header logo image


Page 1,491«..1020..1,4901,4911,4921,493..1,5001,510..»

A Chimeric Immune System: Fixing the Problem With Organ Transplant

March 20th, 2012 5:19 am

Mixing the stem cells of an organ recipient with those of the donor could help to keep the body's picky immune system from rejecting transplants.

kalewa/Shutterstock

One of the greatest challenges in medicine is the need for replacement organs. Every 10 minutes another person's name is added to the national organ transplantation waiting list, the length of which now exceeds 100,000. Eighteen of these people die each day. Those who are fortunate enough to receive an organ often have to take immunosuppressive drugs for the rest of their lives, thus making them more vulnerable to other infections, and even then their new organs may gradually be rejected by their immune system.

One potential way to overcome this problem is through the creation of a chimeric immune system by mixing the immune (hematopoetic) stem cells of the recipient with that of the donor. As explained in last week's issue of Science Translational Medicine:

According to Greek mythology, the Chimera was a fire-breathing creature made of parts from different animals: the body of a lioness, a snake's head at the end of the tail, and the head of the goat. Sightings of this fearsome beast portended any of a number of terrible disasters. In the context of organ transplantation, a "chimera" can indicate both desirable and disastrous outcomes. For example, hematopoietic chimerism, in which the immune cells in the graft recipient come from both the host and the donor, may promote graft tolerance, but may also cause graft-versus-host disease (GVHD), in which the donor immune cells attack the healthy tissue of the host.

The underlying problem behind rejection and GVHD -- both of which shrink the potential donor pool -- is matching. Now, a novel procedure has come one step closer to overcoming the matching problem and achieving transplantation tolerance. In an exciting, albeit small, study the University of Louisville team transplanted mismatched, unrelated donor kidneys into eight patients along with a mix of donor hematopoetic stem cells and a special population of tolerance-inducing facilitator cells (FCs). These FCs have been shown in animal models to improve engraftment (acceptance of the graft) and avoid GVHD. The results and potential meaning are well-summarized by Science Translational Medicine:

Five of eight kidney transplant recipients exhibited durable chimerism and were weaned off immunosuppressive therapies by one year after transplantation, with no signs of GVHD or engraftment syndrome. If confirmed in larger patient cohorts, this approach to transplantation could free some patients from the difficulties associated with lifelong immunosuppression and add transplantation as a viable option for patients for whom no matched donors exist.

An editorial written in STM about the study says that this procedure "may potentially have an enormous, paradigm-shifting impact on solid-organ transplantation" and that "few transplant developments in the past half-century have been more enticing than these that put transplantation tolerance within our grasp." This editor followed up with the primary investigator of the study, Dr. Suzanne Ildstad from the Institute for Cellular Therapeutics at the University of Louisville, to ask about the future of the procedure as well as other applications that are being explored:

Your paper refers to applications "not only in sold organ and cell transplant recipients but also for ... hemoglobinopathies, inherited metabolic disorders, and autoimmune diseases." What other applications are currently being explored using this novel chimeric approach?

We are currently working on applying this procedure to sickle cell disease, thalassemia, metachromatic leukodystrophy, and in the near future, type 1 diabetes.

Link:
A Chimeric Immune System: Fixing the Problem With Organ Transplant

Read More...

Kidney Transplant Patients Seek Life Without Immune-Suppressing Drugs

March 20th, 2012 5:19 am

This photo taken Thursday, March 8, 2012, Lindsay Porter is seen in her home in Chicago. Lindsay Porter's kidneys were failing rapidly when a friend offered to donate one of his. Then she made an unusual request: Would he donate part of his immune system, too? (AP Photo/M. Spencer Green)

WASHINGTON Lindsay Porter's kidneys were failing rapidly when a friend offered to donate one of his. Then she made an unusual request: Would he donate part of his immune system, too?

Every day for the rest of their lives, transplant recipients must swallow handfuls of pills to keep their bodies from rejecting a donated organ. The Chicago woman hoped to avoid those problematic drugs, enrolling in a study to try to trick her own immune system into accepting a foreign kidney.

It's one of a series of small, high-stakes experiments around the country that has researchers hopeful that they're finally closing in on how to help at least some transplant patients go drug-free. The key: Create a sort of twin immunity, by transplanting some of the kidney donor's immune-producing cells along with the new organ.

"I'm so lucky," says the 47-year-old Porter, who stumbled across the research at Chicago's Northwestern University. Porter was able to quit her pills last summer, a year after her transplant, and says, "I feel amazing."

These experiments are a big gamble. If the technique fails, patients could lose their new kidney, possibly their lives. Doctors stress that no one should try quitting anti-rejection drugs on their own.

Why risk it even in a careful scientific study? Anti-rejection medications can cause debilitating, even deadly, side effects, from fatigue and infections to an increased risk of cancer and kidney damage.

Without the drugs, "the hope for me is I'm able to keep this kidney for the rest of my life," Porter says.

Across the country, Stanford University is testing a slightly different transplant method and hosted a reunion earlier this month for about a dozen kidney recipients who've been drug-free for up to three years.

"These people who are off their drugs, they're cured," says Dr. Samuel Strober, who leads the study of Stanford's approach. "If they have to be on drugs the rest of their life, it doesn't have the same meaning of `cure.'"

Read the original here:
Kidney Transplant Patients Seek Life Without Immune-Suppressing Drugs

Read More...

New genetic path for scleroderma

March 20th, 2012 5:18 am

Public release date: 19-Mar-2012 [ | E-mail | Share ]

Contact: Marla Paul marla-paul@northwestern.edu 312-503-8928 Northwestern University

CHICAGO --- A genetic pathway previously known for its role in embryonic development and cancer has been identified as a target for systemic sclerosis, or scleroderma, therapy. The finding, discovered by a cross-disciplinary team led by John Varga, MD, John and Nancy Hughes Distinguished Professor of Rheumatology at Northwestern University Feinberg School of Medicine, was recently published in the journal Arthritis & Rheumatism.

"We showed, for the first time, that the Wnt signaling pathway is abnormally activated in scleroderma patients," said Varga, who is also a physician at Northwestern Memorial Hospital. "This is significant for three reasons. First, it gives a better picture of scleroderma and fibrosis in general. Second, it provides a strategy for assessing disease severity, progression, and activity. And third, it opens a door for the design of treatments that aim to block the Wnt pathway and restore its normal controlled activity."

Varga's laboratory collaborated with a pulmonary team at Northwestern, along with teams at Case Western Reserve University and Dartmouth University on the discovery.

Researchers studied skin and lung biopsies from scleroderma patients and found that the Wnt pathway was 'turned on', in contrast to healthy individuals where the pathway was 'turned off.' Varga said this activation may be due to loss of Wnt inhibitors that normally serve as 'brakes' on the pathway to prevent its activation.

The team also examined what the pathway does using fibroblasts and stem cells from healthy people. They found Wnt causes fibroblast activation and blocks the development of fat cells (adipocytes), which directly contribute to scar formation and tissue damage seen in scleroderma.

Scleroderma is a chronic autoimmune disease in which the body's immune system attacks itself. It causes progressive thickening and tightening (fibrosis) of the skin and also can lead to serious internal organ damage and, in some cases, death. Scleroderma affects an estimated 150,000 people in the United States, most frequently young to middle-aged women.

"Scleroderma is a complex and poorly understood disease with no cure," said Varga. "Our findings suggest that treatments targeting the Wnt signaling pathway could lead to an effective treatment."

Varga said Northwestern researchers next plan to conduct multi-center preclinical studies to evaluate treatments that block the Wnt pathway in animal models and measure Wnt activity in additional scleroderma biopsies to see if it can be clinically useful as a biomarker.

More here:
New genetic path for scleroderma

Read More...

Stem Cells Therapy MS2.mp4 – Video

March 20th, 2012 5:17 am

09-02-2012 23:02 Stem Cell Therapy latest news - Jan 2012, MS options Contact Kevin for help to raise funds for treatment part 2 of 4

The rest is here:
Stem Cells Therapy MS2.mp4 - Video

Read More...

Bioplasty – Stem Cell Treatments

March 20th, 2012 5:17 am

14-03-2012 16:22 Stem Cells for Cosmetic use using Bioplasty featuring Artefill. Envision using your own stem cells to restore or reshape your body to a more attractive and youthful figure in a way that is safe, natural and undetectable. Today, stem cell therapy is no longer a science fiction story but a reality...

Continued here:
Bioplasty - Stem Cell Treatments

Read More...

State: Second doctor's license restricted for performing stem cell treatment on patient who died

March 20th, 2012 5:17 am

Dr. Konstantine K. Yankopolus

The state Department of Health restricted a second doctor's license for working under the direction of Dr. Zannos Grekos in performing a stem cell treatment and for falsifying a medical report after a patient died, according to the state order.

The emergency license restriction is against Dr. Konstantine K. Yankopolus, 3880 Colonial Blvd., Suite 2, Fort Myers, according to the order issued by the state health department late Monday.

The restriction only prohibits Yankopolus from doing anything with stem cells. After a career as an obstetrician/gynecologist, he is now in general practice.

"We attempted a life-saving procedure on a very sick patient and it didn't go well," Yankopolus said Monday night. "Our motivation was pure the patient had no other option."

The state's action comes on the heels of Grekos attorney last week issuing a statement that another doctor, and not his client, was involved in the treatment of a 77-year-old Indiana man who died March 2. Grekos attorney also denied that a stem cell treatment was performed, only liposuction.

The state health department suspended Grekos license after the death, saying Grekos violated an earlier restriction that he not to do anything with stem cells or bone marrow aspirate in his practice at 9500 Bonita Beach Road, Suite 310.

Lee County sheriff's authorities identified the man as Richard Poling, of Newburgh, Ind. The Sheriff's Office also is conducting a criminal probe.

Grekos has been under state scrutiny by state health regulators for well over a year when an earlier patient, a 66-year-old breast cancer patient, went to him for stem cell treatment in 2010 for neurological problems. She later fell, suffered severe brain damage and was taken off life support. After her death, the state ordered Grekos not to do anything with stem cells or bone marrow aspirate in his practice.

The restriction did not prohibit him from conducting educational seminars in the community about stem cell therapy or from arranging for patients to go for the treatment in the Dominican Republic.

Excerpt from:
State: Second doctor's license restricted for performing stem cell treatment on patient who died

Read More...

Huntington's Disease – Stem Cell Therapy Potential

March 20th, 2012 5:17 am

Editor's Choice Academic Journal Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 19 Mar 2012 - 10:00 PDT

email to a friend printer friendly opinions

Current Article Ratings:

4 (1 votes)

3 (1 votes)

However, according to a study published March 15 in the journal Cell Stem Cell, a special type of brain cell created from stem cells could help restore the muscle coordination deficits that are responsible for uncontrollable spasms, a characteristic of the disease. The researchers demonstrated that movement in mice with a Huntington's-like condition could be restored.

Su-Chun Zhang, a University of Wisconsin-Madison neuroscientist and the senior author of the study, said:

In the study Zhang, who is an expert in creating various types of brain cells from human embryonic or induce pluripotent stem cells, and his team focused on GABA neurons. The degradation of GABA cells causes the breakdown of a vital neural circuit and loss of motor function in individuals suffering from Huntington's disease.

According to Zhang, GABA neurons generate a vital neurotransmitter, a chemical that helps support the communication network in the brain that coordinates movement.

Zhang and his team at the UW-Madison Waisman Center, discovered how to generate large quantities of GABA neurons from human embryonic stem cells. The team's goal was to determine whether these cells would safely integrate into the brain of a mouse model of Huntington's disease.

Read the original post:
Huntington's Disease - Stem Cell Therapy Potential

Read More...

Hero Dog Receives Stem Cell Therapy

March 20th, 2012 5:16 am

Stem Cell Therapy Helping Heroic Dogs Recover

News4's Darcy Spencer explains how a breakthrough treatment is helping search and rescue dogs like Red recover after years of working in disaster zones.

A breakthrough treatment is helping area search-and-rescue dogs that played key roles on Sept. 11, 2001, and during other disasters.

Red's first assignment as a search, rescue and recovery dog was at the Pentagon following the 9/11 attacks. Years of rescue work and a 12-foot fall from a ladder have taken a toll. Arthritis forced Red into retirement in July and turned her into a couch potato.

The 12-year-old black lab received a breakthrough stem cell treatment today that will ease her pain and give her more mobility.

Her veterinarian, Dr. John Herrity, of the Burke Animal Clinic, has done more than two dozen of the stem cell operations developed by Medivet America, which also donated the cost of the procedure.

The treatment won't bring Red back out of retirement, but it is expected to put spring back in her step within a couple of months.

Two other 9/11 search-and-rescued dogs have been treated with stem cell therapy and are back to their normal activities.

See the article here:
Hero Dog Receives Stem Cell Therapy

Read More...

Human stem cell injections ease Parkinson's symptoms in monkeys

March 19th, 2012 3:30 pm

London, March 19 (ANI): An injection of human embryonic stem cells (hESCs) into their brain helped monkeys with Parkinson's disease-like symptoms ease their suffering, say Japanese scientists.

These cells were injected into monkeys whose brains had been damaged by a chemical that destroys dopamine-producing neurons and so causes Parkinson's symptoms.

In the study conducted by Jun Takahashi of Kyoto University in Japan and colleagues, two monkeys received hESCs that had been matured into an early form of neural cell.

Six months later, the monkeys had recovered 20 to 45 per cent of the movement they had lost before treatment.

Post-mortems a year after treatment showed that the cells had developed into fully functioning dopamine-secreting neurons.

Another monkey that received less-mature neural cells also showed improvements.

"Monkeys starting with tremors and rigidity [began] to move smoothly, and animals originally confined to sitting down were able to walk around," New Scientists quoted Takahashi as saying.

But it will probably be four to six years before clinical trials in humans begin, according to the team. (ANI)

Read the original post:
Human stem cell injections ease Parkinson's symptoms in monkeys

Read More...

Physicians grow retinas from human blood-derived stem cells

March 19th, 2012 3:30 pm

Among the primary causes of adult-onset blindness are degenerative diseases of the retina, such as macular degeneration and retinitis pigmentosa. While some treatments have been developed that slow down the rate of degeneration, the clinical situation is still generally unsatisfactory. But if you could grow a new retina, transplant might be a possible cure. Now new hope is springing up from a research project at the University of Wisconsin-Madison in which scientists have succeeded in growing human retinal tissue from stem cells.

Pluripotent stem cells are capable of forming nearly any tissue in the body including retinal tissue. There has been great controversy about using pluripotent stem cells for human research or treatment, as historically the only source was to harvest them from early stage human embryos. Instead, for this work the researchers were able to regress mature body cells back into the pluripotent stem cells from which they originally grew. The process is called reprogramming, and is accomplished by inserting a set of proteins into the cell.

To produce the pluripotent stem cells, a white blood cell was taken from a simple blood sample. Genes which code for the reprogramming proteins are inserted into a plasmid, a nonliving ring of DNA. The cell is then infected with the plasmid, rather as a virus infects a cell, with the difference that the plasmid's genes do not become part of the cell's genetic structure. As the reprogramming proteins are formed within the cell by the plasmid DNA, the cell has a good chance of being reprogrammed into a pluripotent stem cell. This stem cell can then be encouraged to grow and differentiate into retinal tissue rather than make more blood cells.

Laboratory-grown human retinal tissue will certainly be used in testing drugs and to study degenerative diseases of the retina, and may eventually make available a new transplantable retina, or a new retina that is grown in place within the eye.

The figure above compares a schematic of the human retina with a photomicrograph of laboratory-grown retinal tissue. The new tissue has separated into at least three layers of cells, with rudimentary photosensitive rods or cones (red) at the top of the picture, and nerve ganglia (blue-green) at the bottom. The blue cells in the middle layer are likely bipolar retinal cells. The structure of the lab-grown retinal tissue is similar to that of a normal human eye, as can be seen by comparison with the retina schematic. The cells also formed synapses, which provide the channels through which optical information flows to the brain.

"We don't know how far this technology will take us, but the fact that we are able to grow a rudimentary retina structure from a patient's blood cells is encouraging, not only because it confirms our earlier work using human skin cells, but also because blood as a starting source is convenient to obtain," says Dr. David Gamm, pediatric ophthalmologist and senior author of the study. "This is a solid step forward." Further steps are eagerly awaited by those living in the dark.

Source: University of Wisconsin School of Medicine and Public Health

Read the original here:
Physicians grow retinas from human blood-derived stem cells

Read More...

Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading …

March 19th, 2012 3:29 pm

CLEARWATER, FL--(Marketwire -03/19/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of Perinatologist Sanford M. Lederman, MD to its Scientific and Medical Board of Advisors (SAMBA).

As Chairman of the Department of Obstetrics and Gynecology at New York Methodist Hospital in Brooklyn, Dr. Lederman is consistently recognized by New Yorker Magazine's list of "Top Doctors" in New York. A specialist in high-risk pregnancy issues, Dr. Lederman has authored a number of scientific papers and is a highly regarded public speaker. He adds a very important dimension to the Biostem Scientific and Medical Board of Advisors by bringing specialized knowledge regarding the potential use of stem cell applications for the health of women and children.

Biostem President Dwight Brunoehler said, "Dr. Lederman is one of the most highly respected Obstetric and Gynecological physicians in the country. Sandy and I have worked together very actively on stem cell projects for over 18 years, including setting up a cord blood stem cell national donation system where all expectant moms have a chance to donate their baby's cord blood to benefit others."

Dr. Lederman stated, "Biostem's expansion plans mesh well with my personal interest in developing and advancing the use of non-controversial stem cells to improve the health of women and children. I have a particular interest in increasing the use of cord blood stem cells for in-utero transplant procedures, where stem cells are used to cure a potential life threatening disease such as sickle cell or thalassemia and other selective genetic disorders in a baby before it is even born."

Prior to accepting his current position with New York Methodist Hospital, Dr. Lederman was Residency Program Director and Vice Chairman of the Department of Obstetrics and gynecology at Long Island College Hospital in Brooklyn. At various times, he has served as a partner at Brooklyn Women's Health Care, President at Genetics East and Clinical Associate Professor at the State University of New York. He has served on the medical advisory board of several companies. He previously was Medical Director of Women's Health USA and was a founding member of the Roger Freeman Perinatal Society.

A graduate of Hunter College in New York, he received his initial medical training at Universidad Autonoma de Guadalajara School of Medicine. His initial internship was at New York Medical College in the Bronx. During the course of his career, Dr. Lederman has served and studied in various capacities at Long Island College Hospital in the Bronx, North Shore University Hospital in New York, Kings County Medical Center in Brooklyn, Long Beach Memorial Medical Center in California and the University of California at Irvine.

About Biostem U.S., CorporationBiostem U.S., Corporation (OTCQB: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Continue reading here:
Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading ...

Read More...

Immune Role in Brain Disorder?

March 19th, 2012 3:28 pm

Replacing immune cells in a mouse model of Rett syndrome, a developmental brain disorder, improved symptoms, suggesting a new target for treatment.

Rett syndrome is a devastating genetic disease in which brain developmentalong with communication and motor skillsregresses after about 18 months of normal development. While previous work on this disease has focused on its neurological basis, new research published online yesterday (March 18) in Nature suggests that the immune system may be a target worth investigating: in a mouse model of the disease, bone marrow transplants significantly improved symptoms, extending lifespan far and beyond what was expected, increasing size and reducing tremors.

Its a very interesting, very provocative paper that could potentially be very important both for the basic biology of the disease as well as translational aspects of it, said Qiang Chang, who studies the molecular mechanisms of Rett syndrome at the University of Wisconsin and was not involved in the new study. But I think this is the type of work that probably raises more questions than it answers.

Rett syndrome is caused by many different mutations in the Mecp2 gene, which lies on the X-chromosome and regulates thousands of other genes by binding to and altering methylation marks attached to DNA. Posing a further challenge to understanding the diseases mechanism, Mecp2 is expressed in many tissues in the body. Every cell type has methylation, but the methylation patterns may be different cell to cell, said Zhaolan Zhou, who studies epigenetics and Rett syndrome at the University of Pennsylvania and did not participate in the research. If thats the case, Mecp2 may regulate and participate in different pathways in different cells.

However, because Rett syndrome is a brain disorder, most of the research has focused on Mecp2s activity in neuronsand not without good reason. Its extremely highly expressed in neurons, and its thought that the protein plays an important role in the maturation of neurons and brain circuit, said Chang. Children with Rett syndrome are born essentially normal with symptoms showing up some 18 months later, and thats the window when Mecp2 is dramatically upregulated in the brain, he added.

But the new research suggests that brain cells may not present the full picture. After reading a paper published a decade ago about how Mecp2 mutations slow T-cell growth, neuroimmunologists Nol Derecki and Jonathan Kipnis from the University of Virginia School of Medicine decided to further investigate immune system interactions with Rett syndrome.

They focused on microglia, which are classic immune cells that happen to live in the brain, said Derecki. Microglia taken from the brains of mice lacking Mecp2 were less able to respond to invaders and were very much impaired in a number of their functions, he said. If the immune system, including the microglia, was functioning in an impaired way, replacing the impaired immune system with a normal immune system might improve the disease somewhat.

The researchers irradiated 4-week old male mice that lacked Mecp2 to kill off their immune cellsincluding microgliaand then injected their bones with marrow from normal mice. The idea was that the non-mutated stem cells in bone marrow would generate normal immune cells that then could migrate into and repopulate the brain.

Because male mice only have one X-chromosome, if their single copy of Mecp2 is missing, they are incredibly sick: they live just 8 weeks on average, are small, and have tremors and breathing irregularities. But the mice that received bone marrow transplants survived much longerthe oldest mouse at this point is just under a year, said Dereckiand they looked and acted much more like normal mice.

The mice werent cured, however; while some of their symptoms were reduced, the brain cells still carried the mutant copy of Mecp2. It certainly is a disease of neurons, and the neurons still have their own problemsbut its also likely a disease of many other cell types, said Derecki. We dont think microglia cause the disease, but we think that when they malfunction, they make the disease much worse.

Read this article:
Immune Role in Brain Disorder?

Read More...

Genetic research develops tools for studying diseases, improving regenerative treatment

March 19th, 2012 3:28 pm

Public release date: 19-Mar-2012 [ | E-mail | Share ]

Contact: Mark Weiss mlweiss@k-state.edu 785-532-4520 Kansas State University

MANHATTAN, KAN. -- Research from a Kansas State University professor may make it easier to recover after spinal cord injury or to study neurological disorders.

Mark Weiss, professor of anatomy and physiology, is researching genetic models for spinal cord injury or diseases such as Parkinson's disease. He is developing technology that can advance cellular therapy and regenerative medicine -- a type of research that can greatly improve animal and human health.

"We're trying to build tools, trying to build models that will have broad applications," Weiss said. "So if you're interested in neural differentiation or if you're interested in response after an injury, we're trying to come up with cell lines that will teach us, help us to solve a medical mystery."

Weiss' research team has perfected a technique to use stem cells to study targeted genetic modifications. They are among a handful of laboratories in the world using these types of models for disease. The research is an important step in the field of functional genomics, which focuses on understanding the functions and roles of these genes in disease.

The researchers are creating several tools to study functional genomics. One such tool involves developing new ways to use fluorescent transporters, which make it easier to study proteins and their functions. These fluorescent transporters can be especially helpful when studying neurological disorders such as Parkinson's disease, stroke and spinal cord injury.

"People who have spinal cord injury do not experience a lot of regeneration," Weiss said. "It is one of the problems of the nervous system -- it is not great at regenerating itself like other tissues."

The researchers want to discover a way to help this regenerative process kick in. By studying signals from fluorescing cells, they can understand how neural stem cells are reactivated.

"We want to try and make these genetic markers, and then we can test different kinds of treatment to see how they assist in the regenerative process," Weiss said.

Link:
Genetic research develops tools for studying diseases, improving regenerative treatment

Read More...

Genetic variation in East Asians found to explain resistance to cancer drugs

March 19th, 2012 3:28 pm

ScienceDaily (Mar. 18, 2012) A multinational research team led by scientists at Duke-NUS Graduate Medical School has identified the reason why some patients fail to respond to some of the most successful cancer drugs.

Tyrosine kinase inhibitor drugs (TKI) work effectively in most patients to fight certain blood cell cancers, such as chronic myelogenous leukemia (CML), and non-small-cell lung cancers (NSCLC) with mutations in the EGFR gene.

These precisely targeted drugs shut down molecular pathways that keep these cancers flourishing and include TKIs for treating CML, and the form of NSCLC with EGFR genetic mutations.

Now the team at Duke-NUS Graduate Medical School in Singapore, working with the Genome Institute of Singapore (GIS), Singapore General Hospital, and the National Cancer Centre Singapore, has discovered that there is a common variation in the BIM gene in people of East Asian descent that contributes to some patients' failure to benefit from these tyrosine kinase inhibitor drugs.

"Because we could determine in cells how the BIM gene variant caused TKI resistance, we were able to devise a strategy to overcome it," said S. Tiong Ong, MBBCh, senior author of the study and associate professor in the Cancer and Stem Cell Biology Signature Research Programme at Duke-NUS and Division of Medical Oncology, Department of Medicine, at Duke University Medical Center.

"A novel class of drugs called the BH3-mimetics provided the answer," Ong said. "When the BH3 drugs were added to the TKI therapy in experiments conducted on cancer cells with the BIM gene variant, we were able to overcome the resistance conferred by the gene. Our next step will be to bring this to clinical trials with patients."

Said Yijun Ruan, PhD, a co-senior author of this study and associate director for Genome Technology and Biology at GIS: "We used a genome-wide sequencing approach to specifically look for structural changes in the DNA of patient samples. This helped in the discovery of the East Asian BIM gene variant. What's more gratifying is that this collaboration validates the use of basic genomic technology to make clinically important discoveries."

The study was published online in Nature Medicine on March 18.

If the drug combination does override TKI resistance in people, this will be good news for those with the BIM gene variant, which occurs in about 15 percent of the typical East Asian population. By contrast, no people of European or African ancestry were found to have this gene variant.

"While it's interesting to learn about this ethnic difference for the mutation, the greater significance of the finding is that the same principle may apply for other populations," said Patrick Casey, PhD, senior vice dean for research at Duke-NUS and James B. Duke Professor of Pharmacology and Cancer Biology.

View post:
Genetic variation in East Asians found to explain resistance to cancer drugs

Read More...

Gene variant in East Asians could explain resistance to cancer drugs

March 19th, 2012 3:28 pm

London, March 19 (ANI): Scientists have now found answer to why some patients fail to respond to some of the most successful cancer drugs.

Tyrosine kinase inhibitor drugs (TKIs) work effectively in most patients to fight certain blood cell cancers, such as chronic myelogenous leukemia (CML), and non-small-cell lung cancers (NSCLC) with mutations in the EGFR gene.

These precisely targeted drugs shut down molecular pathways that keep these cancers flourishing and include TKIs for treating CML, and the form of NSCLC with EGFR genetic mutations.

Now, a multi-national research team led by scientists at Duke-NUS Graduate Medical School in Singapore, working with the Genome Institute of Singapore (GIS), Singapore General Hospital and the National Cancer Centre Singapore, has discovered that there is a common variation in the BIM gene in people of East Asian descent that contributes to some patients' failure to benefit from these tyrosine kinase inhibitor drugs.

"Because we could determine in cells how the BIM gene variant caused TKI resistance, we were able to devise a strategy to overcome it," said S. Tiong Ong, M.B.B. Ch., senior author of the study and associate professor in the Cancer and Stem Cell Biology Signature Research Programme at Duke-NUS and Division of Medical Oncology, Department of Medicine, at Duke University Medical Center.

"A novel class of drugs called the BH3-mimetics provided the answer," he said.

"When the BH3 drugs were added to the TKI therapy in experiments conducted on cancer cells with the BIM gene variant, we were able to overcome the resistance conferred by the gene. Our next step will be to bring this to clinical trials with patients," Ong added.

Yijun Ruan, Ph.D., a co-senior author of this study and associate director for Genome Technology and Biology at GIS said: "We used a genome-wide sequencing approach to specifically look for structural changes in the DNA of patient samples. This helped in the discovery of the East Asian BIM gene variant. What's more gratifying is that this collaboration validates the use of basic genomic technology to make clinically important discoveries."

If the drug combination does override TKI resistance in people, this will be good news for those with the BIM gene variant, which occurs in about 15 percent of the typical East Asian population. By contrast, no people of European or African ancestry were found to have this gene variant.

"While it's interesting to learn about this ethnic difference for the mutation, the greater significance of the finding is that the same principle may apply for other populations," said Patrick Casey, Ph.D., senior vice dean for research at Duke-NUS and James B. Duke Professor of Pharmacology and Cancer Biology.

Read the original post:
Gene variant in East Asians could explain resistance to cancer drugs

Read More...

Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire

March 19th, 2012 3:27 pm

-- Allure Image Enhancement Among First to Offer the Stem Cell Facelift and PRP Therapy in the Inland Empire --

UPLAND, CA (PRWEB) March 19, 2012

Stem Cell Facelift with PRP Therapy provides an amazing full facial restoration and can simulate the effects of a face lift, brow lift, and total facial rejuvenation in one sitting. In addition, the benefits of the PRP Therapy with growth factors enhance stem cell survival, giving long lasting and potentially permanent results, says John Grasso MD, Medical Director at Allure Image Enhancement. I find these procedures to be an exciting new approach to the world of dermal fillers. Rather than using lab derived products, patients can enjoy the benefits of volume and longevity from their own cells.

Stem Cells often thought of as controversial and futuristic, are the latest beauty secret now available. Although injectable wrinkle treatments are very popular, there are many who shy away from putting anything foreign into their face. The two most common requests my patients ask me when it comes to anti-aging rejuvenation are: 1. Is there something natural I can use? and 2. Is there anything that lasts longer? Autologous fat transfer enhanced with stem cells and platelet rich plasma is going to change the world of Anti-Aging skin care, says Mina Grasso NP, owner of Allure Image Enhancement. For those who do not have adequate fat deposits or choose not to have autologous fat transfer can still benefit from the healing and repair response of various growth factors and cytokines with PRP alone or combined with manufactured fillers.

Fat transfer has been around for many years and may yield inconsistent results: 50% of the transferred fat usually breaks down within 2 years. Fat is an abundant source of mesenchymal stem cells. The difficulty is that in obtaining fat using Liposuction, up to half of the natural stem cells may be damaged. By adding additional autologous stem cells to the suctioned fat, it closer approximates the original concentration of stem cells in fat in the body and may aid the transplanted fat cells in surviving longer. Platelet Rich Plasma (PRP), which contains growth factors and cytokines, stimulates a repair response in soft tissue when added to the stem cell enhanced fat cells. The grafted fat and stem cells as well as surrounding local cells are activated by these growth factors to generate new growth that plumps up sagging areas. The growth factors enhance the quality of skin on the surface and repair sun damage and skin color irregularities.

Using this revolutionary new method, stem cells show promise in regenerating collagenproducing fibroblasts, cartilage, muscle and even bone cells. Research trials are under way using stem cells to repair other damaged tissue such as lungs, knees, and hearts and reverse neurological degenerative diseases. Stem Cell Facelift with PRP results in long-lasting volume in the treated area, and patients can start to see improvement in skin texture a healthy glow as soon as three weeks following treatment, with dramatic results occurring over a period of two to four months and lasting for years..

About Allure Image Enhancement, Inc.

Founded by Mina Grasso, RN, MSN, FNP-C, and her husband John Grasso MD. Allure Image Enhancement, Inc., for 15 years has served the Inland Empire with the latest in medical esthetics, providing services such as Botox Cosmetic, Restylane, Dysport, Juvderm, Latisse, Laser Hair Removal, Tattoo Removal, Laser Skin Rejuvenation, Vein Treatment, Body Shaping, and many more services.

Contact:

Nicholas Rodgers, CAC

Visit link:
Breakthrough Beauty Procedure Using Your Own Stem Cells Offered in the Inland Empire

Read More...

Stem cell therapy banned in Kuwait

March 19th, 2012 3:26 pm

(MENAFN - Arab Times) Ministry of Health (MoH) employees holding PhD degrees announced that they will participate in the sit-in demonstration carried out by the Labor Union of Health Ministry, reports Al-Seyassah daily.

In the press release, they said they are protesting against the fact that they are receiving the same salary scale and benefits as any other ministry employee with lower qualifications and if necessary, they are ready to even burn their PhD certificates at the sit-in to get the benefits they deserve according to their qualifications.

The sit-in will be carried out in front of Health Ministry headquarters in Sulaibikhat at 10 am on Tuesday, March 20, 2012.

The number of PhD holders has exceeded 100 considering the participation of PhD holders from other ministries as well.

Meanwhile, the MoH has banned stem cell therapy in the country until the committee tasked to set the standards for the treatment completes its work, reports Al-Anba daily quoting Director of Health License Department Dr Marzouq Al-Bader.

Al-Bader disclosed the ministry had earlier formed the committee to ensure the stem cell procedures are carried out in an appropriate manner to protect the patients. He added the ministry will also issue a decision soon to regulate the use of antibiotics in the private health sector.

Meanwhile, Al-Bader confirmed the ministry has endorsed around 51,000 female doctors in private hospitals and health centers. He said the ministry closely monitors the performance of female doctors and those found to have violated the law will be referred to the Medical Council for the necessary action.

On the issuance of licenses through the Internet, Al-Bader revealed his department has asked the ministry to activate the e-link system for this purpose.

He said the ministry has asked the Kuwait Municipality to issue permit for the construction of a building fit for the department's operations.

Meanwhile, the Medical Emergency Department at the Ministry of Health has affirmed its readiness to deal with emergency cases that may arise due to a series of dust storms engulfing the country.

See more here:
Stem cell therapy banned in Kuwait

Read More...

California’s stem cell agency ponders a future without taxpayer support

March 19th, 2012 12:44 pm

LOS ANGELES, Calif. - The creation of California's stem cell agency in 2004 was greeted by scientists and patients as a turning point in a field mired in debates about the destruction of embryos and hampered by federal research restrictions.

The taxpayer-funded institute wielded the extraordinary power to dole out $3 billion in bond proceeds to fund embryonic stem cell work with an eye toward treatments for a host of crippling diseases. Midway through its mission, with several high-tech labs constructed, but little to show on the medicine front beyond basic research, the California Institute for Regenerative Medicine faces an uncertain future.

Is it still relevant nearly eight years later? And will it still exist when the money dries up?

The answers could depend once again on voters and whether they're willing to extend the life of the agency.

Several camps that support stem cell research think taxpayers should not pay another cent given the state's budget woes.

"It would be so wrong to ask Californians to pony up more money," said Marcy Darnovsky of the Center for Genetics and Society, a pro-stem cell research group that opposed Proposition 71, the state ballot initiative that formed CIRM.

Last December, CIRM's former chairman, Robert Klein, who used his fortune and political connections to create Prop 71, floated the possibility of another referendum.

CIRM leaders have shelved the idea of going back to voters for now, but may consider it down the road. The institute recently submitted a transition plan to Gov. Jerry Brown and the Legislature that assumes it will no longer be taxpayer-supported after the bond money runs out. CIRM is exploring creating a non-profit version of itself and tapping other players to carry on its work.

"The goal is to keep the momentum going," board Chairman Jonathan Thomas said in an interview.

So far, CIRM has spent some $1.3 billion on infrastructure and research. At the current pace, it will earmark the last grants in 2016 or 2017. Since most are multi-year awards, it is expected to stay in business until 2021.

Read more from the original source:
California's stem cell agency ponders a future without taxpayer support

Read More...

Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading …

March 19th, 2012 12:44 pm

CLEARWATER, FL--(Marketwire -03/19/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of Perinatologist Sanford M. Lederman, MD to its Scientific and Medical Board of Advisors (SAMBA).

As Chairman of the Department of Obstetrics and Gynecology at New York Methodist Hospital in Brooklyn, Dr. Lederman is consistently recognized by New Yorker Magazine's list of "Top Doctors" in New York. A specialist in high-risk pregnancy issues, Dr. Lederman has authored a number of scientific papers and is a highly regarded public speaker. He adds a very important dimension to the Biostem Scientific and Medical Board of Advisors by bringing specialized knowledge regarding the potential use of stem cell applications for the health of women and children.

Biostem President Dwight Brunoehler said, "Dr. Lederman is one of the most highly respected Obstetric and Gynecological physicians in the country. Sandy and I have worked together very actively on stem cell projects for over 18 years, including setting up a cord blood stem cell national donation system where all expectant moms have a chance to donate their baby's cord blood to benefit others."

Dr. Lederman stated, "Biostem's expansion plans mesh well with my personal interest in developing and advancing the use of non-controversial stem cells to improve the health of women and children. I have a particular interest in increasing the use of cord blood stem cells for in-utero transplant procedures, where stem cells are used to cure a potential life threatening disease such as sickle cell or thalassemia and other selective genetic disorders in a baby before it is even born."

Prior to accepting his current position with New York Methodist Hospital, Dr. Lederman was Residency Program Director and Vice Chairman of the Department of Obstetrics and gynecology at Long Island College Hospital in Brooklyn. At various times, he has served as a partner at Brooklyn Women's Health Care, President at Genetics East and Clinical Associate Professor at the State University of New York. He has served on the medical advisory board of several companies. He previously was Medical Director of Women's Health USA and was a founding member of the Roger Freeman Perinatal Society.

A graduate of Hunter College in New York, he received his initial medical training at Universidad Autonoma de Guadalajara School of Medicine. His initial internship was at New York Medical College in the Bronx. During the course of his career, Dr. Lederman has served and studied in various capacities at Long Island College Hospital in the Bronx, North Shore University Hospital in New York, Kings County Medical Center in Brooklyn, Long Beach Memorial Medical Center in California and the University of California at Irvine.

About Biostem U.S., CorporationBiostem U.S., Corporation (OTCQB: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Here is the original post:
Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading ...

Read More...

Stem cell therapy banned in Kuwait

March 19th, 2012 12:44 pm

(MENAFN - Arab Times) Ministry of Health (MoH) employees holding PhD degrees announced that they will participate in the sit-in demonstration carried out by the Labor Union of Health Ministry, reports Al-Seyassah daily.

In the press release, they said they are protesting against the fact that they are receiving the same salary scale and benefits as any other ministry employee with lower qualifications and if necessary, they are ready to even burn their PhD certificates at the sit-in to get the benefits they deserve according to their qualifications.

The sit-in will be carried out in front of Health Ministry headquarters in Sulaibikhat at 10 am on Tuesday, March 20, 2012.

The number of PhD holders has exceeded 100 considering the participation of PhD holders from other ministries as well.

Meanwhile, the MoH has banned stem cell therapy in the country until the committee tasked to set the standards for the treatment completes its work, reports Al-Anba daily quoting Director of Health License Department Dr Marzouq Al-Bader.

Al-Bader disclosed the ministry had earlier formed the committee to ensure the stem cell procedures are carried out in an appropriate manner to protect the patients. He added the ministry will also issue a decision soon to regulate the use of antibiotics in the private health sector.

Meanwhile, Al-Bader confirmed the ministry has endorsed around 51,000 female doctors in private hospitals and health centers. He said the ministry closely monitors the performance of female doctors and those found to have violated the law will be referred to the Medical Council for the necessary action.

On the issuance of licenses through the Internet, Al-Bader revealed his department has asked the ministry to activate the e-link system for this purpose.

He said the ministry has asked the Kuwait Municipality to issue permit for the construction of a building fit for the department's operations.

Meanwhile, the Medical Emergency Department at the Ministry of Health has affirmed its readiness to deal with emergency cases that may arise due to a series of dust storms engulfing the country.

View post:
Stem cell therapy banned in Kuwait

Read More...

Page 1,491«..1020..1,4901,4911,4921,493..1,5001,510..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick