much we might wish it to be so, the issue never really goes away. The fruits of Shivas long and lucrative fight against modernity pop up in the most unexpected places and in the most costly ways. The arguments against Covid vaccines mirror Shivas insane opposition to saving the lives of children, and even though the two sides have largely switched ideological labels, the horrendous costs in lives and fortunes are eerily similar.

It has to be heartening to GMO warriors that, despite the arguments of Shiva and the like, much of humanity consumes food improved by genetic engineering every day and Golden Rice is finally being approved in countries where it is so desperately needed. In the face of unending social media criticism of vaccines, some three-quarters of the U.S. population eligible for vaccines have availed themselves of the opportunity. Facts do prevail, usually, but it sometimes takes a very long time.

UMKC is a wonderful institution, doing valuable work. College students ought to have their ideas, beliefs, and biases challenged at every turn. The kids at UMKC who attend the virtual lecture will survive their exposure to Shiva, and may even be challenged to learn more about the relationship, largely beneficial, between agriculture and technology.Having said all that, this taxpayer would hope that social justice will be better served in the future by more discerning choices in speakers.

Blake Hurst is a farmer and greenhouse grower in Northwest Missouri.

Here is the original post:
Opinion: Saving lives through real social justice - Agri-Pulse

Read More...

Science, business and the humanities: CP Snow’s ‘Two Cultures’ sixty years on – TheArticle

October 5th, 2021 6:33 pm

CP Snow was a Cambridge scientist, a civil servant, and a novelist. He was, therefore, well placed to observe the gap between science, on one hand, and the arts and humanities on the other hand. He named it the two cultures divide, and his observations on it, in which he lamented the divides growing extent, formed the substance of his much-discussed Rede Lecture for 1959, subsequently published as a book.

His principal anxiety was that, whereas scientists can take a knowledgeable interest in the arts and humanities, the reverse is rarely true, and this is a problem because almost everyone in government in his day, whether politicians or civil servants, tended to be arts and humanities graduates, with little understanding of science but complete control of science policy and most of its funding.

The problem Snow identified had grown out of the extraordinarily rapid expansion of scientific knowledge in the period less than a century before he delivered his lecture, while the fundamentals of elite education, predicated on the classics and humanities, had not changed much. At the date of his lecture, science subjects were still looked down upon as bangs and smells, and were lumped together with engineering and technology as the domain of nerds with dirty fingernails and rows of pens in their top pockets, a far cry from the languid cravat-wearing aesthete with a volume of Shelley in one hand and a cigarette-holder in the other.

The real problem was that the depth and complexity of science had quickly resulted in a proliferation of specialisms, sometimes not fully accessible even to specialists in neighbouring areas of the same science. Competence in any area of, say, physics required a training and possession of mathematical abilities beyond the reach of most. This is even more true today. When Snow delivered his lecture, the Standard Model of the atom was still being formulated and the development of instruments of investigation was rudimentary in comparison to now, unsurprising given that when Snow wrote it was not much more than thirty years since quantum theory had been given, what might be called, its official imprimatur at the Solvay Conference of 1927.

In one very important respect, however, Snows two cultures division was incorrect. There was, in fact, not a division between two cultures but instead a three-way split, a triangle of cultures, though the third vertex of the triangle was so far beneath notice at the time Snow wrote that rather as one would expect from an Oxbridge don of the day it did not occur to him to include it. This third vertex is business. If the humanities student looked down his nose at the science student, neither of them even noticed the student of accountancy or commerce at the College of Further Education out in the suburbs.

This was the lingering attitude of snobbery about trade that had its origin in the far distant past in the classical Greek disdain for anything banausic, for buying and selling and taking an interest in money. Pythagoras said that people fell into three classes, mirroring those at the Games: competitors, spectators, and those who came to hawk their wares under the stands. He likened philosophers to spectators; in Greek to spectate is theorein, the source of our theory. Plato was disgusted by the sophists who offered to teach, for a fee, how to make a bad argument beat a good argument.

Statue of Plato, Athens (Alamy)

The unnoticed third vertex in Snows account has since risen into great importance in the triangle. Indeed, there has been a remarkable transformation in the respectability of business; successful businessmen and women are admired, the importance of business to the national economy is fully recognised, the wealth of top business people has risen hugely and given them significant influence in society and politics. Things had long been different in the US; there, money-making from business had been admired and encouraged at least since the years following the Civil War. In the unrestrained conditions of the expanding frontier and its abundant resources, together with a flow of both skilled and cheap labour through immigration, business millionaires became Americas aristocracy. That was still not the case in Snows Britain at the time he wrote. In the following decades it has become so; and it has radically changed the cultures divide he described.

It is still the case that few people can say what the Second Law of Thermodynamics is, which was Snows challenge to those who complained that scientists do not read poetry. But business entrepreneurs were not slow to recognise and profit from the scientific and technological advances which have transformed the world over the last half-century. It has made many of them rich, and they fuel the digital revolution by their energetic desire to see faster, smaller, more powerful, more capable technologies operative in many areas of activity. Meanwhile science genetics, biochemistry, neuroscience, particle physics, cosmology has continued to race ahead and astonish, with its applications via technology already outstripping our ability to manage its impacts (think of the potential downsides, along with the upsides, of artificial intelligence, genetic engineering, brain-chip interfaces, military robots, and the like).

The alliance between science and business and the prominence of both explains why the two areas of greatest pull in higher education are STEM subjects science, technology, engineering and mathematics and business studies. Between them they are the culturally dominant elements of the triangle, when in Snows day this role had been occupied by the humanities. In consequence, the humanities are withering. Parents and school advisers, together with the facts of life about what todays economies need in the way of skilled workforces, between them push and pull students into STEM or business studies in large and increasing numbers. In some universities the study of modern languages, literature, history and philosophy has vanished altogether; classics vanished from almost all universities long ago. The forces at work are Darwinian, and understandable.

You might cite the immortal words of Mandy Rice-Davies, He would say that, wouldnt he, in response to what I as a lifelong student of the humanities, and founder of a university college called New College of the Humanities (now part of Northeastern University) am about to say here. But note the concluding sentence of the preceding paragraph: I acknowledge the Darwinian imperatives, and do not propose to argue for a reassertion of the situation prevailing in Snows day. But allow me to recount an anecdote that explains why concentrating just on two vertices of the triangle at the expense of the third humanities is a mistake; as follows.

When Ronald Reagan was President he proposed that the US should develop an anti-ballistic missile system based on satellites in earth orbit the so-called Star Wars initiative so that an attack on the US by the Soviet Union could be interdicted in space. It eventually transpired that the suggestion was merely a propaganda device to turn the screws on the Soviet Union; there was, it seems, no real prospect of such a system being created. In the anxious debate that the suggestion prompted, however, one withering contribution was made by the physicist Steven Weinberg (pictured below, centre), who had won the Nobel prize for his contribution to showing how the weak nuclear force, responsible for radioactive decay in atomic nuclei, can be combined with the electromagnetic force that governs interactions between charged particles, thus yielding the electroweak force. He said (I paraphrase): It does not bother me that the President doesnt know any physics, but it does bother me that he doesnt know any history or philosophy, because if he did he would not dream of increasing tensions in the Cold War in this way.

Queen Beatrix with Christian de Duve and Steven Weinberg (centre)(Alamy)

This is a telling remark. History and philosophy and one might add literature, languages, the arts give us the insights, the overview, the understanding of human nature and the human condition, and with them the experiential and ethical dimensions of both individual and social existence, that provide context for how we use science, how we do business, how we direct public policy, and most importantly, why we do what we do in these respects. Weinbergs point concerned the larger human and social context, exactly the subject matter of historical and philosophical reflection.

The lessons learned in study of the humanities can be richly suggestive. Consider history: the Bronze Age Collapse around 1200 BCE was in significant part the result of disruption of supply chains, destroying economies and the political structures based on them. The French Revolution had, as a major cause, the social and economic injustices felt by those at the wrong end of a too great rich-poor gap. Personality politics rarely end well, from Caesar to Ceausescu. And so on. All three examples carry hints for very present discontents in our world.

Consider philosophy: ideas, beliefs, ideologies are the springs that vitalise society. Examining them and their implications, challenging them, exploring what is really at stake in this -ism or that, postulating fresh ways of thinking and seeing, are essential to a civilisations health. Think of what happens when an orthodoxy is imposed by force, and only one set of ideas is permitted and no discussion allowed, as in Kims North Korea. Think of the stagnation of any society under the heel of a monolithic ideology; history offers plenty of examples.

Consider literature: the stories we tell in novels, plays, poems, the cinema, are a million windows into human experience and feeling, extending our capacity if we are attentive to understand and sympathise with the variety in human motivation and to become acquainted with choices, perceptions, attitudes, ways of life, that we would not otherwise encounter. The same applies to learning languages, to appreciating the arts, to becoming receptive and perceptive as a result of being transported over the landscapes of human experience by all these expressive, communicative enterprises.

To become a research scientist, a chemical engineer, a financial advisor, one needs training. The complexities of science and business demand specialisation. A training is essential if one is to be successful in most of these fields. Therefore, training is important. But training is not education, and as the foregoing remarks show, what the humanities offer is education: the nourishing, equipping and expanding of mind and its capacities.

Oddly enough, a survey of what a complex modern economy requires shows that many of its arenas require precisely the sensibility that the arts and humanities offer to develop. They include journalism, politics, law, the civil service, creative industries, publishing, advertising, arts promotion and management, events, entertainment, human resources, education, performance, museology and curating, design, the tourism and hospitality industries, many aspects of retail, and more the list is long.

And this is to leave aside one enormously important point that most thinking about training and education ignores, with the result that the idea of education for its own sake has so significantly diminished. This is that people are not only their careers; they are not only infantry on the economic battlefield. They are also spouses, parents, voters, travellers, lovers, gardeners, readers, neighbours, dreamers, consumers, tennis players, cinema-goers, and much else again life is many things, and being awake to its variety and its possibilities requires much more equipment than just a training for a specific career.

My idea in founding the New College of the Humanities was to make a statement about two things: the importance of the humanities, and the fact that they can and should be combined with a full acknowledgment of the importance in our time of the other two vertices of the triangle, STEM and business. So I made it a requirement that throughout their undergraduate studies in the humanities my students take, for an additional diploma, courses in science literacy so that they would have an intelligent laypersons overview of the main developments in science and basic business studies, equipping them to understand entrepreneurship, the essentials of marketing, how to read a balance sheet, what is required in the world of work, and general financial literacy. In a world now so dependent on digital technologies, literacy and competence in these is a necessity too.

The thought was that the demand for appropriate preparation for life after formal education should not entirely displace the opportunity to explore ideas, the past and literature, but that what the humanities offer should be recognised as of great value in itself, and can readily be combined with practical considerations. Education and training do not have to be mutually exclusive. My design was to provide the opportunity for the humanities intellectual maturation and fertilisation, with an adjunct of practical knowledge, to overcome the false dichotomy of the two.

It is a principle of education viewed as the cultivation of a well-furnished and highly able mind that the beneficiary of it should develop a rich sense of context and connection. Someone interested in, say, medieval monasticism or Presocratic philosophy might relish the study of it for its own sake and find it absorbingly interesting, but might also see surprising relevances to his own life and times. This explains how, in the 18th and 19th centuries, Britain governed an empire by teaching Greek and Latin classics to those sent out to run it. For when you read and discuss the classics you read history, philosophy and literature, and through them you read about and discuss government, military affairs, ideas of justice and morality, statesmen and the way they handled problems, successes and disasters and what prompted either, subtleties of human nature, celebrations of virtue and condemnations of vice, poems of love and of mourning, the absurdity of certain beliefs, the nobility of certain ambitions and much besides of relevance to both the social and individual scales of life.

Of course, much of this might have gone over most of the heads of lazy and self-interested boys at their public schools we see an example of this vividly in our own day, alas but enough stuck so that the administration of empire was not always and everywhere a prejudiced and exploitative disaster. In any case, the point is that the aim of imparting the benefits of an education in the humanities might succeed often enough that the candles of civilisation will continue be carried, alight, over the floodwaters of time. Even if almost every educational institution should shed its commitment to the humanities, salvation would reside in that almost.

There might be another spin of the triangles orientation which changes which vertex is uppermost. Suppose most productive activity is taken over by artificial intelligence systems, with the result that more than enough wealth is generated to allow most of the population a comfortable national wage without having to work for a living. Then the arts and humanities will be at a premium, the practice and study of them the main avocation of many, the value of intellectual and educational attainment as great as the value of money-wealth is now. It is far from an impossibility that this might happen. It would be good if a flourishing tradition of the humanities were to survive into such a time.

CP Snow wished to see the two cultures divide closed, or at least narrowed. I say that that the three vertices of the triangle should be kept connected, because to lose the perspectives offered by the humanities would render our society technocratic and banausic merely, a fate it is already not far from. Snows anxiety was that science would be mishandled by uncomprehending humanists, whereas today the anxiety is very different; it is that technology and the imperatives of bottom lines will determine all our choices for us.

Perhaps one can sum up the matter by saying that whereas science and technology is about capability, and business is about profit and cost, the humanities are about value. That is a vertex of the triangle we cannot afford to lose.

We are the only publication thats committed to covering every angle. We have an important contribution to make, one thats needed now more than ever, and we need your help to continue publishing throughout the pandemic. So please, make a donation.

See the rest here:
Science, business and the humanities: CP Snow's 'Two Cultures' sixty years on - TheArticle

Read More...

U of T research may help explain children’s immune response to COVID-19 – News@UofT

October 5th, 2021 6:32 pm

Researchers at the University of Toronto have found that immune cells from the upper respiratory tracts of children, taken years before the pandemic began, react with the virus that causes COVID-19.

The findings hint at a possible reason why children with COVID-19 are often asymptomatic or have mild symptoms, while many adults experience severe disease and even death.

We isolated B cells from tonsil tissues collected from children over five years ago, and found that some are reactive to the SARS-CoV-2 spike protein, saidGoetz Ehrhardt, principal investigator on the study and an associate professor ofimmunologyat U of TsTemerty Faculty of Medicine.

We found that antibodies generated from these B cells have neutralizing potential against the virus in lab experiments, reducing the ability of the spike protein to bind to its target protein on the cell surface.

The study,published in theJournal of Immunology, is one of just a few to examine the role of the mucosal immune system in COVID-19. Other studies have looked at immune components in the bloodoften after infection has taken hold or during recovery.

Mucosal surfaces comprise one of the largest components of the immune systemand include the gut, urogenital tract and respiratory system all of which teem with microbiota including bacteria, viruses and fungi.

The researchers at first assumed the B cells reacted to SARS-CoV-2 because they had encountered similar coronaviruses in the past, perhaps through common colds and other infections.

But the antibodies did not react to those coronaviruses in further testing, although they did share genetic sequence characteristics linked to other triggers.

Taken together, Ehrhardt said, the results suggest cross-reactivity in the B-cell antibodies. The immune system makes these antibodies toward certain agents or pathogensand as a by-product the antibodies react to SARS-CoV-2, he said. It will be interesting to find out what causes that reaction.

A better understanding of the antibody reaction could shed light on the mystery of COVID-19 susceptibility in children and adultsand inform clinical and public health decisions as well as therapeutic approaches.

Whatever the cause of the reaction, it is likely due to a common element in the childhood environment sinceall samples the researchers tested had the SARS-CoV-2-reactive B cells many of which were observed also in the immune systems naive or newly generated B cells that had not encountered any pathogen.

One explanation is that some of these B cells react to triggers in the microbiome, saidYanling Liu, lead author on the paper and a senior research associate in Ehrhardts lab.

Or it could still be that antibodies are reacting to endemic coronavirusesand we just didnt see that, Liu said. We dont really know, but one implication of our work is that it suggests children should respond to vaccines very well since they have those naive B cells ready to recognize vaccine in their lymphoid tissue.

Several other researchers were key to the study, Liu and Ehrhardt said, includingJames Rini, a professor ofbiochemistryandmolecular geneticsat U of T who provided purified spike proteins from viral samples.

Amin Ziaused computational biology to scan large databases and predict which antibodies would react to the virus. Zia was a post-doctoral researcherin the lab ofAlan Moses, a professor in U of Ts departments ofcell and systems biology,ecology and evolutionary biologyandcomputer science in the Faculty of Arts & Science.

About half the antibodies we generated were based on computer-generated predictions, said Ehrhardt. That was first for us, and it wont be a last.

Researchers atthe Hospital for Sick Children, with whom Ehrhardts lab has collaborated for years, supplied the tonsil tissue samples.

Mucosae are no doubt a very important interface for the immune systems response to a great variety of pathogens, but availability of samples has been a major impediment, said Ehrhardt. Research in this area is gathering steam, and it will be interesting to see where that takes us.

The research was funded by the Canadian Institutes of Health Research.

See the article here:
U of T research may help explain children's immune response to COVID-19 - News@UofT

Read More...

Im a Pharmacist, and These Are My Top 4 Go-To Immune-Support Supplements – Well+Good

October 5th, 2021 6:32 pm

"If it's not broken, don't fix it" is generally good advice for a lot of thingsyour favorite recipe, the gallery wall that took forever to put up, the workout routine your body has been lovingbut something it doesn't necessarily apply to? Your immune system.

While, no, you don't need to "fix" your immune system (nor could you), there are steps you can take to support it, even when you're feeling fantastic.

"Nothing is more critical for a healthy life than a well-functioning immune system," says clinical community pharmacist Kathy M. Campbell, PharmD. The goal, according to Dr. Campbell, is a Goldilocks approachyou want an immune system that's not too weak and not too strong.

"Nothing is more critical for a healthy life than a well-functioning immune system."

"A healthy, well-functioning immune system is an easy thing to take for granted," she says, but luckily, there are habits that can help support your immune systemsome of which you may already be doing. Eating nutrient-packed foods, prioritizing sleep, and getting some direct sunlight are all necessary for overall health, and they can also go a long way in supporting your immune system, Dr. Campbell says.

Assuming those habits are in check, turning to supplements for immune support can be a great next step. "Appropriately chosen, high-quality supplementation can be a very effective addition in supporting a healthy immune system," Dr. Campbell says.

Ready to start stocking up? First, talk to your healthcare provider. Next, turn to a trusted brand like Nature Made, which creates science-backed supplements for plenty of health needs, including immune support.

Okay, so yes, you want all of your supplements to be high-quality, but Dr. Campbell really emphasizes it for multivitamins. "It's important to provide a balance of all nutrients in an effort to minimize over-supplementation with a single nutrient," Dr. Campbell says. A high-quality multivitamin should do that balancing act for you.

Next up for supplements that support immune health? No surprise: good ole vitamin C. "Vitamin C is an essential nutrient, which cannot be synthesized by humans and therefore must be consumed by diet or supplementation," Dr. Campbell says. "Function is key in many biochemical processes within the immune system."

Vitamin D may already be high on your must-have list (hello, sunshine), but if you're supplementing with it, make sure to take it with vitamin K for the biggest impact, Dr. Campbell says. She also notes vitamin K can often be found in quality multis (pssstit's in Nature Made Women's Multivitamin Softgels). Vitamin D has multiple roles in the body, and can help support immune health, she says.

Optimal zinc levels help support a healthy immune system, Dr. Campbell says, but you'll also want to be careful not to overdue it. If you're supplementing with zinc, she recommends combining it with copper, which can often be found in multivitamins, likeyep, you guessed itNature Made Women's Multivitamin Softgels. Your immune system says thank you in advance.

Photo: Getty Images/shurkin_son

These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure or prevent any disease.

Original post:
Im a Pharmacist, and These Are My Top 4 Go-To Immune-Support Supplements - Well+Good

Read More...

‘The story of our immune system fighting off invaders is long’: COVID vaccination gives immune system a chance – The Topeka Capital-Journal

October 5th, 2021 6:32 pm

Sam Antonios| Special to The Capital-Journal

While viruses aren't new to humans, COVID-19 is novel to the human species, so no one has immunity against it. Like many other viruses, this novel coronavirus survives, replicates and transmits itself in and among its primary hosts: human beings.

Our human immune system fights off viral infections by developing special cells that secrete anti-virus molecules. But first, our bodies must learn how to build that immunity.

This coronavirus is a virus with which our bodies have had no previous experience. Some people's bodies can quickly create an immune response before the virus has the opportunity to overwhelm them, usually through domination of their respiratory system. Others aren't as fortunate and their immune system's response is too little, too late, causing them to fall victim to the disease.

For years, weve used vaccination to help our bodies ward off viral infections such as hepatitis, rubella, measles, chickenpox, influenza and rotavirus. The concept is simple: Introduce a non-active chunk or image of the virus so that our body becomes familiar with it and begins its immunity generation.

Because no actual virus has been introduced, that allows us to begin immunity stockpiling without the threat of disease. This model has helped humans for years and continues to do so with COVID-19.

After being vaccinated, when the body is exposed to the COVID-19 virus, it is more ready to fight it off, not even giving it a chance to overwhelm the body. COVID-19 can cause terrible medical problems and death to people. The vaccines available in the United States have been well-tested.

More than 388 million doses of the vaccines have been given in the U.S. and more than 6 billion doses worldwide. The goal is to develop enough collective immunity to stop this strain of coronavirus from spreading and mutating further the way viruses are designed to do.

Real-life evidence shows that the vaccines are working. Although people who have been vaccinated can still get a "breakthrough" infection and potentially transmit the virus, that infection tends to be milder because of their body's preparation work, thanks to the vaccines.

These infections occur far less frequently than those happening among unvaccinated people. We know this to be true because we are seeing this at our own hospitals and clinics.

This is why we continue to urge people to get vaccinated for COVID-19. While it might be tempting to try to ride this out, time is of the essence. The impact of this highly transmissible virus on the health and well being of our community is widely felt, as the surge commands significant resources, causing disruptions and delays for patients needing all types of care.

The story of our immune system fighting off invaders is long, this is simply another chapter. Using what we know works, we can beat this thing.

Sam Antonios, MD, is the chief clinical officer at Ascension Via Christi.

The rest is here:
'The story of our immune system fighting off invaders is long': COVID vaccination gives immune system a chance - The Topeka Capital-Journal

Read More...

How High-Fat Diets Allow Cancer Cells To Go Unnoticed by the Immune System – SciTechDaily

October 5th, 2021 6:32 pm

A microscopic image of a normal mouse small intestine. Cells stained red express normal amounts of cell-surface tags (MHC-II) needed by immune cells to find threats like infections or cancer. High-fat diets reduce the levels of MHC-II tags in intestinal cells, and so the immune system has a harder time recognizing intestinal tumors. Credit: Beyaz lab/CSHL, 2021

The immune system relies on cell surface tags to recognize cancer cells. CSHL researchers discovered mice who ate high-fat diets produced less of these tags on their intestinal cells, suppressing the ability of immune cells to identify and eliminate intestinal tumors. The high-fat diet also reduced the presence of certain bacteria in the mices gut, which normally helps maintain the production of these tags.

A high-fat diet increases the incidence of colorectal cancer. Cold Spring Harbor Laboratory Fellow Semir Beyaz and collaborators from Harvard Medical School and Massachusetts Institute of Technology have discovered that in mice, fat disrupts the relationship between intestinal cells and the immune cells that patrol them looking for emerging tumors. Reconfiguring the gut microbiome may be a way to heal the relationship.

The immune system patrols tissues looking for and eliminating threats. Certain immune cells look for tags that distinguish between normal and abnormal cells. One tag, called MHC-II, helps target cells for destruction. Cell-surface MHC-II activates the immune system to destroy that cell, whether it is just worn out or about to become cancerous. Beyaz and his colleagues found that when mice ate diets high in fat, MHC-II levels were suppressed in intestinal cells. Cells with reduced levels of these tags were not recognized as abnormal and thus could grow into tumors. Charlie Chung, a Stony Brook University graduate student-in-residence in Beyazs lab, says, If we alter the level of these immune recognition molecules in a positive way, then the tumor will more likely be recognized by the immune cell. We hope this can be coupled with the existing strategies, such as immunotherapy, to eradicate tumors.

Intestinal cells of a mouse that were fed a high-fat diet. The intestinal cells express less of the MHC-II tag than found in a gut from mice fed a normal diet. Credit: Beyaz lab/CSHL, 2021

The researchers found that a high-fat diet changed the mouses intestinal microbiome (the mixture of microbes in the gut). Several bacteria, including ones called Helicobacter, increase MHC-II, which may help immune cells locate abnormal cells. The team did a dirty roommate experiment where mice without these bacteria were housed with ones that had it. The clean mice became infected with the Helicobacter bacteria and produced more of the MHC-II tag.

The scientists findings suggest a new way to boost current immunotherapy treatments against cancer. Increasing the production of this MHC-II tag, either by diet, drugs, or changing the microbes in the body, can help the immune system recognize and eliminate cancer cells. Beyaz says:

This interaction between diet, microbes, and immune recognition has the potential to help us explain how lifestyle factors can contribute to tumor initiation, progression, or response to therapy.

Cancer cells use many tricks to avoid being recognized as abnormal by the immune system, but Beyaz hopes hes found several ways to outwit them.

Reference: Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis by Semir Beyaz, Charlie Chung, Haiwei Mou, Khristian E. Bauer-Rowe, Michael E. Xifaras, Ilgin Ergin, Lenka Dohnalova, Moshe Biton, Karthik Shekhar, Onur Eskiocak, Katherine Papciak, Kadir Ozler, Mohammad Almeqdadi, Brian Yueh, Miriam Fein, Damodaran Annamalai, Eider Valle-Encinas, Aysegul Erdemir, Karoline Dogum, Vyom Shah, Aybuke Alici-Garipcan, Hannah V. Meyer, Deniz M.zata, Eran Elinav, Alper Kucukural, Pawan Kumar, Jeremy P. Mc Aleer, James G. Fox, Christoph A. Thaiss, Aviv Regev, Jatin Roper, Stuart H. Orkin and mer H. Yilmaz, 15 September 2021, Cell Stem Cell.DOI: 10.1016/j.stem.2021.08.007

Funding: National Cancer Institute, Oliver S. and Jennie R. Donaldson Charitable Trust, Mathers Foundation, STARR Cancer Consortium, Mark Foundation For Cancer Research, National Institutes of Health, Massachusetts Institute of Technology Stem Cell Initiative, Pew Foundation, Howard Hughes Medical Institute, American Association of Immunologists Career Reentry Fellowship

Continued here:
How High-Fat Diets Allow Cancer Cells To Go Unnoticed by the Immune System - SciTechDaily

Read More...

How breast cancer treatments can affect the immune system – Defiance Crescent News

October 5th, 2021 6:32 pm

Treatment for breast cancer is highly effective. Five-year survival rates for breast cancer have increased dramatically in recent decades, and much of that success can be credited to cancer researchers and campaigns designed to inform women about the importance of screenings.

Breast cancer is highly treatable, but treatment typically leads to some unwanted side effects. According to Johns Hopkins Medicine, women undergoing treatment for breast cancer may experience a host of side effects, including fatigue, pain, headaches, and dental issues. Cancer treatments, most notably chemotherapy, also can take a toll on womens immune systems.

Why does chemotherapy affect the immune system?

Cancer is caused by an uncontrolled division of abnormal cells in the body. According to Breastcancer.org, chemotherapy targets these abnormal cells, but also can affect fast-growing cells that are healthy and normal. So chemotherapy can damage cells throughout the body, including those in bone marrow. When bone marrow is damaged, its less capable of producing sufficient red blood cells, white blood cells and platelets. Breastcancer.org notes that the body is more vulnerable to infection when it does not have enough white blood cells.

Does chemotherapy always weaken the immune system?

The effects of chemotherapy on the immune system depend on various factors. According to Breastcancer.org, a patients age and overall health may influence the effects of chemotherapy on their immune systems. Young, healthy patients may be less vulnerable to infections from weakened immune systems than aging, less healthy patients. However, Susan G. Komen notes that the median age for breast cancer diagnosis in the United States is 63, so many patients are likely to be affected by the impact that treatment can have on their immune systems. The length of treatment and amount of medicines patients receive also can affect the impact of chemotherapy on patients immune systems. Breastcancer.org notes that being administered two or more chemotherapy medicines at once is more likely to affect the immune system than just one medication.

Chemotherapy is not the only treatment that can affect breast cancer patients immune systems. The Cancer Treatment Centers of America notes that surgery, radiation, CAR T-cell therapy, stem cell transplants, and even immunotherapy can affect the immune system. Surgery can overtax the immune system and compromise its ability to prevent infections and heal wounds caused by the procedure. Like chemotherapy, radiation therapy can damage healthy cells and lead to an increased risk of infection. And while immunotherapy is designed to boost the immune system by helping it recognize and attack cells more effectively, it also can lead to an overactive immune system that attacks healthy cells.

Cancer treatment is often highly effective. However, patients may need to work with their physicians to combat treatment side effects that can adversely affect their immune systems.

Read more from the original source:
How breast cancer treatments can affect the immune system - Defiance Crescent News

Read More...

Booster shots now offered at FAMU The Famuan – Famuan

October 5th, 2021 6:32 pm

Booster shots now available at FAMU. Photo Courtesy: wctv.com

Florida A&M University is now offering two booster shots of the COVID-19 vaccine for those with compromised immune systems.

The Pfizer and Moderna third dosage are available to, but not limited to, individuals with acquired immunodeficiency syndrome (AIDS), lupus, heart conditions and people who are prescribed drugs that suppress their immune system.

Jamal Stokes, a Tallahassee native and lupus patient, has already received his booster shot for the Pfizer vaccine.

As soon as I got word that the booster shot was available on FAMUs campus, I went right up there, Stokes said. I didnt have to bring a doctors note or anythingvery grateful that the university is offering this.

The university is not requiring individuals with compromised immune systems to bring a doctors note to prove their conditions, preregister, or make appointments. They are only required to fill out a form upon arrival.

Tanya Tatum, the FAMU Student Health Services director, discussed the purpose of this third dosage for those who are eligible.

The additional dose brings their immune systems up to par with those who have healthy immunes and are fully vaccinated, Tatum explained.

Some students at the university are hopeful that the booster shot will eventually be offered to all individuals, no matter their immune status. Students are trying their best to remain optimistic about not only the future of the university, but the United States.

I think its really important that the campus is offering the third dosage and all other vaccines because hopefully that will encourage students to get it, Tyla Ewards, a fourth year facilities management student with long qt syndrome said. Its free and super convenient being that you can go get your booster shot in between classes with no hassle.

For now, scientists are recommending the booster shots to those with convincing evidence that the initial doses of the vaccine do not offer enough immune protection.

The Food and Drug Administration Advisory Committee has posed the question of whether to wait for a booster designed to fight against multiple variants to be offered to those with normal immune systems.

The most common side effects by clinical trial participants who have received the booster dose of the vaccine were pain, redness and swelling at the injection site. Other side effects include headache, fatigue, joint or muscle pain and chills.

Both Pfizer and Moderna Vaccines are available at FAMU on 659 Ardelia Court, located off Robert and Trudie Perkins Way. The site is open from 9 a.m. to 5 p.m. on Monday through Saturday.

See original here:
Booster shots now offered at FAMU The Famuan - Famuan

Read More...

Page 160«..1020..159160161162..170180..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick