header logo image


Page 1,458«..1020..1,4571,4581,4591,460..1,4701,480..»

Stem Cell Transplant Program Offered at UVA Medical Center

March 23rd, 2012 7:43 am

What used to be medical trash is now treating cancer. The University of Virginia's Medical Center is the first place in Virginia to take advantage of stem cells from umbilical cords and they are pleased with the results.

Dr. Mary Laughlin, the director of stem cell transplantation at UVA,said, "These are cells that are routinely thrown away, these cells save lives."

A lab within the UVA Medical Center contains numerous tubes where non-embryonic stem cells reside. They come from umbilical cord blood and give hope topatients suffering leukemia, multiple myeloma and lymphoma.

Dr. Laughlin added, "They can completely replace a patient's bone marrow in the immune system. Oneof 10 cancer patients are able to find those cells through existing adult registries."

Thefive million babies that are born each year will soon solve that problem. The cells that are normally tossed out attack cancer cells.

Denise Mariconda, a nurse within the stem cell transplant program, stated, "It looks like a blood transfusion." Dr. Laughlin added, "It is in many ways like a cancer vaccine."

The first transplants were made in January and the transplant program at the UVA Medical Center admits it takes getting used to.

Mariconda said, "It is a process that's not like having your heart fixed in a one-day setting and you know that it's better."

These cells are not cause for controversy. Dr. Laughlin said, "Use of cord-blood is approved by all religious groups including the Vatican."

Babies' immune systems are not fully educated at the time of birth, making these cells effective. Dr. Laughlin, added, "That allows us to cross transplant barriers."

Read the original post:
Stem Cell Transplant Program Offered at UVA Medical Center

Read More...

Somatic stem cells obtained from skin cells for first time ever

March 23rd, 2012 7:43 am

"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined - and safer - process."

Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them - in this case, a type of cell found in neural tissue - a property, which affords them an edge in terms of their therapeutic potential.

To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship - the skin cell - guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.

Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.

"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go - all we need now are for the right political measures to be ratified to pave the way towards medical applicability."

More information: Han D.W., Tapia N., Hermann A., Hemmer K., Hing S., Arazo-Bravo M.J., Zaehres H., Frank S., Moritz S., Greber B., Yang J.H., Lee H.T., Schwamborn J.C., Storch A., Schler H.R. (2012) Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors, Cell Stem Cell, CELL-STEM-CELL-D-11-00679R3

Provided by Max-Planck-Gesellschaft (news : web)

Read more here:
Somatic stem cells obtained from skin cells for first time ever

Read More...

Procognia Announced That the Feasibility Stage of the Company's Research in Stem Cells in Cooperation with the …

March 23rd, 2012 7:43 am

TEL-AVIV, Israel--(BUSINESS WIRE)--

Procognia (TASE:PRCG) is pleased to announce that the feasibility stage of the research, which focused on the glycosylation structures of stem cells, has been successfully completed. The research, directed by Prof. Dov Zipori from the Weizmann Institute of Science, was designed to develop a platform that will significantly improve the ability to identify and develop unique stem cells for transplant and treatment. Today, stem cell treatment faces a number of challenges, which both parties aim to handle successfully and therefore make a significant contribution to this field.

The feasibility stage focused on mesenchymal stem cells, and the results displayed the ability to:

Each of the above factors has the potential to significantly improve the abilities of the medical and scientific communities to successfully use stem cells for effective, successful transplants and medical treatment. In cooperation with Yeda Research & Development, the commercial arm of the Weizmann Institute, Procognia has submitted a US patent that covers the research and its unique findings.

According to the results of the feasibility stage, Procognia will continue its research with Prof. Zipori to develop a platform that will:

Mesenchymal stem cells migrate towards tumors and affect them, and therefore can also be used as carriers for drugs that will affect the tumors.

Within the framework of the agreement, Procognia has the option to commercialize products for diagnostic and therapeutic uses on the basis of the joint development process, in exchange for Yeda Research & Development receiving appropriate royalties.

Procognia estimates that the development stage of this platform will take approximately two years.

Read the original post:
Procognia Announced That the Feasibility Stage of the Company's Research in Stem Cells in Cooperation with the ...

Read More...

Battle with GOP lawmakers over stem cells could cost U-M state aid

March 23rd, 2012 7:43 am

A battle is heating up between a Republican-led state House panel and the University of Michigan over whether U-M must disclose its number of embryonic stem-cell lines.

It's the latest in a series of disagreements in recent months about everything from university funding to unionization of graduate student research assistants.

This time, Republicans on the subcommittee are upset with what they call U-M's "thumbing of their nose" at requests for information about embryonic stem cells. Several lawmakers said that if they don't get the information -- required under language passed in last year's budget -- they'll look at docking U-M's state aid.

U-M President Mary Sue Coleman said the university doesn't have an exact number of stem cells. She said it's important, instead, to place the work in the context of medical advances stem cells are leading.

Leonard Fleck, an ethics professor at Michigan State University's Center for Ethics and Humanities in the Life Sciences, said he doesn't believe lawmakers should legislate with the budget. He said that will be especially true as a better understanding of human genetics transforms medicine but runs afoul of some religious convictions.

Rep. Kevin Cotter, R-Mt. Pleasant, admitted the issue is about more than stem-cell research.

"It about the power of the Legislature to ask for reports. We're going to stand behind those requirements," he said.

Those involved in stem-cell research say a feud between Republican members of the state House higher education subcommittee and the University of Michigan is more about personal beliefs than state mandates.

The subcommittee is demanding to know the number of embryonic stem-cell lines and four related numbers at U-M. In a private meeting earlier this year, the chairman of the subcommittee told U-M officials they could lose state funding if they don't give those details.

U-M didn't give legislators the numbers, and now several committee members say they want to dock some of its state aid for flaunting the Legislature.

Link:
Battle with GOP lawmakers over stem cells could cost U-M state aid

Read More...

SA cracks stem cell conundrum

March 23rd, 2012 7:43 am

Scientists in SA have generated non-embryonic stem cells for the first time, the Council for Scientific and Industrial Research (CSIR) announced on Tuesday.

These "induced adult pluripotent stem cells" were developed from adult skin cells and can be prompted to grow into any type of adult cell, such as those in the heart or brain.

The technology is important for research into regenerative medicine, but is not yet widely used.

While the technology is not novel, the development of the capacity to grow these stem cells in SA is important for researchers investigating diseases affecting Africans, said CSIR post-doctoral fellow Janine Scholefield. The CSIR had replicated techniques devised by Japanese researchers in 2007.

"Cutting-edge medical research is not useful to Africans if knowledge is being created and applied only in the developed world," said CSIR head of gene expression and biophysics Musa Mhlanga. "Given the high disease burden in Africa, our aim is to become creators of knowledge, as well as innovators and expert practitioners of the newest and best technologies," The CSIR said that adult-generated stem cells were more acceptable to people who objected to using stem cells from embryos.

"The other critical thing is the cells (that will be grown) are an exact genetic match to the person who donated the skin cells, so we can circumvent the problem of tissue rejection," Dr Scholefield said.

"We can also develop models of disease in a petri dish in the laboratory," she said, explaining that this would enable researchers to investigate rare diseases without the need for human subjects.

"We are getting closer to using stem cells as part of routine medical practice, but are still a long way off from using these cells for degenerative diseases of the central nervous system," said Michael Pepper, professor of i mmunology at the University of Pretoria.

Prof Pepper said there were several hundred clinical trials using stem cells under way around the world, but most were still at an early stage.

The rest is here:
SA cracks stem cell conundrum

Read More...

Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped

March 23rd, 2012 7:43 am

ScienceDaily (Mar. 22, 2012) Breaking new ground, scientists at the Max Planck Institute for Molecular Biomedicine in Mnster, Germany, have succeeded in obtaining somatic stem cells from fully differentiated somatic cells. Stem cell researcher Hans Schler and his team took skin cells from mice and, using a unique combination of growth factors while ensuring appropriate culturing conditions, have managed to induce the cells' differentiation into neuronal somatic stem cells.

"Our research shows that reprogramming somatic cells does not require passing through a pluripotent stage," explains Schler. "Thanks to this new approach, tissue regeneration is becoming a more streamlined -- and safer -- process."

Up until now, pluripotent stem cells were considered the 'be-all and end-all' of stem cell science. Historically, researchers have obtained these 'jack-of-all-trades' cells from fully differentiated somatic cells. Given the proper environmental cues, pluripotent stem cells are capable of differentiating into every type of cell in the body, but their pluripotency also holds certain disadvantages, which preclude their widespread application in medicine. According to Schler, "pluripotent stem cells exhibit such a high degree of plasticity that under the wrong circumstances they may form tumours instead of regenerating a tissue or an organ." Schler's somatic stem cells offer a way out of this dilemma: they are 'only' multipotent, which means that they cannot give rise to all cell types but merely to a select subset of them -- in this case, a type of cell found in neural tissue -- a property, which affords them an edge in terms of their therapeutic potential.

To allow them to interconvert somatic cells into somatic stem cells, the Max Planck researchers cleverly combined a number of different growth factors, proteins that guide cellular growth. "One factor in particular, called Brn4, which had never been used before in this type of research, turned out to be a genuine 'captain' who very quickly and efficiently took command of his ship -- the skin cell -- guiding it in the right direction so that it could be converted into a neuronal somatic stem cell," explains Schler. This interconversion turns out to be even more effective if the cells, stimulated by growth factors and exposed to just the right environmental conditions, divide more frequently. "Gradually, the cells lose their molecular memory that they were once skin cells," explains Schler. It seems that even after only a few cycles of cell division the newly produced neuronal somatic stem cells are practically indistinguishable from stem cells normally found in the tissue.

Schler's findings suggest that these cells hold great long-term medical potential: "The fact that these cells are multipotent dramatically reduces the risk of neoplasm formation, which means that in the not-too-distant future they could be used to regenerate tissues damaged or destroyed by disease or old age; until we get to that point, substantial research efforts will have to be made." So far, insights are based on experiments using murine skin cells; the next steps now are to perform the same experiments using actual human cells. In addition, it is imperative that the stem cells' long-term behaviour is thoroughly characterized to determine whether they retain their stability over long periods of time.

"Our discoveries are a testament to the unparalleled degree of rigor of research conducted here at the Mnster Institute," says Schler. "We should realize that this is our chance to be instrumental in helping shape the future of medicine." At this point, the project is still in its initial, basic science stage although "through systematic, continued development in close collaboration with the pharmaceutical industry, the transition from the basic to the applied sciences could be hugely successful, for this as well as for other, related, future projects," emphasizes Schler. This, then, is the reason why a suitable infrastructure framework must be created now rather than later. "The blueprints for this framework are all prepped and ready to go -- all we need now are for the right political measures to be ratified to pave the way towards medical applicability."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Max-Planck-Gesellschaft.

Read the original:
Somatic stem cells obtained from skin cells; pluripotency 'detour' skipped

Read More...

Hospital Angeles Tijuana STEM CELL SCAM with Dr. Lopez Corvala Lap Band and Dr. Jesus Perez – Video

March 23rd, 2012 7:43 am

21-03-2012 23:31 CAUTION!!! DR. LOPEZ CORVALA and Dr. JESUS PEREZ will SCAM YOU at Hospital Angeles in Tijuana if you have TREATMENT THERE. After receiving stem cells for my cirrhosis, I did not show ANY IMPROVEMENT. They TRICKED ME into signing a CLINICAL TRIAL and said that I SIGNED PAPERS saying I might not show any improvement. They are using that against me by refusing to refund me or give me more stem cells. DO NOT GO THERE. Their website is regenerativemedicine.mx. They brag about how "great they are," that this is a state of the art hospital. DON'T BELIEVE THEM. THEY ONLY WANT YOUR MONEY. Regenerativemedicine.com is a scam. Only some of their patients improve and they video them the day after stem cells when they are sill in their hospital gowns. I said NO, that I would do a review after a few months. You can't tell that soon, that's ridiculous!!!

Read more from the original source:
Hospital Angeles Tijuana STEM CELL SCAM with Dr. Lopez Corvala Lap Band and Dr. Jesus Perez - Video

Read More...

Bioheart Labs and Stemlogix Veterinary Products Featured in Media

March 23rd, 2012 7:43 am

SUNRISE, Fla., March 22, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News), a company focused on developing stem cell therapies for heart disease, previously announced that they entered into an agreement with Stemlogix, LLC, a veterinary regenerative medicine company, to provide additional cellular products and services to the veterinary market. Under this agreement, the companies are offering stem cell banking for veterinary patients (pets). WPLG, channel 10 featured this exciting technology in a news segment which aired in the South Florida area. A small sample of tissue can be obtained from the animals during a routine procedure such as a spay or neuter. The stem cells are isolated and cryopreserved for future use as needed.

"We are excited to bring our expertise in stem cell therapy to the veterinary community," said Mike Tomas, Bioheart's President and CEO. "Stem cell therapies represent new opportunities for various types of patients and the ability to bank a pet's cells when they are young and healthy could be very valuable for future use."

WPLG, Channel 10 in Miami/South Florida featured this new technology in a news segment which aired March 15, 2012. Please see the link below:

http://www.local10.com/thats-life/health/Pet-stem-cells-frozen-banked-for-future-use/-/1717022/9285894/-/apcx9rz/-/index.html

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Stemlogix, LLC

Stemlogix is an innovative veterinary regenerative medicine company committed to providing veterinarians with the ability to deliver the best possible stem cell therapy to dogs, cats and horses at the point-of-care. Stemlogix provides veterinarians with the ability to isolate regenerative stem cells from a patient's own adipose (fat) tissue directly on-site within their own clinic or where a patient is located. Regenerative stem cells isolated from adipose tissue have been shown in studies to be effective in treating animal's suffering from osteoarthritis, joint diseases, tendon injuries, heart disorders, among other conditions. Stemlogix has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. For more information about veterinary regenerative medicine please visit http://www.stemlogix.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

More here:
Bioheart Labs and Stemlogix Veterinary Products Featured in Media

Read More...

BioTime CEO Michael D. West to Present at 2012 Maxim Group Growth Conference

March 23rd, 2012 7:43 am

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex:BTX), a biotechnology company that develops and markets products in the field of regenerative medicine, today announced that Chief Executive Officer, Michael D. West, Ph.D., will present a corporate overview of BioTime and its subsidiaries with an update on recent developments at the 2012 Maxim Group Growth Conference on Monday, March 26, 2012, 11:00 a.m. EDT, at the Grand Hyatt in New York City. The presentation will be webcast and available online at the Investors section of the BioTime website at http://www.biotimeinc.com.

The 5th annual Maxim Group Growth Conference is designed to provide institutional clients with the opportunity to gain an in-depth perspective on the issues affecting the growth of presenting companies. The one-day event will feature more than 80 company presentations across six designated industry tracks including the healthcare and biotechnology sectors.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list: http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

Here is the original post:
BioTime CEO Michael D. West to Present at 2012 Maxim Group Growth Conference

Read More...

Powerful cheek cells offer promise for combating immune system diseases

March 23rd, 2012 7:41 am

Washington, March 22 (ANI): Scientists have created powerful new cells from cheek lining tissue, which could offer the answer to disorders of the immune system.

While the body's immune system protects against many diseases, it can also be harmful. Using white blood cells (lymphocytes), the system can attack insulin-producing cells, causing diabetes, or cause the body to reject transplanted organs.

A team from Cardiff's School of Dentistry led by Professor Phil Stephens, with colleagues from Stockholm's Karolinska Institute, have found a new group of cells with a powerful ability to suppress the immune system's action.

The team took oral lining cells from the insides of patients' cheeks and cloned them. Laboratory tests showed that even small doses of the cells could completely inhibit the lymphocytes.

The breakthrough suggests that the cheek cells have wide-ranging potential for future therapies for immune system-related diseases.

Existing immune system research has focussed on adult stem cells, particularly those derived from bone marrow. The cheek tissue cells are much stronger in their action.

"At this stage, these are only laboratory results. We have yet to recreate the effect outside the laboratory and any treatments will be many years away.

However, these cells are extremely powerful and offer promise for combating a number of diseases. They are also easy to collect - bone marrow stem cells require an invasive biopsy, whereas we just harvest a small biopsy from inside the mouth," said Dr Lindsay Davies, a member of the Cardiff team.

The findings have just been published online in Stem Cells and Development. (ANI)

Here is the original post:
Powerful cheek cells offer promise for combating immune system diseases

Read More...

Powerful new cells cloned: Key to immune system disease could lie inside the cheek

March 23rd, 2012 7:41 am

ScienceDaily (Mar. 21, 2012) Powerful new cells created by Cardiff scientists from cheek lining tissue could offer the answer to disorders of the immune system. While the body's immune system protects against many diseases, it can also be harmful. Using white blood cells (lymphocytes), the system can attack insulin-producing cells, causing diabetes, or cause the body to reject transplanted organs.

A team from the School of Dentistry led by Professor Phil Stephens, with colleagues from Stockholm's Karolinska Institute, have found a new group of cells with a powerful ability to suppress the immune system's action.

The team took oral lining cells from the insides of patients' cheeks and cloned them. Laboratory tests showed that even small doses of the cells could completely inhibit the lymphocytes.

The breakthrough suggests that the cheek cells have wide-ranging potential for future therapies for immune system-related diseases. Existing immune system research has focused on adult stem cells, particularly those derived from bone marrow. The cheek tissue cells are much stronger in their action.

Dr Lindsay Davies, a member of the Cardiff team, said: "At this stage, these are only laboratory results. We have yet to recreate the effect outside the laboratory and any treatments will be many years away. However, these cells are extremely powerful and offer promise for combating a number of diseases. They are also easy to collect -- bone marrow stem cells require an invasive biopsy, whereas we just harvest a small biopsy from inside the mouth."

The findings have just been published online in Stem Cells and Development. The team has now been funded by the Medical Research Council to investigate the cloned cells further.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Cardiff University.

More here:
Powerful new cells cloned: Key to immune system disease could lie inside the cheek

Read More...

Research Spots Potential New Target in Fight Against Baldness

March 23rd, 2012 7:41 am

WEDNESDAY, March 21 (HealthDay News) -- Men worried about encroaching baldness, take heart: A genetic analysis of tissue taken from both bald and hairier spots on men's scalps has identified a protein involved in male pattern hair loss.

The researchers note that drugs that inhibit the protein are already in development, and it's possible those drugs could one day be used to help men preserve their head of hair.

In the study, researchers from the Perelman School of Medicine at the University of Pennsylvania did an analysis of more than 25,000 genes and honed in on one that produces an enzyme that produces a protein known as PGD2. That protein is present in much higher levels in bald spots.

When scientists placed PGD2 on hair follicles in a petri dish, they found the protein inhibited hair growth.

Researchers then tested the protein on mice genetically engineered to lack a receptor for PGD2, and found that hair growth was unaffected. But when PGD2 was applied to mice that have a different receptor (GPR44), the mice grew less hair.

PGD2 is a type of prostaglandin, or a hormone-like substance known to be involved in many body functions, including regulating the contraction and relaxation of smooth muscle tissue. Drugs that inhibit PGD2, for example, are being studied for use in preventing airway constriction in asthma.

"Several companies have compounds in development that block the receptor for PGD2. Those compounds are being studied to treat asthma," said senior study author Dr. George Cotsarelis, chair and professor of dermatology at University of Pennsylvania School of Medicine in Philadelphia. "We think using these compounds topically . . . could slow down and possibly reverse baldness."

The study is published in the March 21 issue of the journal Science Translational Medicine.

About 80 percent of white men have some degree of hair loss before age 70, according to background information in the study. In balding men, hair follicles don't disappear, but they shrink and produce very small, even microscopic hairs, Cotsarelis explained.

The belief is that something is inhibiting the follicle from growing a normal hair. One of those factors seems to be PGD2, which was found near stem cells in the follicle, which are important in hair growth, Cotsarelis explained.

Here is the original post:
Research Spots Potential New Target in Fight Against Baldness

Read More...

Scientists reprogram cancer cells with low doses of epigenetic drugs

March 23rd, 2012 7:40 am

Public release date: 22-Mar-2012 [ | E-mail | Share ]

Contact: Vanessa Wasta wasta@jhmi.edu 410-614-2916 Johns Hopkins Medical Institutions

Experimenting with cells in culture, researchers at the Johns Hopkins Kimmel Cancer Center have breathed possible new life into two drugs once considered too toxic for human cancer treatment. The drugs, azacitidine (AZA) and decitabine (DAC), are epigenetic-targeted drugs and work to correct cancer-causing alterations that modify DNA.

The researchers said the drugs also were found to take aim at a small but dangerous subpopulation of self-renewing cells, sometimes referred to as cancer stem cells, which evade most cancer drugs and cause recurrence and spread.

In a report published in the March 20, 2012, issue of Cancer Cell, the Johns Hopkins team said their study provides evidence that low doses of the drugs tested on cell cultures cause antitumor responses in breast, lung, and colon cancers.

Conventional chemotherapy agents work by indiscriminately poisoning and killing rapidly-dividing cells, including cancer cells, by damaging cellular machinery and DNA. "In contrast, low doses of AZA and DAC may re-activate genes that stop cancer growth without causing immediate cell-killing or DNA damage," says Stephen Baylin, M.D., Ludwig Professor of Oncology and deputy director of the Johns Hopkins Kimmel Cancer Center.

Many cancer experts had abandoned AZA and DAC for the treatment of common cancers, according to the researchers, because they are toxic to normal cells at standard high doses, and there was little research showing how they might work for cancer in general. Baylin and his colleague Cynthia Zahnow, Ph.D., decided to take another look at the drugs after low doses of the drugs showed a benefit in patients with a pre-leukemic disorder called myelodysplastic syndrome (MDS). Johns Hopkins investigators also showed benefit of low doses of the drugs in tests with a small number of advanced lung cancer patients. "This is contrary to the way we usually do things in cancer research," says Baylin, noting that "typically, we start in the laboratory and progress to clinical trials. In this case, we saw results in clinical trials that made us go back to the laboratory to figure out how to move the therapy forward."

For the research, Baylin and Zahnow's team worked with leukemia, breast, and other cancer cell lines and human tumor samples using the lowest possible doses that were effective against the cancers. In all, the investigators studied six leukemia cell lines, seven leukemia patient samples, three breast cancer cell lines, seven breast tumor samples (including four samples of tumors that had spread to the lung), one lung cancer tumor sample, and one colon cancer tumor sample. The team treated cell lines and tumor cells with low-dose AZA and DAC in culture for three days and allowed the drug-treated cells to rest for a week. Treated cells and tumor samples were then transplanted into mice where the researchers observed continued antitumor responses for up to 20 weeks. This extended response was in line with observations in some MDS patients who continued to have anticancer effects long after stopping the drug.

The low-dose therapy reversed cancer cell gene pathways, including those controlling cell cycle, cell repair, cell maturation, cell differentiation, immune cell interaction, and cell death. Effects varied among individual tumor cells, but the scientists generally saw that cancer cells reverted to a more normal state and eventually died. These results were caused, in part, by alteration of the epigenetic, or chemical environment, of DNA. Epigenetic activities turn on certain genes and block others, says Zahnow, assistant professor of oncology and the Evelyn Grolman Glick Scholar at Johns Hopkins.

The research team also tested AZA and DAC's effect on a type of metastatic breast cancer cell thought to drive cancer growth and resist standard therapies. Metastatic cells are difficult to study in standard laboratory tumor models, because they tend to break away from the original tumor and float around in blood and lymph fluids. The Johns Hopkins team re-created the metastatic stem cells' environment, allowing them to grow as floating spheres. "These cells were growing well as spheres in suspension, but when we treated the cells with AZA, both the size and number of spheres were dramatically reduced," says Zahnow.

Visit link:
Scientists reprogram cancer cells with low doses of epigenetic drugs

Read More...

Stem Cell Therapy Used To Treat 9/11 Search And Rescue Dog

March 23rd, 2012 7:39 am

ANNAPOLIS, Md. (WJZ)One of the last search and rescue dogs from 9/11 lives here in Maryland. She was suffering from a painful condition until her owner took action with breakthrough technology.

Mary Bubala has the story.

Red is a search and rescue dog from Annapolis, but has traveled across the country. Her missions include Hurricane Katrina, the La Plata tornadoes and the Pentagon after 9/11.

They credit them with finding 70 percent of the human remains so that helped a whole lot of those families actually get closure, said Heather Roche, Reds owner.

Sept. 11 was Reds first search. Today shes one of the last 9/11 search and rescue dogs still alive.

She retired last summer due to severe arthritis.

It would be nice if her arthritis, if she felt better, that she could do those kinds of things that she misses, Reds owner said while fighting back tears. Alright I am going to cry.

Roche did some research and found an animal hospital in northern Virginia that uses breakthrough stem cell therapy to treat arthritis in dogs.

The Burke Animal Clinic is one of just a few across the country that use stem cell therapy.

The vet harvests 1 to 2 ounces of the dogs fatty tissue, activates the stem cells and then injects them back into the troubled areas.

Read this article:
Stem Cell Therapy Used To Treat 9/11 Search And Rescue Dog

Read More...

Vet-Stem Announces StemInsure(R): A Small Fat Sample Now, a Lifetime of Stem Cells Later

March 23rd, 2012 7:39 am

POWAY, CA--(Marketwire -03/22/12)- Vet-Stem announced today the introduction of StemInsure. The StemInsure service provides banked stem cells that can be grown to supply a lifetime of stem cell therapy for dogs. One fat collection, in conjunction with another anesthetized procedure, gives access to a lifetime of stem cells.

Vet-Stem has trained over 3,500 veterinarians, provided stem cells for over 8,000 animals in the US and Canada and currently banks more than 25,000 doses for future therapeutic use. Many veterinarians and their clients have requested a method to collect and store stem cells when a dog is young, before it needs the regenerative cells for therapy. StemInsure was designed to meet this need.

A Vet-Stem credentialed veterinarian can collect as little as 5 grams of fat (about the size of a grape) from a dog or puppy during an anesthetized procedure. Many veterinarians and owners are electing to do this fat collection in conjunction with a spay or neuter. This small amount of fat is processed and stem cells are cryopreserved in Vet-Stem's state-of-the-art facility. The cells can be cultured in the future to provide enough stem cells to last for the lifetime of the dog. More information can be found at http://www.vet-stem.com/steminsure.php.

"Vet-Stem is pleased to provide StemInsure as a solution to the thousands of veterinarians and dog owners who recognize the value of Vet-Stem cell therapy. The ability to store the cells in conjunction with another procedure is a great way to ensure that the dog will have access to a lifetime of cell therapy while reducing the number of anesthetic events," said Dr. Bob Harman, DVM, MPVM, and CEO of Vet-Stem. Dr. Harman continued, "Currently, Vet-Stem Regenerative Cell Therapy is widely used to treat osteoarthritis, and tendon/ligament injuries. It is our expectation that the therapeutic use of adipose derived stem cells will continue to expand and add to the value of a lifetime supply of stem cells for dogs."

About Vet-Stem:In January of 2004, Vet-Stem introduced the first veterinary stem cell service in the United States. Since that time there has been rapid adoption of this technology for treatment of tendon, ligament, and joint injuries by the veterinary community. Studies have shown that mesenchymal stem cells can dramatically improve the healing of injuries and diseases that have had very few treatment options in the past.

See more here:
Vet-Stem Announces StemInsure(R): A Small Fat Sample Now, a Lifetime of Stem Cells Later

Read More...

Proposition 71 stem cell research funds drying up

March 22nd, 2012 10:30 am

SACRAMENTO (KABC) -- Eight years ago voters agreed to fund California's stem cell agency, hoping it would yield new treatments for various conditions. Now the agency is running out of funds and any practical cures are still years away.

The California Institute for Regenerative Medicine (CIRM) is about to enter a crucial stage in stem cell research: going to clinical trials. The most promising experiments could cure diabetes, HIV, sickle-cell anemia and blindness in the elderly.

"You don't really get to find out whether the potential of the treatment is really going to be effective until you start to treat the patients," said Alan Trounson, president of the California Institute for Regenerative Medicine.

CIRM's board is discussing how much to allocate for that trial phase. Through voter-approved bonds under Proposition 71 (The California Stem Cell Research and Cures Act), it has already given out or spent half of the $3 billion, but despite the medical promise, there's little to show for it beyond basic research and several high-tech laboratories.

But the agency says the breakthroughs will come over the next few years, way ahead of the rest of the world.

"This would all be happening in California, all driven by this Proposition 71 money," said Trounson.

The bond money is expected to last only several more years. One option is to ask voters to approve more bonds, something taxpayer groups oppose.

"When people think about bond financing, they think about a bridge, a school, a canal," said Jon Coupal, president of the Howard Jarvis Taxpayers Association. "But stem cell research is just kind of out there."

Rancher Diana Souza says it would be a shame to stop public funding of stem cell research. Through trials at UC Davis Medical Center not financed by Prop. 71 money, she says stem cells helped restore full use of her severely fractured arm.

"I hope they can continue doing this because it is a miracle. It does work. And I have a good arm to prove it," said Souza.

Read the original post:
Proposition 71 stem cell research funds drying up

Read More...

California institute fights to continue stem cell research

March 22nd, 2012 10:30 am

Written by Nannette Miranda, ABC7

SACRAMENTO, CA - The California Institute for Regenerative Medicine, CIRM, is about to enter a crucial stage in stem cell research: going to clinical trials.

The most promising experiments could cure: diabetes, HIV, sickle cell and blindness in the elderly.

"You don't really get to find out whether the potential of the treatment is really going to be effective until you start with patients, the human subjects," CIRM's Alan Trounson said.

CIRM's board is discussing how much to allocate for that trial phase.

Through voter-approved bonds under Proposition 71, it has already given out or spent half of the $3 billion, but despite the medical promise, there's little to show for it beyond basic research and several high-tech labs.

But the agency said the breakthroughs will come over the next few years, way ahead of the rest of the world.

"This would all be happening in California, all driven by this Proposition 71 money," Trounson said.

The bond money is expected to last only several more years.

One option is to ask voters to approve more bonds, something taxpayer groups oppose.

Excerpt from:
California institute fights to continue stem cell research

Read More...

Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine …

March 21st, 2012 9:05 pm

SAN DIEGO, CA--(Marketwire -03/21/12)- Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News)

Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News) and RenovoCyte LLC announced they have treated 8 canine patients of a 10 dog pilot study utilizing Canine Endometrial Regenerative Cells (CERC) licensed from Medistem Inc. (Pinksheets: MEDS.PK - News) in the treatment of canine osteoarthritis.

Previously, Entest announced the treatment of the first canine patient on November 18, 2011. Since that time Entest's McDonald Animal Hospital has treated 8 dogs in its 10 Dog Pilot Study with RenovoCyte. To date, all of the dogs participating in this study have shown dramatic improvement in their mobility and apparent reduction of pain.

Dr. Greg McDonald, Chief Veterinarian at McDonald Animal Hospital, said, "50 million CERC stem cells have been injected intravenously into eight dogs. Each dog selected for this study showed signs of arthritis. Follow-up blood tests, urinalysis and physical exams are now being scheduled for the patients that have already been treated. So far, all these canine patients have shown improvement."

Entest BioMedical Chairman David Koos stated, "Osteoarthritis is considered one of the most common causes of lameness in dogs, occurring in up to 30% of all dogs. It is caused by a deterioration of joint cartilage, followed by pain and loss of range of motion of the joint. We expect this treatment to relieve these animals from the pain associated with arthritis. This has extraordinary possibilities for dogs and may lead the way for human treatment of arthritic pain."

The CERC is a "universal donor" stem cell product that does not require matching with the recipient allowing for the generation of standardized products that can be delivered to the office of the veterinarian ready for injection. This is in stark contrast to current stem cell therapies utilized in veterinary applications which require the extraction, manipulation, and subsequent implantation of tissue from the animal being treated. CERC is the canine equivalent of Medistem's Endometrial Regenerative Cell (ERC). Medistem was recently granted approval from the FDA to initiate a clinical trial in human patients using its ERCs.

"We are extremely pleased with our research relationship with Entest BioMedical. This study of canine pets suffering from naturally occurring osteoarthritis is a better test model than laboratory induced disease because it will give us the opportunity for long term follow up of these patients. RenovoCyte sees this study as part of the supporting documentation that will be needed to obtain FDA approval for widespread usage of this therapy," said Shelly Zacharias, DVM, Director of Veterinary Operations, RenovoCyte, LLC.

A spokesperson for Entest noted the Company is also currently conducting a 10 dog safety study on its immune-therapeutic cancer vaccine for dogs, having treated 3 dogs so far.

About Entest BioMedical Inc.:Entest BioMedical Inc. (http://www.entestbio.com) is a veterinary biotechnology company focused on developing therapies that harness the animal's own reparative / immunological mechanisms. The Company's products include an immuno-therapeutic cancer vaccine for canines (ImenVax). ImenVax is less invasive and less traumatic in treating cancer. Additionally, the Company serves as the contract research organization conducting a pilot study on a stem cell based canine osteoarthritis treatment (developed by RenovoCyte LLC) utilizing a 'universal donor' stem cell. Entest is also building a network of veterinary hospitals (with its initial location in Santa Barbara, CA and anticipates acquiring other veterinary hospitals in California) -- which serve as distribution channels for its products.

DisclaimerThis news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.

Go here to read the rest:
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine ...

Read More...

VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

March 21st, 2012 9:05 pm

SOUTH SAN FRANCISCO, CA--(Marketwire -03/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, and Vala Sciences, Inc., a biotechnology company developing and selling next-generation cell image-based instruments, reagents and analysis software tools, have entered into a strategic collaboration. Their goal is to advance drug safety screening methodologies in the most clinically relevant human in vitro bioassay systems available to researchers today.

Cardiomyocytes are the muscle cells of the heart that provide the force necessary to pump blood throughout the body, and as such are the targets of most of the drug toxicities that directly affect the heart. Many of these drug toxicities result in either arrhythmia (irregular, often fatal, beating of the heart) or reduced ability of the heart to pump the blood necessary to maintain normal health and vigor.

"Our collaboration with Vala directly supports the core drug rescue applications of our Human Clinical Trials in a Test Tube platform," said Shawn K. Singh, JD, VistaGen's Chief Executive Officer. "Our high quality human cardiomyocytes combined with Vala's high throughput electrophysiological assessment capabilities is yet another example of how we are applying our stem cell technology platform within a strategic ecosystem of complementary leading-edge companies and technologies. We seek to drive our drug rescue programs forward and generate a pipeline of new, cardiosafe drug candidates."

Through the collaboration, Vala will use its Kinetic Image Cytometer platform to demonstrate both the suitability and utility of VistaGen's human pluripotent stem cell derived-cardiomyocytes for screening new drug candidates for potential cardiotoxicity over conventional in vitro screening systems and animal models. VistaGen's validated human cardiomyocyte-based bioassay system, CardioSafe 3D, will permit Vala to demonstrate the quality, resolution, applicability and ease of use of its new instrumentation and analysis software to make information-rich, high throughput measurements and generate fundamentally new insights into heart cell drug responses. Accurate, sensitive and reproducible measurement of electrophysiological responses of stem cell-derived cardiomyocytes to new drug candidates is a key element of VistaGen's CardioSafe 3D drug rescue programs. VistaGen's strategic collaboration with Vala is directed towards this goal.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

About Vala Sciences

Vala Sciences is a San Diego-based biotechnology company that develops and sells cell-image-based instrumentation, reagents and analysis software tools to academic, pharmaceutical and biotechnology scientists. Vala's IC 200 class of instrumentation, and CyteSeer Automated Image Cytometry software convert labor-intensive qualitative observations of biological changes that can take from days to months, into accurate measurements delivered automatically in minutes.

Cautionary Statement Regarding Forward Looking Statements

Visit link:
VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

Read More...

Entest BioMedical Excited With Progress on 10 Dog Pilot Study of “Universal Donor” Stem Cell Treatment for Canine …

March 21st, 2012 5:53 pm

SAN DIEGO, CA--(Marketwire -03/21/12)- Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News)

Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News) and RenovoCyte LLC announced they have treated 8 canine patients of a 10 dog pilot study utilizing Canine Endometrial Regenerative Cells (CERC) licensed from Medistem Inc. (Pinksheets: MEDS.PK - News) in the treatment of canine osteoarthritis.

Previously, Entest announced the treatment of the first canine patient on November 18, 2011. Since that time Entest's McDonald Animal Hospital has treated 8 dogs in its 10 Dog Pilot Study with RenovoCyte. To date, all of the dogs participating in this study have shown dramatic improvement in their mobility and apparent reduction of pain.

Dr. Greg McDonald, Chief Veterinarian at McDonald Animal Hospital, said, "50 million CERC stem cells have been injected intravenously into eight dogs. Each dog selected for this study showed signs of arthritis. Follow-up blood tests, urinalysis and physical exams are now being scheduled for the patients that have already been treated. So far, all these canine patients have shown improvement."

Entest BioMedical Chairman David Koos stated, "Osteoarthritis is considered one of the most common causes of lameness in dogs, occurring in up to 30% of all dogs. It is caused by a deterioration of joint cartilage, followed by pain and loss of range of motion of the joint. We expect this treatment to relieve these animals from the pain associated with arthritis. This has extraordinary possibilities for dogs and may lead the way for human treatment of arthritic pain."

The CERC is a "universal donor" stem cell product that does not require matching with the recipient allowing for the generation of standardized products that can be delivered to the office of the veterinarian ready for injection. This is in stark contrast to current stem cell therapies utilized in veterinary applications which require the extraction, manipulation, and subsequent implantation of tissue from the animal being treated. CERC is the canine equivalent of Medistem's Endometrial Regenerative Cell (ERC). Medistem was recently granted approval from the FDA to initiate a clinical trial in human patients using its ERCs.

"We are extremely pleased with our research relationship with Entest BioMedical. This study of canine pets suffering from naturally occurring osteoarthritis is a better test model than laboratory induced disease because it will give us the opportunity for long term follow up of these patients. RenovoCyte sees this study as part of the supporting documentation that will be needed to obtain FDA approval for widespread usage of this therapy," said Shelly Zacharias, DVM, Director of Veterinary Operations, RenovoCyte, LLC.

A spokesperson for Entest noted the Company is also currently conducting a 10 dog safety study on its immune-therapeutic cancer vaccine for dogs, having treated 3 dogs so far.

About Entest BioMedical Inc.:Entest BioMedical Inc. (http://www.entestbio.com) is a veterinary biotechnology company focused on developing therapies that harness the animal's own reparative / immunological mechanisms. The Company's products include an immuno-therapeutic cancer vaccine for canines (ImenVax). ImenVax is less invasive and less traumatic in treating cancer. Additionally, the Company serves as the contract research organization conducting a pilot study on a stem cell based canine osteoarthritis treatment (developed by RenovoCyte LLC) utilizing a 'universal donor' stem cell. Entest is also building a network of veterinary hospitals (with its initial location in Santa Barbara, CA and anticipates acquiring other veterinary hospitals in California) -- which serve as distribution channels for its products.

DisclaimerThis news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.

Read more from the original source:
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine ...

Read More...

Page 1,458«..1020..1,4571,4581,4591,460..1,4701,480..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick