header logo image


Page 1,466«..1020..1,4651,4661,4671,468..1,4801,490..»

Doctor's license suspended after patient's death

March 9th, 2012 5:10 pm

BONITA SPRINGS, FL -

The state Surgeon General has issued an emergency suspension of the license of Dr. Zannos Grekos for providing a stem cell treatment to a patient contrary to previous restrictions placed on his license. The patient died during the treatment.

According to the emergency suspension order, in February 2011 Dr. Grekos was ordered not to perform any stem cell treatments on patients.

On March 2, 2012, Grekos is accused of treating an elderly man with pulmonary hypertension and pulmonary fibrosis with stem cells.

The suspension order says Grekos harvested tissue from the patient's abdomen that commonly contains stem cells. That tissue was sent to a lab to have the stem cells concentrated.

Those concentrated stem cells were then injected into the patient's bloodstream, according to the order.

The patient died of cardiac arrest during the treatment.

Because the stem cell treatment violated previous restrictions on Grekos' license, the state requested the emergency suspension of his license.

One section of the emergency suspension order states, "Nothing short of the immediate suspension of Dr. Grekos' license to practice medicine would be sufficient to protect the public from the danger of harm presented by Dr. Grekos."

Since the news of his suspension, others who have been under Dr. Grekos' care have spoken up.

Read more from the original source:
Doctor's license suspended after patient's death

Read More...

Fly Research Gives Insight Into Human Stem Cell Development

March 9th, 2012 5:10 pm

Newswise CHICAGO, IL March 8, 2012 Stem cells provide a recurring topic among the scientific presentations at the Genetics Society of Americas 53rd Annual Drosophila Research Conference, March 7-11 at the Sheraton Chicago Hotel & Towers. Specifically, researchers are trying to determine how, within organs, cells specialize while stem cells maintain tissues and enable them to repair damage and respond to stress or aging. Four talks, one on Thursday morning and three on Sunday morning, present variations on this theme.

For a fertilized egg to give rise to an organism made up of billions or trillions of cells, a precise program of cell divisions must unfold. Some divisions are asymmetric: one of the two daughter cells specializes, yet the other retains the ability to divide. Chris Q. Doe, Ph.D., professor of biology at the University of Oregon, compares this asymmetric cell division to splitting a sundae so that only one half gets the cherry. The cherries in cells are the proteins and RNA molecules that make the two cells that descend from one cell different from each other. This collecting of different molecules in different regions of the initial cell before it divides is termed "cell polarity."

Dr. Doe and his team are tracing the cell divisions that form a flys nervous system. Producing the right cells at the right time is essential for normal development, yet its not well understood how an embryonic precursor cell or stem cell generates a characteristic sequence of different cell types, he says. Dr. Doe and his team traced the cell lineages of 30 neuroblasts (stem cell-like neural precursors), each cell division generating a daughter cell bound for specialization as well as a self-renewing neuroblast. The dance of development is a matter of balance. Self-renew too much, and a tumor results; not enough, and the brain shrinks.

Tracing a cell lineage is a little like sketching a family tree of cousins who share a great-grandparent except that the great-grandparent (the neuroblast) continually produces more cousins. The offspring will change due to the different environments they are born into, says Dr. Doe.

Julie A. Brill, Ph.D., a principal investigator at The Hospital for Sick Children (SickKids) in Toronto, investigates cell polarity in sperm cells. These highly specialized elongated cells begin as more spherical precursor cells. Groups of developing sperm elongate, align, condense their DNA into tight packages, expose enzyme-containing bumps on their tips that will burrow through an eggs outer layers, form moving tails, then detach and swim away.

The Brill lab studies a membrane lipid called PIP2 (phosphatidylinositol 4,5-bisphosphate) that establishes polarity in developing male germ cells in Drosophila. Reducing levels of PIP2 leads to defects in cell polarity and failure to form mature, motile sperm, Dr. Brill says. These experiments show that localization of the enzyme responsible for PIP2 production in the growing end of elongating sperm tails likely sets up cell polarity. Since loss of this polarity is implicated in the origin and spread of cancer, defects in the regulation of PIP2 distribution may contribute to human cancer progression, she adds.

Stephen DiNardo, Ph.D., professor of cell and developmental biology at the Institute for Regenerative Medicine at the University of Pennsylvania, is investigating how different varieties of stem cells in the developing fly testis give rise to germ cells and epithelial cells that ensheathe the germ cells, as well as being able to self-renew. For each of these roles, stem cells are guided by their environment, known as their niche.

In the fly testis, we know not only the locations of the two types of stem cells whose actions maintain fertility, but of neighboring cells. We study how these niche cells are first specified during development, how they assemble, and what signals they use. Elements of what we and others learn about this niche may well apply to more complex niches in our tissues, Dr. DiNardo explains.

Denise J. Montell, Ph.D., professor of biological chemistry at Johns Hopkins University, will report on the female counterpart to the testis, the fly ovary. She and her co-workers use live imaging and fluorescent biomarkers to observe how the contractile proteins actin and myosin assemble, disassemble, and interact, elongating tissues in ways that construct the egg chamber. These approaches are particularly valuable for observing the response of the developing ovary to environmental changes. Starvation, for example, slows the rate of stem cell division and induces some egg chambers to undergo apoptosis (die) while others arrest until conditions improve, she says.

Her group has discovered that, surprisingly, following starvation and re-feeding, some of the cells that got far along the cell death pathway actually reversed that process and survived. The group has documented this reversal of apoptosis in a variety of mammalian cell types including primary heart cells. These observations have many intriguing implications. This may represent a previously unrecognized mechanism that saves cells that are difficult to replace, and therefore, may have implications for treating degenerative diseases.

Read the original post:
Fly Research Gives Insight Into Human Stem Cell Development

Read More...

New Industry Partnership to Strengthen Regenerative Medicine Industry in Canada

March 9th, 2012 1:23 pm

TORONTO, ONTARIO--(Marketwire -03/09/12)- The newest player in the regenerative medicine (RM) field in Canada is taking a collaborative approach to commercializing stem cell and biomaterials products. The Centre for Commercialization of Regenerative Medicine (CCRM) has created an industry consortium that is working together to address real-life bottlenecks in their RM product pipelines.

CCRM's scientific leadership is recognized by the global RM community as being world-leading. According to Michael May, CEO of CCRM, partnering with industry completes the puzzle. "By working with industry, CCRM captures business expertise that informs product development and commercialization. We already had access to some of the best scientific minds in the field and now we have access to seasoned industry experts. This is key to our success and will accelerate product development."

The members of the industry consortium represent the key sectors of the RM industry: therapeutics, devices, reagents, and cells as tools. CCRM has built three core development platforms: reprogramming, cell manufacturing, and biomaterials and tissue mimetics. The intellectual property and infrastructure of CCRM's six research institution partners and support from 20 leading RM companies will enhance Canada's already strong leadership role in the RM field.

"CCRM is uniquely positioned to meet the needs of industry and academia," explains Greg Bonfiglio, Chair of CCRM's Board of Directors. "CCRM boasts scientific expertise and state-of-the-art resources in its development lab and this combination will benefit the regenerative medicine community that can capitalize on our ability to complete projects quickly and cost competitively."

The industry consortium members are as follows:

About the Centre for Commercialization of Regenerative Medicine (CCRM)

CCRM, a Canadian not-for-profit organization funded by the Government of Canada's Networks of Centres of Excellence program and six academic partners, supports the development of technologies that accelerate the commercialization of stem cell- and biomaterials-based technologies and therapies. A network of academics, industry and entrepreneurs, CCRM aims to translate scientific discoveries into marketable products for patients. CCRM launched in Toronto's Discovery District on June 14, 2011.

Here is the original post:
New Industry Partnership to Strengthen Regenerative Medicine Industry in Canada

Read More...

Patient dies during procedure

March 9th, 2012 1:23 pm

(CNN) -

A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

The president of the International Society of Stem Cell Research, Dr. Irving Weissman, told CNN at the time that "there is no such cell."

"There is nothing called a regenocyte," he said.

After CNN's initial report, Grekos said the name was "advertising" and was not intended to be scientific.

Read the original post:
Patient dies during procedure

Read More...

Doctor accused of illegal stem cell therapy suspended

March 9th, 2012 1:23 pm

(CNN) -

A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

The president of the International Society of Stem Cell Research, Dr. Irving Weissman, told CNN at the time that "there is no such cell."

"There is nothing called a regenocyte," he said.

After CNN's initial report, Grekos said the name was "advertising" and was not intended to be scientific.

Link:
Doctor accused of illegal stem cell therapy suspended

Read More...

Florida suspends doctor accused of illegal stem cell therapy

March 9th, 2012 1:23 pm

By David Fitzpatrick and Drew Griffin, Special Investigations Unit

updated 9:23 PM EST, Thu March 8, 2012

Dr. Zannos Grekos, seen here in 2009, could have his license suspended.

STORY HIGHLIGHTS

(CNN) -- A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

View original post here:
Florida suspends doctor accused of illegal stem cell therapy

Read More...

Stem Cells Used to Produce Viable Human Eggs – Video

March 9th, 2012 9:05 am

02-03-2012 09:21 Jonathan Tilley of Harvard Medical School announces a proven study which proves that human eggs are made viable with the injection of stem cells.

See original here:
Stem Cells Used to Produce Viable Human Eggs - Video

Read More...

Neuralstem Shows Solid Progress in Spinal Cord Neural Stem Cell Trial for ALS

March 9th, 2012 9:05 am

MissionIR would like to highlight Neuralstem, Inc. (NYSE AMEX: CUR). The company's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. In addition to ALS, Neuralstem is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia, chronic stroke, and Huntington's disease.

In the company's news yesterday,

Neuralstem reported dosing of the fourteenth patient in its ongoing Phase I clinical trialing of the companys spinal cord neural stem cells in ALS (amyotrophic lateral sclerosis or Lou Gehrigs disease), marking the second patient to receive cells in the cervical (upper back) region of the spine and the trials first female patient. This is the first FDA-approved neural stem cell trial for the treatment of ALS.

This treatment is designed to help remediate breathing function loss associated with progressive ALS, and the transplantation of stem cells observed in the trial will be keenly watched for safety/efficacy of spinal cord neural stem cells, as well as the intraspinal transplantation method. The first twelve patients received lumbar (lower back) transplants and the trial has now been underway since January of 2010.

Having begun with non-ambulatory patients and progressing to patients able to walk, this trial has now entered into the final six patients, all of whom will receive cervical transplants, with trial conclusion projected for six months after the final surgery is complete. The proprietary CUR spinal cord delivery platform with floating cannula has helped tremendously in making this dream a possibility and represents a true breakthrough in the field, making the first ever intraspinal injections feasible.

Chairman and CSO of CUR, Karl Johe, PhD., was proud to be breaking new ground with this latest cohort of patients, as it represents a major milestone for the trial, with direct implantation of cells into the gray matter of the spinal cord in the cervical region. Dr. Johe was especially proud of the potential these successful surgeries represent for the numerous patients who suffer from significant quality of life impairment due to ALS. With the 14th successful transplant notched into their belts, CUR is confident that the demonstration of safety in this novel procedure is going quite well.

This is a huge coup for CUR which is also making significant advancements towards developing a robust cell therapy platform capable of addressing a wide range of major central nervous system conditions, ranging from spinal cord injuries and chronic stroke, to ischemic spastic paraplegia and other crippling conditions. The company has an IND submitted to FDA for Phase I safety trials in chronic spinal cord injury.

The company is also well-positioned to service systematic screening needs in the large chemical library space. With proprietary screening technology and the ability to generate appropriate human neural stem cell lines, CUR is ready to leverage discovered/patented compounds that help to stimulate brain activity and neuron regeneration. The potential exists to even reverse debilitating CNS conditions.

The company has also received FDA clearance to conduct a Phase Ib safety trial for their first small molecule compound, NSI-189, for treatment of MDD (major depressive disorder); technology that could easily pan out into schizophrenia, bipolar disorder, and Alzheimers offerings.

About MissionIR

Go here to see the original:
Neuralstem Shows Solid Progress in Spinal Cord Neural Stem Cell Trial for ALS

Read More...

BE THE CHANGE: Stem cells are Pamela's last hope – can you help?

March 9th, 2012 9:05 am

Cancer sufferer Pamela Bou Sejean wants your help to save her life

Pamela Bou Sejean has Hodgkin's Lymphoma and needs a stem cell transplant. Picture: Alison Wynd Source: News Limited

PAMELA Bou Sejean is fighting for her life.

After 16 months battling an aggressive form of Hodgkin's Lymphoma, the 26-year-old has turned to Facebook in a last ditch bid to find the stem cell donor to keep her alive.

TheVictorian woman in Belmont does not match with any registered bone marrow donor in the world so is now pleading for the public to come forward to be blood tested for a possible match.

"I don't know how much time I have, I get too afraid to ask," Ms Bou Sejean told the Geelong Advertiser.

"I want to focus on what we're doing now.

"The waiting process is hard."

With her life in the balance, Ms Bou Sejean's brother Matt a week ago set up the Facebook page How You Can Help Cure Pamela.

There, Facebook users are told about her fight and how to be blood tested for a possible stem cell match.

Read more:
BE THE CHANGE: Stem cells are Pamela's last hope - can you help?

Read More...

Stem cells beat kidney rejection

March 9th, 2012 9:05 am

8 March 2012 Last updated at 04:20 ET

An injection of stem cells given alongside a kidney transplant could remove the need for a lifetime of drugs to suppress the immune system, say scientists.

Early tests of the technique at US hospitals were successful in a small number of patients.

The journal Science Translational Medicine reports how the majority no longer need anti-rejection medication.

Researchers said it could have a "major impact" on transplant science.

One of the key problems associated with organ transplantation is the risk that the body will "recognise" the new organ as a foreign invader and attack it.

To prevent this, patients take powerful drugs to suppress their immune systems, and will have to do this for life.

The drugs come at a price, preventing organ rejection but increasing the risk of high blood pressure, diabetes and serious infection.

The study, carried out at the University of Louisville and the Northwestern Memorial Hospital in Chicago, involved eight patients.

Their transplant came from a live donor, who also underwent a procedure to draw stem cells, the building blocks of their immune system, from the blood.

Read more from the original source:
Stem cells beat kidney rejection

Read More...

Stem cells are my last hope. Can you help?

March 9th, 2012 9:05 am

Cancer sufferer Pamela Bou Sejean wants your help to save her life

Pamela Bou Sejean has Hodgkin's Lymphoma and needs a stem cell transplant. Picture: Alison Wynd Source: News Limited

PAMELA Bou Sejean is fighting for her life.

After 16 months battling an aggressive form of Hodgkin's Lymphoma, the 26-year-old has turned to Facebook in a last ditch bid to find the stem cell donor to keep her alive.

TheVictorian woman in Belmont does not match with any registered bone marrow donor in the world so is now pleading for the public to come forward to be blood tested for a possible match.

"I don't know how much time I have, I get too afraid to ask," Ms Bou Sejean told the Geelong Advertiser.

"I want to focus on what we're doing now.

"The waiting process is hard."

With her life in the balance, Ms Bou Sejean's brother Matt a week ago set up the Facebook page How You Can Help Cure Pamela.

There, Facebook users are told about her fight and how to be blood tested for a possible stem cell match.

Read more from the original source:
Stem cells are my last hope. Can you help?

Read More...

Stem cell therapy–FSHD Muscular Dystophy–China Medical Tourism – Video

March 9th, 2012 9:04 am

06-03-2012 19:22 Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, travel arrangements and language assistance. If you want to know more about our services, please browse the web:htttp://www.medicaltourism.hk/ or mail to us: giels-x@medicaltourism.hk firstcare-china@hotmail.com Russ Kleve - FSHD Muscular Dystophy Muscular Dystrophy Wednesday, 01 July 2009 09:14 Russ kindly contributed the following Patient Experience to us and we have published it here. Russ Kleve USA, 48 Primary Condition Facioscapulohumeral Muscular Dystrophy (FSHD) Secondary Condition Diabetes Type 2 Treated March 15-April 21, 2009 Course of Treatment 4 bags of umbilical cord stem cells via IV; 4 bags of S/C via intramuscular site injections (Round I: 60 injections into my biceps, thighs, and scapula/back; Round II: 24 injections into the front of my thighs and calves + 16 into the back of my legs); 1 Bone Marrow treatment. Reason for Coming for Treatment Deteriorating muscles due to FSHD condition. Walking and standing becoming very difficult and I required cane; could walk but only 3-4 blocks. Stem Cell treatment of any kind is not available in the US , after three months' research, was the best program I had found based on safety, length and type of program, number of stem cells used, patients' positive responses, and cost. Condition After the Treatment Standing is still difficult, but I am no longer falling ...

Read the original here:
Stem cell therapy--FSHD Muscular Dystophy--China Medical Tourism - Video

Read More...

New Hope For Organ Transplant Recipients

March 9th, 2012 9:04 am

Organ transplant patients usually spend a lifetime on expensive and often dangerous anti-rejection drugs. But experts have announced that such drugs may not even be needed in the future, thanks to a new study that suggests patients receiving an organ that is less than a perfect match can be protected against rejection by a second transplant of the donors imperfectly matched stem cells. The study is being hailed as a game-changer for transplantation.

Experts announced the success of kidney transplants for a small number of patients, using a relatively new technique known as normothermic perfusion. This involves the warming of the kidney with oxygenated blood after it has been in cold storage. This technique also boosts the function of damaged kidneys from marginal donors, such as the elderly or those with high blood pressure and diabetes, and also reduces the risk of the organ being rejected.

Also, an injection of stem cells given with the kidney transplant could remove the need for patients to take anti-rejection drugs the rest of their lives to suppress the immune system. Preliminary tests of the technique were successful in a small number of patients.

The researchers, publishing their study in the journal Science Translational Medicine, said the research could have a major impact on transplant science.

The key issue with transplantation is the immune systems recognition that the new organ is a foreign invader and bombards it. To prevent this from occurring, patients take powerful drugs to suppress their immune systems, and must do this for life. However, the drugs can have dangerous side effects, and in some instances, are ineffective, causing even more danger to the patient.

The study, carried out at the University of Louisville and the Northwestern Memorial Hospital in Chicago, involved eight patients.

Transplants came from a live donor, who also underwent a procedure to draw stem cells from the blood. The transplant recipients body was prepared using radiotherapy and chemotherapy to suppress their own immune system. The transplant was then performed, with the stem cells injected a few days afterwards. The idea is that the stem cells will help generate a modified immune system that no longer attacks the organ or its new owner.

The patients were still given anti-rejection drugs after the transplant. However, the aim was to reduce doses slowly, hopefully withdrawing them altogether over time. Five of the eight patients were able to do this within a year.

One of those is 47-year-old Lindsay Porter, from Chicago.

I hear about the challenges recipients have to face with their medications and it is significant, she said in a press statement. Its almost surreal when I think about it because I feel so healthy and normal.

Link:
New Hope For Organ Transplant Recipients

Read More...

BioTime to Present at ROTH 24th Annual Growth Stock Conference

March 9th, 2012 9:04 am

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex:BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Financial Officer, Peter S. Garcia, will present a corporate overview of BioTime and its subsidiaries at the ROTH 24th Annual Growth Stock Conference. The presentation will take place on Tuesday, March 13, 2012, at 9:30 a.m. PDT at The Ritz-Carlton Hotel in Dana Point, California. The presentation will be webcast and available online at the Investors section of the website at http://www.biotimeinc.com and at http://wsw.com/webcast/roth26/btx/.

ROTH Capital Partners will host more than 400 growth companies at its annual investment conference, March 11-14, 2012, including more than 130 healthcare companies in the biotechnology, healthcare services, medical device, and pharmaceutical sectors.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:

http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

Read the rest here:
BioTime to Present at ROTH 24th Annual Growth Stock Conference

Read More...

Stem cell treatment tricks immune system into accepting donor organs, study shows

March 9th, 2012 9:02 am

By Julie Steenhuysen

CHICAGO Scientists have found a way to trick the immune system into accepting organs from a mismatched, unrelated organ donor, a finding that could help patients avoid a lifetime of drugs to prevent rejection of the donated organ.

Of eight kidney transplant patients who have been treated with this new approach, five have managed to avoid taking anti-rejection drugs a year after their surgery, according to the study published on Wednesday in Science Translational Medicine.

And one patient, 47-year-old Lindsay Porter of Chicago, is completely free of anti-rejection drugs nearly two years after her kidney transplant.

This new approach would potentially offer a better quality of life and fewer health risks for transplant recipients

I hear about the challenges recipients have to face with their medications and it is significant. Its almost surreal when I think about it because I feel so healthy and normal, she said in a statement.

With conventional organ transplants, recipients need to take pills to suppress their immune systems for the rest of their lives. These drugs can cause serious side effects, including high blood pressure, diabetes, infection, heart disease and cancer.

This new approach would potentially offer a better quality of life and fewer health risks for transplant recipients, Dr. Suzanne Ildstad, director of the Institute of Cellular Therapeutics at the University of Louisville in Kentucky, who developed the new approach, said in a statement.

But some experts say the procedure, in which patients undergo a bone marrow transplant from an unmatched organ donor, is too risky, especially given the relative safety of kidney transplants.

We have to think about the risks and benefits. Since the current treatment is so stable, it really has to be safe, said Dr. Tatsuo Kawai, a transplant surgeon at Harvard Medical School, who wrote a commentary on the new approach in the journal.

Read the original here:
Stem cell treatment tricks immune system into accepting donor organs, study shows

Read More...

Vaccination strategy may hold key to ridding HIV infection from immune system

March 9th, 2012 9:02 am

Public release date: 8-Mar-2012 [ | E-mail | Share ]

Contact: David March dmarch1@jhmi.edu 410-955-1534 Johns Hopkins Medical Institutions

Using human immune system cells in the lab, AIDS experts at Johns Hopkins have figured out a way to kill off latent forms of HIV that hide in infected T cells long after antiretroviral therapy has successfully stalled viral replication to undetectable levels in blood tests.

In a report to be published in the journal Immunity online March 8, the Johns Hopkins team describes a vaccination strategy that boosts other immune system T cells and prepares them to attack HIV, before readying the virus for eradication by reactivating it.

HIV has long been known to persist in a dormant, inactive state inside immune system T cells even long after potent drugs have stopped the virus from making copies of itself to infect other cells. But once treatment is stopped or interrupted, the latent virus quickly reactivates, HIV disease progresses, and researchers say it has proven all but impossible to wipe out these pockets of infection.

Johns Hopkins senior study investigator and infectious disease specialist Robert Siliciano, M.D., Ph.D., who in 1995 first showed that reservoirs of dormant virus survived, says the resulting need for lifelong drug treatment has raised concerns about the adverse effects of decades of therapy, the growing risk of drug resistance, and the rising cost of care.

Siliciano and other AIDS scientists say the best hope for ultimately curing the disease is to force latent viruses to "turn back on," making them "visible" to the immune system's so-called cytolytic "killer" T cells and then, with the likely aid of drugs, eliminate the infected cells from the body.

In his new study, Siliciano showed that infected T cells survived after latent virus was reactivated, and were only killed off when other immune system T cells were primed before reactivation.

"Our study results strongly suggest that a vaccination to boost the immune response immediately prior to reactivating latent virus may be essential for totally eradicating HIV infection," says Siliciano, a professor at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator.

In their journal report, Siliciano and his colleagues describe their vaccination strategy and how short pieces of HIV proteins were introduced to stimulate the anti-HIV T-cell response just before reactivation of the latent virus. The incomplete viral proteins and subsequent immune system vaccination led to production of enough cytolytic T cells to attack and kill the latently infected cells.

Read more from the original source:
Vaccination strategy may hold key to ridding HIV infection from immune system

Read More...

Genetic manipulation boosts growth of brain cells linked to learning, enhances effects of antidepressants

March 9th, 2012 9:02 am

ScienceDaily (Mar. 8, 2012) UT Southwestern Medical Center investigators have identified a genetic manipulation that increases the development of neurons in the brain during aging and enhances the effect of antidepressant drugs.

The research finds that deleting the Nf1 gene in mice results in long-lasting improvements in neurogenesis, which in turn makes those in the test group more sensitive to the effects of antidepressants.

"The significant implication of this work is that enhancing neurogenesis sensitizes mice to antidepressants -- meaning they needed lower doses of the drugs to affect 'mood' -- and also appears to have anti-depressive and anti-anxiety effects of its own that continue over time," said Dr. Luis Parada, director of the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration and senior author of the study published in The Journal of Neuroscience.

Just as in people, mice produce new neurons throughout adulthood, although the rate declines with age and stress, said Dr. Parada, chairman of developmental biology at UT Southwestern. Studies have shown that learning, exercise, electroconvulsive therapy and some antidepressants can increase neurogenesis. The steps in the process are well known but the cellular mechanisms behind those steps are not.

"In neurogenesis, stem cells in the brain's hippocampus give rise to neuronal precursor cells that eventually become young neurons, which continue on to become full-fledged neurons that integrate into the brain's synapses," said Dr. Parada, an elected member of the National Academy of Sciences, its Institute of Medicine, and the American Academy of Arts and Sciences.

The researchers used a sophisticated process to delete the gene that codes for the Nf1 protein only in the brains of mice, while production in other tissues continued normally. After showing that mice lacking Nf1 protein in the brain had greater neurogenesis than controls, the researchers administered behavioral tests designed to mimic situations that would spark a subdued mood or anxiety, such as observing grooming behavior in response to a small splash of sugar water.

The researchers found that the test group mice formed more neurons over time compared to controls, and that young mice lacking the Nf1 protein required much lower amounts of anti-depressants to counteract the effects of stress. Behavioral differences between the groups persisted at three months, six months and nine months. "Older mice lacking the protein responded as if they had been taking antidepressants all their lives," said Dr. Parada.

"In summary, this work suggests that activating neural precursor cells could directly improve depression- and anxiety-like behaviors, and it provides a proof-of-principle regarding the feasibility of regulating behavior via direct manipulation of adult neurogenesis," Dr. Parada said.

Dr. Parada's laboratory has published a series of studies that link the Nf1 gene -- best known for mutations that cause tumors to grow around nerves -- to wide-ranging effects in several major tissues. For instance, in one study researchers identified ways that the body's immune system promotes the growth of tumors, and in another study, they described how loss of the Nf1 protein in the circulatory system leads to hypertension and congenital heart disease.

The current study's lead author is former graduate student Dr. Yun Li, now a postdoctoral researcher at the Massachusetts Institute of Technology. Other co-authors include Yanjiao Li, a research associate of developmental biology, Dr. Rene McKay, assistant professor of developmental biology, both of UT Southwestern, and Dr. Dieter Riethmacher of the University of Southampton in the United Kingdom.

See the article here:
Genetic manipulation boosts growth of brain cells linked to learning, enhances effects of antidepressants

Read More...

Fly research gives insight into human stem cell development and cancer

March 9th, 2012 9:01 am

Public release date: 8-Mar-2012 [ | E-mail | Share ]

Contact: Phyllis Edelman pedelman@genetics-gsa.org 301-351-0896 Genetics Society of America

CHICAGO, IL March 8, 2012 Stem cells provide a recurring topic among the scientific presentations at the Genetics Society of America's 53rd Annual Drosophila Research Conference, March 7-11 at the Sheraton Chicago Hotel & Towers. Specifically, researchers are trying to determine how, within organs, cells specialize while stem cells maintain tissues and enable them to repair damage and respond to stress or aging. Four talks, one on Thursday morning and three on Sunday morning, present variations on this theme.

For a fertilized egg to give rise to an organism made up of billions or trillions of cells, a precise program of cell divisions must unfold. Some divisions are "asymmetric": one of the two daughter cells specializes, yet the other retains the ability to divide. Chris Q. Doe, Ph.D., professor of biology at the University of Oregon, compares this asymmetric cell division to splitting a sundae so that only one half gets the cherry. The "cherries" in cells are the proteins and RNA molecules that make the two cells that descend from one cell different from each other. This collecting of different molecules in different regions of the initial cell before it divides is termed "cell polarity."

Dr. Doe and his team are tracing the cell divisions that form a fly's nervous system. "Producing the right cells at the right time is essential for normal development, yet it's not well understood how an embryonic precursor cell or stem cell generates a characteristic sequence of different cell types," he says. Dr. Doe and his team traced the cell lineages of 30 neuroblasts (stem cell-like neural precursors), each cell division generating a daughter cell bound for specialization as well as a self-renewing neuroblast. The dance of development is a matter of balance. Self-renew too much, and a tumor results; not enough, and the brain shrinks.

Tracing a cell lineage is a little like sketching a family tree of cousins who share a great-grandparent except that the great-grandparent (the neuroblast) continually produces more cousins. "The offspring will change due to the different environments they are born into," says Dr. Doe.

Julie A. Brill, Ph.D., a principal investigator at The Hospital for Sick Children (SickKids) in Toronto, investigates cell polarity in sperm cells. These highly specialized elongated cells begin as more spherical precursor cells. Groups of developing sperm elongate, align, condense their DNA into tight packages, expose enzyme-containing bumps on their tips that will burrow through an egg's outer layers, form moving tails, then detach and swim away.

The Brill lab studies a membrane lipid called PIP2 (phosphatidylinositol 4,5-bisphosphate) that establishes polarity in developing male germ cells in Drosophila. "Reducing levels of PIP2 leads to defects in cell polarity and failure to form mature, motile sperm," Dr. Brill says. These experiments show that localization of the enzyme responsible for PIP2 production in the growing end of elongating sperm tails likely sets up cell polarity. Since loss of this polarity is implicated in the origin and spread of cancer, defects in the regulation of PIP2 distribution may contribute to human cancer progression, she adds.

Stephen DiNardo, Ph.D., professor of cell and developmental biology at the Institute for Regenerative Medicine at the University of Pennsylvania, is investigating how different varieties of stem cells in the developing fly testis give rise to germ cells and epithelial cells that ensheathe the germ cells, as well as being able to self-renew. For each of these roles, stem cells are guided by their environment, known as their "niche."

In the fly testis, we know not only the locations of the two types of stem cells whose actions maintain fertility, but of neighboring cells. "We study how these niche cells are first specified during development, how they assemble, and what signals they use. Elements of what we and others learn about this niche may well apply to more complex niches in our tissues," Dr. DiNardo explains.

The rest is here:
Fly research gives insight into human stem cell development and cancer

Read More...

Nuvilex Points Toward Cell Encapsulation Technology Future to Expand Stem Cell Use for Late Stage Cancer Treatments

March 9th, 2012 9:00 am

SILVER SPRING, Md.--(BUSINESS WIRE)--

Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions, today discussed the potential use of the companys cell encapsulation technology with modified stem cells to treat late stage cancers.

Stem cell therapy is not new to physicians dealing with blood and bone cancers, with stem cell transplants being an important treatment for growing new bone marrow since the 1970s. Recent studies have indicated the potential for using stem cells across a much broader range of cancers is becoming a reality, mostly a result of advances in cell and molecular biology techniques.

Traditional chemotherapy works by targeting the fast-growing cells common to cancer tumors. Unfortunately, chemotherapeutics dont differentiate between healthy and cancerous cells. Patients suffering from metastatic cancers, where tumors have spread to multiple areas of the body, often have substantial difficulties with the chemotherapy needed to treat their disease.

In one case, researchers at City of Hope and St. Jude Children's Research Hospital may have found a way to treat cancers that have spread throughout the body more effectively. They used genetically modified stem cells to activate chemotherapeutic drugs at the tumor sites, so that normal tissue surrounding the tumor and throughout the body remain relatively unharmed. The stem cells were designed to produce a specific enzyme that converts the nontoxic prodrug into the chemotherapeutic agent. This method also targets the brain tumor treatment to remain localized within the brain, similar to the pancreatic cancer clinical trial carried out by SG Austria, providing for high dosage chemotherapy without affecting surrounding tissues and avoiding the severe side effects normally associated with cancer therapy.

Nuvilex believes that incorporating Cell-in-a-Box encapsulation with this type of genetically modified stem cell, along with the proprietary cancer treatment being acquired, could significantly aid and improve patient outcomes.

Dr. Robert Ryan, Chief Executive Officer of Nuvilex, commented, We are hopeful for the day when late stage cancers can be routinely and safely treated using genetically modified cells like those used in the pancreatic cancer trial, increasing the ability of clinicians to avoid inducing side effects that typically accompany aggressive chemotherapy and/or radiation. Our cell encapsulation technology will enable practitioners to target tumors while preserving the health of the surrounding tissues. We continue to look for leading stem cell and oncology researchers to partner with us as we bring this technology to market.

About Nuvilex

Nuvilex, Inc. (OTCQB:NVLX) is an emerging international biotechnology provider of clinically useful therapeutic live encapsulated cells and services for encapsulating live cells for the research and medical communities. Through our effort, all aspects of our corporate activities alone, and especially in concert with SG Austria, are rapidly moving toward completion, including closing our agreement. One of our planned offerings will include cancer treatments using the companys industry-leading live-cell encapsulation technology.

Safe Harbor Statement

More:
Nuvilex Points Toward Cell Encapsulation Technology Future to Expand Stem Cell Use for Late Stage Cancer Treatments

Read More...

Florida suspends doctor accused of illegal stem cell therapy

March 9th, 2012 9:00 am

By David Fitzpatrick and Drew Griffin, Special Investigations Unit

updated 9:23 PM EST, Thu March 8, 2012

Dr. Zannos Grekos, seen here in 2009, could have his license suspended.

STORY HIGHLIGHTS

(CNN) -- A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

See the rest here:
Florida suspends doctor accused of illegal stem cell therapy

Read More...

Page 1,466«..1020..1,4651,4661,4671,468..1,4801,490..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick