header logo image


Page 1,514«..1020..1,5131,5141,5151,516..1,5201,530..»

Stem Cell Stocks Skyrocket in 2012 — Cytori Therapeutics and Cord Blood America on the Upswing

February 16th, 2012 12:31 am

NEW YORK, NY--(Marketwire -02/15/12)- Stem cell stocks have performed well of late, outperforming the S&P 500 by a large margin over the last three months. Since mid-November, TickerSpy's Stem Cell Stocks index (RXSTM) has returned more than 20 percent, as favorable news from some of stem cell industry heavyweights has boosted investor optimism in the sector. The Paragon Report examines investing opportunities in the Biotechnology Industry and provides equity research on Cytori Therapeutics, Inc. (NASDAQ: CYTX - News) and Cord Blood America, Inc. (OTC.BB: CBAI.OB - News). Access to the full company reports can be found at:

http://www.paragonreport.com/CYTX

http://www.paragonreport.com/CBAI

Shares of Cytori Therapeutics have skyrocketed nearly 70 percent year-to-date. The company develops, manufactures, and sells medical products and devices to enable the practice of regenerative medicine. The Company's technology is the Celuion family of products, which processes patients' adipose-derived stem and regenerative cells (ADRCs) at the point of care.

In late January, Cytori received an Investigational Device Exemption (IDE) approval from the U.S. FDA to begin the "ATHENA" trial. ATHENA will investigate the use of the Celution System to treat a form of coronary heart disease, chronic myocardial ischemia (CMI).

The Paragon Report provides investors with an excellent first step in their due diligence by providing daily trading ideas, and consolidating the public information available on them. For more investment research on the biotechnology industry register with us free at http://www.paragonreport.com and get exclusive access to our numerous stock reports and industry newsletters.

Cord Blood America, Inc. is a holding company that, through its subsidiaries, is engaged in the business of collecting, testing, processing and preserving umbilical cord blood, thereby allowing families to preserve cord blood at the birth of a child for potential use in stem cell therapy.

USA Today recently reported that umbilical cord blood stem cells have been successfully used to treat individuals with type 1 diabetes, highlighting the importance of storing stem cells at birth. The USA Today article says that stem cells from cord blood have been used to "reeducate" the immune system T cells of people with type 1 diabetes so their pancreas started producing insulin again - thereby reducing the amount of insulin they needed to inject.

The Paragon Report has not been compensated by any of the above-mentioned publicly traded companies. Paragon Report is compensated by other third party organizations for advertising services. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at http://www.paragonreport.com/disclaimer

Read the rest here:
Stem Cell Stocks Skyrocket in 2012 -- Cytori Therapeutics and Cord Blood America on the Upswing

Read More...

Bone Repair Stem Cell Breakthrough Shows Promise

February 16th, 2012 12:31 am

Editor's Choice
Main Category: Stem Cell Research
Article Date: 15 Feb 2012 - 8:00 PST

email to a friend   printer friendly   opinions  

Current Article Ratings:

Patient / Public:

5 (3 votes)

Healthcare Prof:
According to a study published in the February issue of the STEM CELL Translational Medicine Journal , a world-first technique for generating adult stem cells (mesenchymal stem cells [MSCs]) has been developed by researchers at the University of Queensland. This new method can be used to repair bone and possibly other organs, and will considerably affect individuals suffering from a variety of serious diseases.

Professor Nicholas Fisk, who leads the collaborative study between the UQ Clinical Research Center (UQCCR) and the UQ's Australian Institute for Bioengineering and Nanotechnology (AIBN), explained:

"We used a small molecule to induce embryonic stem cells over a 10 day period, which is much faster than other studies reported in the literature.

The technique also worked on their less contentious counterparts, induced pluripotent stem cells.

To make the pluripotent mature stem cells useful in the clinic, they have to be told what type of cell they need to become (pre-differentiated), before being administered to an injured organ, or otherwise they could form tumors.

Because only small numbers of MSCs exist in the bone marrow, and harvesting bone marrow from a healthy donor is an invasive procedure, the ability to make our own MSCs in large number in the laboratory is an exciting step in the future widespread clinical use of MSCs.

We were able to show these new forms of stem cells exhibited all the characteristics of bone marrow stem cells and we are currently examining their bone repair capability."

Ernst Wolvetang, co-researcher on the study and AIBN Associate Professor, explained that the technique had overcome a considerable obstacle in the translation of stem cell-based therapy.

Wolvetang said: "We are very excited by this research, which has brought together stem cell researchers from two of the major UQ research hubs UQCCR and AIBN."

Written by: Grace Rattue

Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today

Visit our stem cell research section for the latest news on this subject. UniQuest, The University of Queensland's main commercialization company, invites parties interested in licensing the intellectual property relating to this discovery to contact UniQuest on 3365 4037 or lifesciences@uniquest.com.au.

Source: University of Queensland

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Grace Rattue. "Bone Repair Stem Cell Breakthrough Shows Promise." Medical News Today. MediLexicon, Intl., 15 Feb. 2012. Web.
15 Feb. 2012. <http://www.medicalnewstoday.com/articles/241706.php&gt;

APA

Please note: If no author information is provided, the source is cited instead.


Rate this article:
(Hover over the stars then click to rate) Patient / Public:
or Health Professional:

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


Continue reading here:
Bone Repair Stem Cell Breakthrough Shows Promise

Read More...

Stem Cell Stocks: Mending Scarred Hearts

February 16th, 2012 12:31 am

A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. This is certainly exciting news considering heart failure is still the No. 1 cause of death in men and women.

The study included 25 heart attack victims, 17 of whom got the stem cell treatment. Those patients saw a 50% reduction in cardiac scar tissue after one year, while the eight control patients saw no improvement.

The procedure involves removing a tiny portion of heart tissue through a needle, cultivating the stem cells from that tissue, and reinserting them in a second minimally invasive procedure, according to Bloomberg.

"If we can regenerate the whole heart, then the patient would be completely normal," said Eduardo Marban, director of Cedars-Sinai Heart Institute who was the study's lead author. "We haven't fulfilled that yet, but we've gotten rid of half of the injury, and that's a good start."

Business section: Investing ideas
Interested in investing in the promise that stem cell therapy holds? For a look at the investing landscape, we compiled a list of the 10 largest companies involved in stem cell therapy.

Do you think this industry will see growth from stem cell research? (Click here to access free, interactive tools to analyze these ideas.)

1. BioTime (NYSE: BTX  ) : Focuses on regenerative medicine and blood plasma volume expanders. Market cap at $291.95M. The company develops and markets research products in the field of stem cells and regenerative medicine. It develops therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases; cardiovascular and blood diseases; therapeutic applications of stem cells to treat orthopedic diseases, injuries, and cancer; and retinal cell product for use in the treatment of age-related macular degeneration.

2. Cleveland BioLabs (Nasdaq: CBLI  ) : Market cap at $111.50M. Its products include Protectan CBLB502, a radioprotectant molecule with multiple medical and defense applications for reducing injury from acute stresses, such as radiation and chemotherapy by mobilizing various natural cell protecting mechanisms, including inhibition of apoptosis, reduction of oxidative damage, and induction of factors that induce protection and regeneration of stem cells in bone marrow and the intestines, and Protectan CBLB612, a modified lipopeptide mycoplasma that acts as a stimulator and mobilizer of hematopoietic stem cells to peripheral blood, providing hematopoietic recovery during chemotherapy and during donor preparation for bone marrow transplantation.

3. Gentium: Focuses on the development and manufacture of its primary product candidate, defibrotide, an investigational drug based on a mixture of single-stranded and double-stranded DNA extracted from pig intestines. Market cap at $128.29M. The company develops defibrotide for the treatment and prevention of hepatic veno-occlusive disease (VOD), a condition that occurs when veins in the liver are blocked as a result of cancer treatments, such as chemotherapy or radiation, that are administered prior to stem cell transplantation.

4. Geron (Nasdaq: GERN  ) : Develops biopharmaceuticals for the treatment of cancer and chronic degenerative diseases, including spinal cord injury, heart failure, and diabetes. Market cap at $265.57M. The company has licensing agreement with the University Campus Suffolk to develop human embryonic stem cell-derived chondrocytes for the treatment of cartilage damage and joint disease.

5. Harvard Bioscience: Develops, manufactures, and markets apparatus and scientific instruments used in life science research in pharmaceutical and biotechnology companies, universities, and government laboratories in the United States and internationally. Market cap at $118.28M. Develops devices used by clinicians and researchers in the field of regenerative medicine, including bioreactors for growing tissue and organs outside the body, and injectors for stem cell therapy.

6. Lydall (NYSE: LDL  ) : Designs and manufactures specialty engineered products for thermal/acoustical, filtration/separation, and bio/medical applications in the United States. Market cap at $163.44M. In addition, it offers Cell-Freeze, a medical device used for cryogenic storage of peripheral blood stem cells.

8. Osiris Therapeutics (Nasdaq: OSIR  ) : Focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas. Market cap at $157.26M. A stem cell company, focuses on the development and marketing of therapeutic products to treat various medical conditions in the inflammatory, autoimmune, orthopedic, and cardiovascular areas.

7. Verastem: Market cap at $229.00M. Focuses on discovering and developing proprietary small molecule drugs targeting cancer stem cells (CSCs) in breast and other cancers.

Interactive Chart: Press Play to compare changes in analyst ratings over the last two years for the stocks mentioned above. Analyst ratings sourced from Zacks Investment Research.

Kapitall's Alexander Crawford does not own any of the shares mentioned above.

Read the original post:
Stem Cell Stocks: Mending Scarred Hearts

Read More...

Favorable News From Advanced Cell Technology and StemCells Inc Boosts Optimism in Regenerative Medicine Industry

February 16th, 2012 12:31 am

NEW YORK, NY--(Marketwire -02/15/12)- Stem cell stocks have performed well of late, outperforming the S&P 500 by a large margin over the last three months. Since mid-November, TickerSpy's Stem Cell Stocks index (RXSTM) has returned more than 20 percent, as favorable news from some of stem cell industry heavyweights has boosted investor optimism in the sector. The Paragon Report examines investing opportunities in the Biotechnology Industry and provides equity research on Advanced Cell Technology, Inc. (OTC.BB: ACTC.OB - News) and StemCells Inc. (NASDAQ: STEM - News). Access to the full company reports can be found at:

http://www.paragonreport.com/ACTC

http://www.paragonreport.com/STEM

Shares of StemCells Inc. have skyrocketed nearly 20 percent year-to-date. StemCells Inc. is focused on cellular medicine, or the use of stem and progenitor cells as the basis for therapeutics and therapies, and enabling technologies for stem cell research, or the use of cells and related technologies to enable stem cell-based research and drug discovery and development.

Earlier this month the company released a statement saying that it received U.S. Food and Drug Administration authorization to start a clinical trial of the company's potential treatment for dry age-related macular degeneration, or AMD. AMD is the leading cause of vision loss and blindness in people over 55 years old and about 30 million people worldwide are affected by the disease, the company said

The Paragon Report provides investors with an excellent first step in their due diligence by providing daily trading ideas, and consolidating the public information available on them. For more investment research on the biotechnology industry register with us free at http://www.paragonreport.com and get exclusive access to our numerous stock reports and industry newsletters.

Shares of Advanced Cell Technology are up more than 30 percent this year - although they are down more than 20 percent over the last month. Advanced Cell Technology has acquired, developed and maintained a portfolio of patents and patent applications that forms the base for its research and development efforts in the area of embryonic and adult stem cell research.

Earlier this week Advanced Cell Technology announced that a third patient has been treated for Stargardt's macular dystrophy in its US. Phase I/II clinical trial. The therapy uses retinal pigment epithelial cells derived from human embryonic stem cells. Stargardt's disease or Stargardt's Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age.

The Paragon Report has not been compensated by any of the above-mentioned publicly traded companies. Paragon Report is compensated by other third party organizations for advertising services. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at http://www.paragonreport.com/disclaimer

See the original post here:
Favorable News From Advanced Cell Technology and StemCells Inc Boosts Optimism in Regenerative Medicine Industry

Read More...

Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for …

February 16th, 2012 12:31 am

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (“ACT”; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the Wills Eye Institute in Philadelphia has received institutional review board (IRB) approval as a site for the company’s Phase I/II clinical trial for Stargardt’s Macular Dystrophy (SMD), a form of juvenile macular degeneration, using human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells. Earlier this year, the Company also announced that the IRB at Wills Eye Institute had approved the participation of the institution as a site for ACT’s clinical trial for dry age-related macular degeneration (dry AMD).

“We thank Wills Eye Institute once more for providing their IRB and their invaluable contribution to our macular degeneration studies,” said Gary Rabin, ACT’s chairman and CEO. “We are very happy that we can now report that Wills Eye Institute has been approved as a clinical trial site for both our SMD and dry AMD clinical trials. Ranked as one of the best ophthalmology hospitals in the country by U.S. News & World Report, the Wills Eye Institute is a truly world-class institution. Our team is eagerly anticipating working with Dr. Carl Regillo, a renowned retinal surgeon and director of clinical retina research at Wills Eye Institute, as well as a professor of ophthalmology at Thomas Jefferson University, along with the rest of his team as we move forward with these ground-breaking trials.”

The Phase I/II trial for SMD is a prospective, open-label study designed to determine the safety and tolerability of the hESC-derived RPE cells following sub-retinal transplantation into patients with SMD. The trial will ultimately enroll 12 patients, with cohorts of three patients each in an ascending dosage format. Preliminary results relating to both early safety and biological function for the first two patients in the U.S., one SMD patient and one dry AMD patient, were recently reported in The Lancet.

Specific patient enrollment for both trials at the Wills Eye Institute will be determined in the near future. Further information about patient eligibility for the SMD study and the concurrent study on dry AMD is also available on http://www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 and NCT01344993.

About Stargardt's Disease

Stargardt’s disease or Stargardt’s Macular Dystrophy is a genetic disease that causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium.

About hESC-derived RPE Cells

The retinal pigment epithelium (RPE) is a highly specialized tissue located between the choroids and the neural retina. RPE cells support, protect and provide nutrition for the light-sensitive photoreceptors. Human embryonic stem cells differentiate into any cell type, including RPE cells, and have a similar expression of RPE-specific genes compared to human RPE cells and demonstrate the full transition from the hESC state.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

About Wills Eye Institute

Wills Eye Institute is a global leader in ophthalmology, established in 1832 as the nation’s first hospital specializing in eye care. U.S. News & World Report has consistently ranked Wills Eye as one of America’s top three ophthalmology centers since the survey began in 1990. Wills Eye is a premier training site for all levels of medical education. Its resident and post-graduate training programs are among the most competitive in the country. One of the core strengths of Wills is the close connection between innovative research and advanced patient care. Wills provides the full range of primary and subspecialty eye care for improving and preserving sight, including cataract, cornea, retina, emergency care, glaucoma, neuro-ophthalmology, ocular oncology, oculoplastics, pathology, pediatric ophthalmology and ocular genetics, refractive surgery and retina. Ocular Services include the Wills Laser Correction Center, Low Vision Service, and Diagnostic Center. Its 24/7 Emergency Service is the only one of its kind in the region. Wills Eye also has a network of nine multi-specialty, ambulatory surgery centers throughout the tri-state area. To learn more, please visit http://www.willseye.org.

Forward-Looking Statements

Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words “will,” “believes,” “plans,” “anticipates,” “expects,” “estimates,” and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the company’s periodic reports, including the report on Form 10-K for the year ended December 31, 2010. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the company’s management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Company’s clinical trials will be successful.

Read more:
Advanced Cell Technology Announces Approval of Wills Eye Institute as Additional Site for Stem Cell Clinical Trial for ...

Read More...

Bone Marrow Stem Cells Help Heal Heart Attack Damage

February 15th, 2012 12:53 pm

Featured Article
Academic Journal
Main Category: Stem Cell Research
Also Included In: Cardiovascular / Cardiology
Article Date: 15 Feb 2012 - 2:00 PST

email to a friend   printer friendly   opinions  

Current Article Ratings:

Patient / Public: Healthcare Prof:
A systematic review of the evidence so far suggests stem cells derived from bone marrow moderately improves heart function after a heart attack. But the authors say larger trials are needed before we can devise guidelines for therapy practice, or draw conclusions about the long-term benefit of the treatment, such as whether it extends life.

The review, about to be published in the Cochrane Library, updates one done in 2008 that reviewed 13 trials; the new one takes into account another 20 more recent trials. Even though these later trials had longer follow ups, it was still not possible to draw firm conclusions about the long term benefits.

Lead author Enca Martin-Rendon, of the Stem Cell Research laboratory, NHS Blood and Transplant at the John Radcliffe Hospital in Oxford, UK, told the press that they found it hard to compare the 33 studies because they used so many different approaches:

"Larger trials with standardised treatment procedures would help us to know whether this treatment is really effective," said Martin-Rendon.

In order to pump blood around the body, the heart also needs its own constant supply of blood. If this supply is cut off by a blocked artery, it can cause a heart attack and damage the muscle tissue in the affected part of the heart, causing the cells to start dying, a process known as necrosis.

In the days and weeks after a heart attack, the necrosis can spread, eventually leaving a large part of the heart muscle unable to perform the job of contracting and pumping as well as it ought to. This increases the risk of further heart problems.

Stem cells are precursor cells that have the potential to mature into any cell in the body, including heart muscle cells. For this review, the researchers looked only at treatments that use stem cells derived from bone marrow. At present, such treatments are only available at centres that do research.

Another recently published study described a treatment that used stem cells derived from the patient's own heart tissue to repair heart attack damage.

For the review, Martin-Rendon and colleagues pooled data on a total of 1,765 patients from 33 trials. All the patients had already undergone the conventional treatment, angioplasty, where a balloon is inflated in the blocked artery to open it up and restore blood flow.

They concluded that stem cell therapy using bone marrow-derived stem cells (BMSCs) can result in a moderate long-term improvement in heart function, that lasts for up to 5 years. But there was not enough data to enable them to say anything firm about the effect on survival rates.

Martin-Rendon said:

"This new treatment may lead to moderate improvement in heart function over standard treatments," adding that:

"Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far."

The authors said it was still to early to compile guidelines for standard practice, and further work would be needed before anyone can do this. For instance, more information is needed to establish cell dosage, the timing of transplantation and how best to measure heart function.

One large trial, called BAMI, is already under way. The European Society of Cardiology for Stem Cells and Cardiac Repair is conducting the trial, which is funded by the European Union Seventh Framework Programme for Research and Innovation (EU FP7-BAMI).

Anthony Mathur, a co-author of this latest Cochrane review, and principal investigator of the BAMI trial, said:

''The BAMI trial will be the largest stem cell therapy trial in patients who have suffered heart attacks and will test whether this treatment prolongs the life of these patients."

Written by Catharine Paddock PhD
Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today

Visit our stem cell research section for the latest news on this subject. Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Catharine Paddock PhD. "Bone Marrow Stem Cells Help Heal Heart Attack Damage." Medical News Today. MediLexicon, Intl., 15 Feb. 2012. Web.
15 Feb. 2012. <http://www.medicalnewstoday.com/articles/241658.php&gt;

APA

Please note: If no author information is provided, the source is cited instead.


Rate this article:
(Hover over the stars then click to rate) Patient / Public:
or Health Professional:

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam)

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.


Link:
Bone Marrow Stem Cells Help Heal Heart Attack Damage

Read More...

Bioheart to Present at BioFlorida's Saturday Exchange

February 15th, 2012 12:53 pm

SUNRISE, Fla., Feb. 15, 2012 (GLOBE NEWSWIRE) -- Bioheart (BHRT.OB), a leader in developing stem cell therapies to treat cardiovascular diseases, today announced that they have been chosen as a presenter in the BioFlorida Saturday Exchange conference later this month.

The Saturday Exchange is a reprise of the successful Biomed Exchange meeting, held for many years during the 1980-90's. Well over 100 life science professionals gathered in Miami on a Saturday morning each month to learn about various aspects of the community's growing life sciences cluster. The Exchange will take place at University of Miami's Life Science & Technology Park.

The Keynote Speaker is Bioheart's Chairman William P. Murphy Jr., MD. Dr. Murphy will share his career experiences and insights as a leading entrepreneur in the medical device industry, spanning the founding of Cordis Corporation to more recent ventures. In addition, Mike Tomas, Bioheart's president and CEO and Kristin Comella, Bioheart's CSO will present the use of stem cells in degenerative diseases

"The Saturday Exchange brings together many professionals to discuss the field of biotechnology," said Mike Tomas. "Bioheart is excited about the opportunity to represent the South Florida community and share our experiences in the field of regenerative medicine."

About Bioheart

Bioheart (BHRT.OB) is committed to developing stem cell therapies to treat congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other medical problems. The company focuses on the discovery and development of therapies that will improve patients' quality of life and reduce health care costs and hospitalizations. Bioheart's leading product, MyoCell, is a muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart to improve cardiac function.

For more information on Bioheart, visit http://www.bioheartinc.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Also, forward-looking statements represent our management's beliefs and assumptions only as of the date hereof. Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future.

The Company is subject to the risks and uncertainties described in its filings with the Securities and Exchange Commission, including the section entitled "Risk Factors" in its Annual Report on Form 10-K for the year ended December 31, 2010, and its Quarterly Report on Form 10-Q for the quarter ended September 30, 2011.

Read the original here:
Bioheart to Present at BioFlorida's Saturday Exchange

Read More...

First local dogs receive ‘amazing’ stem-cell therapy

February 15th, 2012 12:51 pm

Just before 10 a.m. Tuesday, Jake — a hobbling, 12-year-old yellow Labrador retriever — went into surgery at the Stanley Veterinary Clinic in Overland Park with crippling arthritis, no longer able to run without pain or even walk down stairs.

He had already been on months of medications that seemed to turn the normally happy dog sad. And hip and joint replacements costing tens of thousands of dollars were not feasible, said owners Mike and Elizabeth LeBlanc of Leawood.Still, their 8-year-old daughter, Mia, had just one request at Christmas. “All I want is for Jake to feel better,” she wrote.So, on Tuesday morning, Jake became one of the first canines in the Kansas City area to undergo a somewhat new and controversial procedure in which stem cells were harvested from the fat of his own body and then injected into his joints. The expectation is that within a few weeks the cells will regenerate missing cartilage and turn his arthritic joints healthy again.“It’s amazing,” said veterinarian Les E. Pelfrey, who conducted the procedure. “A few weeks later, these guys are running up and down.”The stem-cell procedure, which has gained notice in recent years with anecdotal stories of success on YouTube and cable television, remains controversial not only for its quick adoption in veterinary clinics nationwide, but also because some researchers say it remains scientifically unproven and expensive, at $1,800 or more per treatment.“Let me tell you one thing,” said James L. Cook, a professor of orthopedics at the University of Missouri’s College of Veterinary Medicine. “I don’t want to write off stem cells. Stem cells may hold the key for truly restorative medicine.”In horses, stems cells have been shown to help rejuvenate damaged tendons and other problems. They are being tested for cardiac problems.“But in the joints for dogs with arthritis? No way,” Cook said. “I would never recommend anyone get this done.”Stem cells essentially are the equivalent of young and impressionable cells whose genetic gears have yet to determine their fate. Because they are so young, they theoretically can turn into any kind of cell, from cartilage to neurons. In humans, stem cells have long been held out as possible therapy for diseases such as Parkinson’s.The problem, Cook said, is that although a few studies have shown that the injection of stem cells into arthritic canine joints does reduce pain, compared with “control” dogs not injected with stems cells, no studies have convincingly shown that stems cells are any better at helping dogs than the current, and less expensive, standard of care. That typically involves a combination of weight loss, pain medications and, when necessary, injections of hyaluronic acid, a slippery substance that often goes missing in arthritis. Those injections, given a couple of times a year, cost less than $100 each.Moreover, even if the stem cells work, no one knows at this point how long the improvement will persist, although some vets have noted benefits lasting a year or more.“We know for sure that it (stem cell injections) does have some palliative effects. It can make symptoms better,” Cook said. “And we do know for sure that it does not regenerate cartilage in arthritic joints. The palliative effects are not as good, or no better, than hyaluronic acid injections.”That is far from the case being made by companies now promoting stem-cell therapy in dogs, or owners who believe in it.A number of stem-cell companies have emerged in recent years. Chief among them are Vet-Stem, based in Poway, Calif., and MediVet America, a division of MediVet, based in Sydney, Australia, which notes that it is currently conducting studies on canines, stem cells and cartilage regeneration.Both use largely similar technologies and methods. At the vet’s office, the dog undergoes a quick procedure in which a bolus of fat about the size of a golf ball is taken from above the shoulder.The fat is processed and treated with chemicals to extract millions of stem cells. Some of those cells are then injected into a dog’s damaged joints; the rest enter the body through an intravenous line into the bloodstream.One prime difference between the Vet-Stem and MediVet systems is that Vet-Stem costs about $3,000 or more.Vet-Stem requires the veterinarian to ship the fat sample to California, where it is processed and sent back for injection. Several dogs in the Kansas City area have been injected with stem cells from Vet-Stem.The MediVet system costs pet owners about $1,800. It provides veterinarians with a kit to process the stem cells in their own offices over about four hours. Dogs are injected with stems cells on the same day the fat is removed. The pet typically goes home the next day.In Topeka, the University Bird and Small Animal Clinic has used the MediVet kit and system with what it says are positive results on about 40 dogs since November 2010. A veterinarian there, Larry Snyder, helped train Pelfrey in Overland Park.Snyder came to the clinic two weeks ago to perform the procedure on another hobbled yellow Labrador retriever, Milo, owned by dentist Jon Finley and his wife, Sharon, in Leawood.“Dr. Pelfrey and Mrs. Finley didn’t tell me how much this procedure was going to cost,” Jon Finley said, “and I’d rather you not tell me. No matter what, he’s walking better, standing upright, feeling better. I can’t help but think he’s going to get better and better.”Jake’s owner said that, whatever the outcome, she knows that the procedure is not a cure.“I’m hoping this gives him a better quality of life,” Elizabeth LeBlanc said. “I got him when he was just 6 weeks old. He was such a blessing. It will be worth it, even if I can give him one more great summer.”

To reach Eric Adler, call 816-234-4431 or send email to eadler@kcstar.com.

View post:
First local dogs receive ‘amazing’ stem-cell therapy

Read More...

Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling …

February 15th, 2012 12:50 pm

Dentists can be at the forefront of the emerging field of regenerative medicine by offering Store-A-Tooth™ dental stem cell banking.

This service enables families to save their own adult stem cells from teeth that are naturally coming out or being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

Provia Laboratories, LLC will be exhibiting its Store-A-Tooth™ dental stem cell preservation service during the Chicago Midwinter Meeting at booth # 3346.

Lexington, MA (PRWEB) February 15, 2012

Provia Laboratories, LLC will be exhibiting during the Chicago Midwinter Meeting at booth # 3346 to showcase its Store-A-Tooth™ dental stem cell preservation service.

The Store-A-Tooth service enables families to save their own adult stem cells – from baby teeth ready to fall out; teeth pulled for orthodontic reasons; and wisdom teeth being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

The company partners with dental offices to make it easy to educate and inform patients about the option to preserve their family’s dental stem cells. For those interested in the service, Provia works with the dental team to provide high quality tooth collection, and arranges for the sample to be sent overnight to the lab, where the stem cells are harvested, tested and cryopreserved for future potential use.

“New stem cell therapies are going to change medicine as we know it, and dentists will play a leading role in enabling this transformation,” states Howard Greenman, Provia Labs CEO. “There’s been a lot of media buzz about stem cell research in general, but most people are unaware that a very potent and plentiful source of viable stem cells exits in the dental pulp of healthy teeth.”

Dental stem cells have already successfully been used in people to regenerate alveolar jaw bone and to treat periodontal disease. “One of the first routine applications in the oral cavity for the use of mesenchymal stem cells from teeth will be to promote bone growth around implants so they integrate more quickly, similar to how cellular bone matrix products are used today,” says Dr. Nicholas Perrotta, DMD, who started providing the Store-A-Tooth service in 2011.

“In addition to potential applications in regenerative dentistry, dental stem cell research may lead to new treatments for a wide range of medical conditions, including type 1 diabetes, stroke, cardiovascular disease, spinal cord injuries, and Parkinson’s disease, to name a few,” explains Peter Verlander, PhD, Chief Scientific Officer for Provia Labs. “Dental stem cell collection and preservation gives parents the peace of mind that they are now equipped to take advantage of the breakthroughs in stem cell therapies that will arise from the research community.”

“Store-A-Tooth is less expensive than collecting stem cells from umbilical cord blood. In fact, we hear from many of our customers that they are thankful to have this opportunity to store their stem cells, especially if they missed the chance to save cord blood,” states Greenman. “Our mission is to make stem cell banking accessible to the millions of children losing teeth every year.”

There are no fees or costs to dentists who wish to become an authorized Store-A-Tooth provider; in fact dentists can generate incremental revenue for assisting with tooth collection. Provia Labs supplies all participating practices with patient education materials, practice tools and dedicated support; training is simple and there is minimal impact to existing workflow.

Dental professionals share Store-A-Tooth educational materials with their patients, who enroll directly with Provia Labs. The day of the appointment, the dentist simply places the extracted tooth into the Store-A-Tooth collection kit, which includes a proven transport device called Save-A-Tooth®. In use by thousands of dentists for over 20 years, the Save-A-Tooth is an FDA-approved and ADA-accepted device for transporting avulsed teeth for reimplantation. The Store-A-Tooth collection kit is shipped overnight to the Provia Laboratories facility, where the stem cells are processed and stored.

The Store-A-Tooth service is currently available to dental offices throughout the United States and internationally. To become a provider, visit http://www.store-a-tooth.com or call 877-867-5753.

About Provia Laboratories, LLC

Headquartered in Lexington, MA, Provia Laboratories, LLC (http://www.provialabs.com) is a healthcare services company specializing in high quality biobanking (preservation of biological specimens). The company’s Store-A-Tooth™ service platform enables the collection, transport, processing, and storage of dental stem cells for potential use in future stem-cell therapies. The company advises industrial, academic, and governmental clients on matters related to the preservation of biological specimens for research and clinical use. In addition, Provia offers a variety of products for use in complex biobanking environments to improve sample logistics, security, and quality. For more information on dental stem cells, call 1-877-867-5753, visit http://www.store-a-tooth.com or http://www.facebook.com/storeatooth, or follow via twitter @StoreATooth.

###

Store-A-Tooth
Provia Laboratories, LLC
877-867-5753
Email Information

Read more:
Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling ...

Read More...

Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling …

February 15th, 2012 9:21 am

Dentists can be at the forefront of the emerging field of regenerative medicine by offering Store-A-Tooth™ dental stem cell banking.

This service enables families to save their own adult stem cells from teeth that are naturally coming out or being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

Provia Laboratories, LLC will be exhibiting its Store-A-Tooth™ dental stem cell preservation service during the Chicago Midwinter Meeting at booth # 3346.

Lexington, MA (PRWEB) February 15, 2012

Provia Laboratories, LLC will be exhibiting during the Chicago Midwinter Meeting at booth # 3346 to showcase its Store-A-Tooth™ dental stem cell preservation service.

The Store-A-Tooth service enables families to save their own adult stem cells – from baby teeth ready to fall out; teeth pulled for orthodontic reasons; and wisdom teeth being extracted. Dental professionals play a role in making patients aware of this option, giving families the choice to safely and securely store their stem cells today – in a convenient and affordable way – so that they can take advantage of future therapies in regenerative medicine and dentistry.

The company partners with dental offices to make it easy to educate and inform patients about the option to preserve their family’s dental stem cells. For those interested in the service, Provia works with the dental team to provide high quality tooth collection, and arranges for the sample to be sent overnight to the lab, where the stem cells are harvested, tested and cryopreserved for future potential use.

“New stem cell therapies are going to change medicine as we know it, and dentists will play a leading role in enabling this transformation,” states Howard Greenman, Provia Labs CEO. “There’s been a lot of media buzz about stem cell research in general, but most people are unaware that a very potent and plentiful source of viable stem cells exits in the dental pulp of healthy teeth.”

Dental stem cells have already successfully been used in people to regenerate alveolar jaw bone and to treat periodontal disease. “One of the first routine applications in the oral cavity for the use of mesenchymal stem cells from teeth will be to promote bone growth around implants so they integrate more quickly, similar to how cellular bone matrix products are used today,” says Dr. Nicholas Perrotta, DMD, who started providing the Store-A-Tooth service in 2011.

“In addition to potential applications in regenerative dentistry, dental stem cell research may lead to new treatments for a wide range of medical conditions, including type 1 diabetes, stroke, cardiovascular disease, spinal cord injuries, and Parkinson’s disease, to name a few,” explains Peter Verlander, PhD, Chief Scientific Officer for Provia Labs. “Dental stem cell collection and preservation gives parents the peace of mind that they are now equipped to take advantage of the breakthroughs in stem cell therapies that will arise from the research community.”

“Store-A-Tooth is less expensive than collecting stem cells from umbilical cord blood. In fact, we hear from many of our customers that they are thankful to have this opportunity to store their stem cells, especially if they missed the chance to save cord blood,” states Greenman. “Our mission is to make stem cell banking accessible to the millions of children losing teeth every year.”

There are no fees or costs to dentists who wish to become an authorized Store-A-Tooth provider; in fact dentists can generate incremental revenue for assisting with tooth collection. Provia Labs supplies all participating practices with patient education materials, practice tools and dedicated support; training is simple and there is minimal impact to existing workflow.

Dental professionals share Store-A-Tooth educational materials with their patients, who enroll directly with Provia Labs. The day of the appointment, the dentist simply places the extracted tooth into the Store-A-Tooth collection kit, which includes a proven transport device called Save-A-Tooth®. In use by thousands of dentists for over 20 years, the Save-A-Tooth is an FDA-approved and ADA-accepted device for transporting avulsed teeth for reimplantation. The Store-A-Tooth collection kit is shipped overnight to the Provia Laboratories facility, where the stem cells are processed and stored.

The Store-A-Tooth service is currently available to dental offices throughout the United States and internationally. To become a provider, visit http://www.store-a-tooth.com or call 877-867-5753.

About Provia Laboratories, LLC

Headquartered in Lexington, MA, Provia Laboratories, LLC (http://www.provialabs.com) is a healthcare services company specializing in high quality biobanking (preservation of biological specimens). The company’s Store-A-Tooth™ service platform enables the collection, transport, processing, and storage of dental stem cells for potential use in future stem-cell therapies. The company advises industrial, academic, and governmental clients on matters related to the preservation of biological specimens for research and clinical use. In addition, Provia offers a variety of products for use in complex biobanking environments to improve sample logistics, security, and quality. For more information on dental stem cells, call 1-877-867-5753, visit http://www.store-a-tooth.com or http://www.facebook.com/storeatooth, or follow via twitter @StoreATooth.

###

Store-A-Tooth
Provia Laboratories, LLC
877-867-5753
Email Information

Continue reading here:
Provia Labs Makes Chicago Midwinter Meeting Debut and Launches Store-A-Tooth™ Dental Stem Cell Preservation, Enabling ...

Read More...

Bone gives ‘some’ heart healing

February 15th, 2012 9:21 am

14 February 2012 Last updated at 19:10 ET By James Gallagher Health and science reporter, BBC News

Bone marrow stem cell therapy offers "moderate improvement" to heart attack patients, according to a large UK review of clinical trials.

The analysis by the Cochrane Collaboration looked at 33 trials involving more than 1,700 patients.

It said longer-term studies were needed to see if the experimental therapy affected life expectancy.

The review comes a day after doctors reported the first case of using heart cells to heal heart attack damage.

If a patient survives a heart attack, dead heart muscle is replaced with scar tissue - leaving the patient weaker and possibly on a lifetime of medicine.

Researchers are beginning to show that taking cells from a heart, growing millions of new heart cells in the laboratory and pumping those back into the heart may reduce scar tissue and lead to new heart muscle.

Continue reading the main story “Start Quote

Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far”

End Quote Dr Enca Martin-Rendon Lead researcher

However, the trials are at a very early stage and in only a handful of patients. Using a similar technique with cells taken from the bone marrow, which is a prime source of stem cells, has a much longer pedigree.

The report by Cochrane pooled the data from all 33 bone marrow trials which had taken place up to 2011.

It concluded that bone marrow therapy "may lead to a moderate long-term improvement" in heart function which "might be clinically very important".

Longer life uncertain

It said there was still no evidence of "any significant effect on mortality" in comparison with standard treatment. However, this may be due to the size of the studies and that patients were followed for a short period of time.

Lead author Dr Enca Martin-Rendon, from NHS Blood and Transplant at the John Radcliffe Hospital in Oxford, said: "This new treatment may lead to moderate improvement in heart function over standard treatments.

"Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far."

Prof Anthony Mathur, from Barts and the London School of Medicine and Dentistry, is leading the largest ever trial of stem cells in heart attack patients.

It starts this year, however, he told the BBC that the results could come quite quickly. Three thousand patients across Europe will take part. They will be injected with stem cells five days after a heart attack and then followed for two years to see if the therapy affects life expectancy.

Prof Peter Weissberg, medical director at the British Heart Foundation, said: "This review reflects the consensus of opinion about these trials - cell therapy has a modestly beneficial effect.

"Despite that, no-one knows why, or even if, cell therapies will translate into better survival or sustained improvement in damaged hearts. It's much too early to judge the likely long-term benefits."

View post:
Bone gives 'some' heart healing

Read More...

Stem cell treatments improve heart function after heart attack

February 15th, 2012 9:21 am

Public release date: 14-Feb-2012
[ | E-mail | Share ]

Contact: Jennifer Beal
healthnews@wiley.com
44-124-377-0633
Wiley-Blackwell

Stem cell therapy moderately improves heart function after a heart attack, according to a systematic review published in The Cochrane Library. But the researchers behind the review say larger clinical trials are needed to establish whether this benefit translates to a longer life.

In a heart attack, the blood supply to parts of the heart is cut off by a blocked artery, causing damage to the heart tissue. The cells in the affected area start to die. This is called necrosis and in the days and weeks that follow, the necrotic area may grow, eventually leaving a large part of the heart unable to contract and increasing the risk of further heart problems. Stem cell therapy uses cells from the patient's own bone marrow to try to repair and reduce this damage. Currently, the treatment is only available in facilities with links to scientific research.

The authors of the review drew together all the available evidence to ask whether adult bone marrow stem cells can effectively prevent and repair the damage caused by a heart attack. In 2008, a Cochrane review of 13 stem cell therapy clinical trials addressed the same question, but the new review adds 20 more recent trials, drawing its conclusions from all 33. By incorporating longer follow up, the later trials provide a better indication of the effects of the therapy several years after treatment.

The total number of patients involved in trials was 1,765. All had already undergone angioplasty, a conventional treatment that uses a balloon to open the blocked artery and reintroduce the blood supply. The review's findings suggest that stem cell therapy using bone marrow-derived stem cells (BMSCs) can produce a moderate long-term improvement in heart function, which is sustained for up to five years. However, there was not enough data to reach firm conclusions about improvements in survival rates.

"This new treatment may lead to moderate improvement in heart function over standard treatments," said lead author of the study, Enca Martin-Rendon, of the Stem Cell Research laboratory, NHS Blood and Transplant at the John Radcliffe Hospital in Oxford, UK. "Stem cell therapy may also reduce the number of patients who later die or suffer from heart failure, but currently there is a lack of statistically significant evidence based on the small number of patients treated so far."

It is still too early to formulate guidelines for standard practice, according to the review. The authors say further work is required to establish standard methods, including cell dosage, timing of cell transplantation and methods to measure heart function. "The studies were hard to compare because they used so many different methods," said Martin-Rendon. "Larger trials with standardised treatment procedures would help us to know whether this treatment is really effective.

Recently, the task force of the European Society of Cardiology for Stem Cells and Cardiac Repair received funding from the European Union Seventh Framework Programme for Research and Innovation (EU FP7-BAMI) to start such a trial. Principal Investigator for the BAMI trial, and co-author of this Cochrane review, Anthony Mathur, said, ''The BAMI trial will be the largest stem cell therapy trial in patients who have suffered heart attacks and will test whether this treatment prolongs the life of these patients."

###


[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read more:
Stem cell treatments improve heart function after heart attack

Read More...

Stem cells could potentially fix broken hearts

February 15th, 2012 5:54 am

By FOX News

February 14, 2012

LOS ANGELES -- When a piece of muscle in a person's heart dies from lack of blood flow, it scars over and is lost.

But a team of researchers from the Cedars Sinai Heart Institute in Los Angeles has proven that those muscles may not necessarily be gone forever.

In a study that may change how heart attacks are treated, Eduardo Marban and his team used stem cells to re-grow damaged heart muscle. In the 17 patients who received the therapy, Marban measured an average 50 percent reduction in the size of the scar tissue.

"One of the holy grails in medicine has been the use of medicine to achieve regeneration," Marban said. "Patients that were treated not only experienced shrinkage of their scars, but also new growth of their heart muscle, which is very exciting."

The stem cells were not derived from embryos, but instead were developed from the patients' own hearts. Marban's team inserted a catheter into the diseased hearts and took a small biopsy of muscle. In the laboratory, the tissue was manipulated into producing stem cells to re-inject into the patients' hearts.

Over the course of a year, the cells took root in cardiac tissue, encouraging the heart to create new muscle and blood vessels. In other words, the heart actually began to mend itself.

While similar research has been done using stem cells from bone marrow, this is the first time that stem cells derived from a patient's own cardiac tissue have been used.

Marban believes this therapy could be broadly used in many of the five to seven million Americans who suffer from heart disease every year. And he said the applications could go well beyond diseased hearts.

"If we can do that in the heart, I don't see any reason, conceptually, why we couldn't do it in kidneys for example, or pancreas or other organs that have very limited regenerative capacity," Marban said.

While the procedure may be a revolutionary medical technique, there are still a few more puzzling questions about the research that Marban would like to investigate further.

For example, while the patients grew new heart muscle and saw a dramatic reduction in scar tissue, the actual function of their hearts did not show a significant improvement. And it appeared the stem cells themselves may not have turned into cardiac muscle, but rather they stimulated the heart to produce new muscle cells.

Nonetheless, the potential success of this research could hold a lot of promise for the millions of Americans who suffer from heart disease each and every year, which is the leading cause of death in the United States.

If his future experiments yield the same results as this initial study, Marban believes he could be offering this therapy to patients within four years -- and that could go a long way in mending all of America's broken hearts.

Read more: http://www.foxnews.com/health/2012/02/14/stem-cells-could-potentially-fix-broken-hearts/#ixzz1mNGKYMvI

Reader Reaction We reserve the right to remove any content at any time from this Community, including without limitation if it violates the Community Rules. We ask that you report content that you in good faith believe violates the above rules by clicking the Flag link next to the offending comment. New comments are only accepted for two weeks from the date of publication.

More:
Stem cells could potentially fix broken hearts

Read More...

Stem cells a fix for 'broken hearts'?

February 15th, 2012 5:54 am

When a piece of muscle in a person’s heart dies from lack of blood flow, it scars over and is lost.  But a team of researchers from the Cedars-Sinai Heart Institute in Los Angeles has proven that those muscles may not necessarily be gone forever.

In a ground-breaking study that may change how heart attacks are treated, Dr. Eduardo Marban and his team used stem cells to re-grow damaged heart muscle.  In the 17 patients who received the therapy, Marban measured an average 50 percent reduction in the size of the scar tissue

“One of the holy grails in medicine has been the use of medicine to achieve regeneration,” Marban said.  “Patients that were treated not only experienced shrinkage of their scars, but also new growth of their heart muscle, which is very exciting.”

The stem cells were not derived from embryos, but instead were developed from the patients’ own hearts.  Marban’s team inserted a catheter into the diseased hearts and took a small biopsy of muscle.  In the laboratory, the tissue was manipulated into producing stem cells.  After a few weeks of marinating in culture, researchers had enough stem cells to re-inject them into the patients’ hearts.  Over the course of a year, the stem cells took root in cardiac tissue, encouraging the heart to create new muscle and blood vessels.  In other words, the heart actually began to mend itself.

Click here to see an animation of how the process works.

“We’ve achieved what we have achieved using adult stem cells – in this case – actually specifically from a patient’s own heart back into the same patient.   There’s no ethical issues with that – there’s no destruction of embryos.  There’s no reason to worry about immune rejection."

While similar research has been done using stem cells from bone marrow, this is the first time that stem cells derived from a patient’s own cardiac tissue have been used.

Marban believes this therapy could be broadly used in many of the 5 to 7 million Americans who suffer from heart disease every year.  And he said the applications could go well beyond diseased hearts.

“If we can do that in the heart, I don’t see any reason, conceptually, why we couldn’t do it in kidneys for example, or pancreas or other organs that have very limited regenerative capacity,” Marban said.

While the procedure may be a revolutionary medical technique, there are still a few more puzzling questions about the research that Marban would like to investigate further.  For example, while the patients grew new heart muscle and saw a dramatic reduction in scar tissue, the actual function of their hearts did not show a significant improvement.  And it appeared the stem cells themselves may not have turned into cardiac muscle, but rather they stimulated the heart to produce new muscle cells.

Because this was a “Phase 1” study, it was really meant to measure whether the procedure was safe.  Of the 17 patients who were given the stem cell injections, six experienced “serious adverse events,” but only one was regarded to be possibly related to the treatment.  

The potential success of this research could hold a lot of promise for the millions of Americans who suffer from heart disease each and every year, which is the leading cause of death in the United States.  If his future experiments yield the same results as this initial study, Marban believes he could be offering this therapy to patients within four years – and that could go a long way in mending all of America’s broken hearts.

Original post:
Stem cells a fix for 'broken hearts'?

Read More...

Stem Cells Might Fix Broken Hearts

February 15th, 2012 5:54 am

When a piece of muscle in a person's heart dies from lack of blood flow, it scars over and is lost.

But a team of researchers from the Cedars Sinai Heart Institute in Los Angeles has proven that those muscles may not necessarily be gone forever.

In a study that may change how heart attacks are treated, Eduardo Marban and his team used stem cells to re-grow damaged heart muscle. In the 17 patients who received the therapy, Marban measured an average 50 percent reduction in the size of the scar tissue.

"One of the holy grails in medicine has been the use of medicine to achieve regeneration," Marban said. "Patients that were treated not only experienced shrinkage of their scars, but also new growth of their heart muscle, which is very exciting."

The stem cells were not derived from embryos, but instead were developed from the patients' own hearts. Marban's team inserted a catheter into the diseased hearts and took a small biopsy of muscle. In the laboratory, the tissue was manipulated into producing stem cells to re-inject into the patients' hearts.

Over the course of a year, the cells took root in cardiac tissue, encouraging the heart to create new muscle and blood vessels. In other words, the heart actually began to mend itself.

While similar research has been done using stem cells from bone marrow, this is the first time that stem cells derived from a patient's own cardiac tissue have been used.

Marban believes this therapy could be broadly used in many of the five to seven million Americans who suffer from heart disease every year. And he said the applications could go well beyond diseased hearts.

"If we can do that in the heart, I don't see any reason, conceptually, why we couldn't do it in kidneys for example, or pancreas or other organs that have very limited regenerative capacity," Marban said.

While the procedure may be a revolutionary medical technique, there are still a few more puzzling questions about the research that Marban would like to investigate further.

For example, while the patients grew new heart muscle and saw a dramatic reduction in scar tissue, the actual function of their hearts did not show a significant improvement. And it appeared the stem cells themselves may not have turned into cardiac muscle, but rather they stimulated the heart to produce new muscle cells.

Nonetheless, the potential success of this research could hold a lot of promise for the millions of Americans who suffer from heart disease each and every year, which is the leading cause of death in the United States.

If his future experiments yield the same results as this initial study, Marban believes he could be offering this therapy to patients within four years -- and that could go a long way in mending all of America's broken hearts. Read more: FOXNews

Read the rest here:
Stem Cells Might Fix Broken Hearts

Read More...

Heart's stem cells used to mend attack damage

February 15th, 2012 5:54 am

SAN FRANCISCO -- Stem cells grown from patients' own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results were published Tuesday in the medical journal Lancet.

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn't get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study's lead author and director of Cedars-Sinai Heart Institute.

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted 12.5 million to 25 million cells using a second minimally invasive procedure.

A year after the procedure, six patients in the stem cell group had serious side effects.

While the main goal of the trial was to examine safety, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said.

"If we can regenerate the whole heart, then the patient would be completely normal," Dr. Marban said. "We haven't fulfilled that yet, but we've gotten rid of half of the injury, and that's a good start."

First published on February 15, 2012 at 12:00 am

Read more from the original source:
Heart's stem cells used to mend attack damage

Read More...

Stem Cells Help Heal Broken Hearts

February 15th, 2012 5:54 am

Click here to listen to this podcast

Valentine's Day can lead to plenty of broken hearts. But for cardiac wounds that time alone won't heal, science has made some major advances. When it comes to heart attack, for example, a big development is emerging from a tiny source. Stem cells are coming of age. 

Stem cells, harvested from a patient's own bone marrow, have been heralded as a potential quick fix for damaged heart tissue. But can these progenitor cells actually work to heal massive muscle damage?

A new review of 33 studies assessed data from more than 1,700 heart attack patients. The review researchers found that those patients treated with stem cells—in addition to the standard care of angioplasty—had stronger tickers for years to come than those who had not gotten stem cell therapy. The review article is published in The Cochrane Library. [David Clifford et al., Stem Cell Treatment for Acute Myocardial Infarction, link to come]

It's too early to say whether those with stem cell treatments will live longer, according to the new analysis. But for affairs of the heart, it's more evidence that good things can come in very small packages.

—Katherine Harmon

[The above text is a transcript of this podcast]  
 

Follow Scientific American on Twitter @SciAm and @SciamBlogs. Visit ScientificAmerican.com for the latest in science, health and technology news.
© 2012 ScientificAmerican.com. All rights reserved.

Continue reading here:
Stem Cells Help Heal Broken Hearts

Read More...

Stem cells could fix broken hearts

February 15th, 2012 5:54 am

WHEN a piece of muscle in a person's heart dies from lack of blood flow, it scars over and is lost.

But a team of researchers from the Cedars Sinai Heart Institute in Los Angeles has proven that those muscles may not necessarily be gone forever.

In a study that may change how heart attacks are treated, Eduardo Marban and his team used stem cells to re-grow damaged heart muscle. In the 17 patients who received the therapy, Mr Marban measured an average 50 per cent reduction in the size of the scar tissue.

"One of the holy grails in medicine has been the use of medicine to achieve regeneration," he said. "Patients that were treated not only experienced shrinkage of their scars, but also new growth of their heart muscle, which is very exciting."

The stem cells were not derived from embryos, but instead were developed from the patients' own hearts. Mr Marban's team inserted a catheter into the diseased hearts and took a small biopsy of muscle. In the laboratory, the tissue was manipulated into producing stem cells to re-inject into the patients' hearts.

Over the course of a year, the cells took root in cardiac tissue, encouraging the heart to create new muscle and blood vessels. In other words, the heart actually began to mend itself.

While similar research has been done using stem cells from bone marrow, this is the first time that stem cells derived from a patient's own cardiac tissue have been used.

Mr Marban believes this therapy could be broadly used in many of the five to seven million Americans who suffer from heart disease every year. And he said the applications could go well beyond diseased hearts.

"If we can do that in the heart, I don't see any reason, conceptually, why we couldn't do it in kidneys for example, or pancreas or other organs that have very limited regenerative capacity," he said.

While the procedure may be a revolutionary medical technique, there are still a few more puzzling questions about the research that Mr Marban would like to investigate further.

For example, while the patients grew new heart muscle and saw a dramatic reduction in scar tissue, the actual function of their hearts did not show a significant improvement. And it appeared the stem cells themselves may not have turned into cardiac muscle, but rather they stimulated the heart to produce new muscle cells.

Nonetheless, the potential success of this research could hold a lot of promise for the millions of Americans who suffer from heart disease each and every year, which is the leading cause of death in the United States.

If his future experiments yield the same results as this initial study, Mr Marban said he could be offering this therapy to patients within four years - and that could go a long way in mending all of America's broken hearts.

Read more here.

See more here:
Stem cells could fix broken hearts

Read More...

Healing a Broken Heart: Stem Cell Breakthrough Repairs Scars

February 15th, 2012 5:54 am

For the first time, researchers have used stem cells from a patient’s own heart to repair the damage to the muscle that occurs during heart attack.

Dr. Eduardo Marban, director of the Cedars Sinai Heart Institute, and his team report in the journal Lancet that 17 patients who received an injection of their own heart cells grown from their stem cells saw the scarring on their hearts shrivel by 50% over a year. Eight patients who received usual care had no change.

During a heart attack, some of the heart’s muscle is cut off from its oxygen supply, so within seconds these cells start to die. The body’s immune system treats the change like a trauma and begins to wall off the dying tissue, creating an ever-thickening layer of scarring; eventually, the scar tissue hampers the heart’s ability to pump blood efficiently throughout the body. Keeping this scarring to a minimum, or even reversing it is the Holy Grail of heart attack research: maintaining as much healthy and active heart muscle as possible increases patients’ chances of recovering quickly and completely.

“Heart disease is still the number one killer of men and women, so there is a dire need for new therapies to be tested,” says Dr. Deepak Srivastava, director of the Gladstone Institute Cardiovascular Disease, who is a leader in heart stem-cell research and was not involved in the current study. “I applaud them carrying through with a clinical trial, which is great.”

MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimer’s

The heart has a natural ability to fix minor defects by regenerating new muscle cells to replace dying ones. About 1% to 2% of heart cells die each year, and are replaced this way. This process can’t come close to regenerating the one-third of heart muscle that is typically affected by a heart attack, however, so Marban and his team decided to give the process a boost. The researchers extracted some of the naturally healing stem cells from the heart and nurtured them in a lab dish. The hope was to inject a large enough population of the cells back into the heart to trigger a broad-scale repair of the muscle after heart attack.

“We were gratified to see that the scars shrank in patients who had gotten the cells,” Marban says. “Not only that, but these patients also had a big increase in living heart muscle. The regeneration of living tissue, or regrowth of lost tissue, which is what we were able to achieve, is encouraging.”

All of the patients were enrolled in the trial within 1.5 months of having a heart attack, and had their hearts scanned with an MRI. Seventeen of the patients had a biopsy of their heart tissue so the researchers could extract the heart’s stem cells and expand them in the lab; the researchers then re-infusing 12 million to 25 million new heart cells into each patient’s heart artery 1.5 months to 3 months later. The control patients received standard care of medications and monitoring to recover from their heart attack.

At six months and again at one year into the study, Marban and his colleagues took additional MRIs of the patients’ hearts, to measure any changes in the size of their scar tissue. The patients who had received the heart cells showed markedly smaller scars and more living tissue over time, compared with those who received standard therapy. In fact, new tissue formation increased by 60% on average, compared with scar shrinkage.

Unfortunately, however, the patients did not show any change in heart function, as measured by the ejection fraction, or the ability of the heart to pump blood. In patients who got the stem cells, their ejection fraction went from 39% at the start of the study to 41% a year later; healthy hearts pump at about 50% or greater efficiency.

MORE: Rethinking the Framingham Score: Is There a Better Way to Predict Heart Disease?

But Marban isn’t discouraged by that, noting that although he wasn’t able to show that the heart functioned better overall in the stem-cell patients, he did find that in the areas where the scars had shrunk, the muscle appeared to be working more efficiently. “When you zoom in and look at regional function, there was big improvement,” he says. “We believe that the changes we see in the amount of scar tissue, even though it’s dramatic and unmistakable and significant, still aren’t enough to tilt the balance toward complete repair of the heart.”

Will it take more cells, or more time, or different types of cells to generate that type of complete repair? That’s impossible to tell from this study, but the results are encouraging enough to trigger more work into such cell-based treatments. “This is part of a series of important steps toward ultimately moving to cell-based therapy that will someday create new muscle in the heart,” says Srivastava.

Future studies could answer some critical questions about exactly how the infused cells are helping to shrink scars and prompt the growth of new heart muscle. Srivastava notes that it’s unlikely that the new cells are turning into heart muscle themselves, but are more likely helping existing heart muscle generate new tissue. If that’s the case, then researchers can refine the technique to help heart attack patients months or even years after their event to repair their scarred hearts. “The real objective is to offer treatment for people who have a long-standing injury to the heart, and more severe heart disease,” says Marban.

MAGAZINE: Friends With Benefits: The Science of Animal Friendship

Alice Park is a writer at TIME. Find her on Twitter at @aliceparkny. You can also continue the discussion on TIME’s Facebook page and on Twitter at @TIME.

See more here:
Healing a Broken Heart: Stem Cell Breakthrough Repairs Scars

Read More...

Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent …

February 15th, 2012 5:53 am

Dr. Uma Lakshmipathy speaks at various conferences about work on the creation of integration-free induced pluripotent stem cells at high efficiency with Sendai Virus using the CytoTune™ -iPS Reprogramming Kit. Uma Lakshmipathy's next speaking engagement will be in Mid February at the Stem Cell Banking Conference in London.

Carlsbad, California (PRWEB) February 14, 2012

Uma's last presentation about the Generation of Induced Pluripotent Stem Cells summarized here was also recorded for viewing and placed on the Life Technologies website. (http://find.lifetechnologies.com/stemcells/umavideo/article)

The CytoTune™ - iPS Reprogramming Kit is a high efficiency, integration- free, easy-to-use somatic cell reprogramming kit used in the generation of induced pluripotent stem cells. This kit utilizes Sendai Virus particles of the four Yamanaka factors, which have been shown to be critical in the successful generation of induced pluripotent stem cells.

In her presentations, Uma Lakshmipathy discusses two current challenges faced when generating iPSC including low efficiency and expertise of users.

Low Efficiency

The most common method for generation of induced pluripotent stem cells is the transfection of the four Yamanaka factors using lentivirus or retrovirus. One of the biggest challenges for scientists right now is the low efficiency of iPSC generation. With difficult to transfect cell types or cells from older patients, efficiencies can be 0.001% or lower when using lentiviral or retroviral methods.

Expertise of Users

The second challenge is for users with little expertise that have a difficult time detecting these emerging iPSC colonies. When looking for pluripotent stem cells, people can either pick them up really easily or have trouble deciding what clones to place their bet on.

Efficiency & Safety of IPSC Generation

There are several methods which improve reprogramming efficiency including viral non-integrating and small molecule methods such as mRNA, microRNA and small molecules. The developers of the CytoTune™ -iPS Reprogramming Kit concentrated on a non-integrating viral method utilizing Sendai Virus, a negative sense RNA virus. Sendai Virus is able to infect a wide variety of cell types and generates induced pluripotent stem cells at efficiencies 100-fold higher than lentiviral or retroviral methods.

When comparing efficiency vs. safety of reprogramming methods, small molecules like microRNA, RNA and protein which don’t leave a footprint are safer for cell therapy research; however, the efficiency of generating induced pluripotent stem cells with these methods is pretty low at this point in time.

The highest efficiency so far has been achieved with viral methods such as Retrovirus and Lentivirus. More recently the CytoTune™ -iPS Reprogramming Kit actually exceeds the efficiency that can be obtained with these traditional viral systems and at the same time it is much safer because it is a non-integrating RNA virus. Therefore it will not leave a footprint in the iPSCs that are created.

The CytoTune™ -iPS Reprogramming Kit will:

    Reduce hands on time - enables successful iPS reprogramming in one simple transduction     Generate more cells - high efficiency reprogramming offers more iPS cells from a single experiment     Use in a broad range of experiments - lack of genomic integration and viral remnants allows use from basic to clinical research

Ease of Use

The CytoTune™ -iPS Reprogramming Kit provides a simple system for somatic cell reprogramming. For most cell types, the CytoTune™ -iPS Reprogramming Kit requires only one application of the virus for successful cell reprogramming, unlike other methods such as Lentivirus and mRNA which can require multiple rounds of transduction to produce iPS cells. Selection of colonies is also easier with the CytoTune™ –iPS Reprogramming Kit due to the lower number of non-induced pluripotent stem cells that are generated.

To view this presentation visit http://find.lifetechnologies.com/stemcells/umavideo/article

Uma Lakshmipathy's protocol, "Transfection of Human Embryonic Stem Cells" can be seen here http://bit.ly/y91Gpd

###

Jennifer Hornstein
Life Technologies
(760) 602-4577
Email Information

View original post here:
Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ...

Read More...

Page 1,514«..1020..1,5131,5141,5151,516..1,5201,530..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick