header logo image


Page 1,424«..1020..1,4231,4241,4251,426..1,4301,440..»

CBR – World’s Largest Stem Cell Bank – Applies Two Decades of Experience to Advance Regenerative Medicine

June 20th, 2012 9:18 pm

SAN BRUNO, Calif., June 20, 2012 /PRNewswire/ -- Twenty years ago this month, CBR (Cord Blood Registry) in partnership with the University of Arizona, processed the first cord blood stem cell sample in the world to be stored specifically for family use. Since 1992, the number of conditions treated with cord blood stem cells has greatly expanded, and so has CBR. Today, CBR is the largest family cord blood bank in the world with more than 425,000 samples in storage a population the size of a major city like Miami. What distinguishes the "city of individuals" with newborn stem cells banked at CBR is the exclusive opportunity to participate in a growing number of ground-breaking clinical trials.

(Photo: http://photos.prnewswire.com/prnh/20120620/SF27549-INFO)

(Logo: http://photos.prnewswire.com/prnh/20120216/AQ54476LOGO)

"As the leader and innovator in family banking, we believe every newborn deserves a healthy future and that we have a responsibility to lead the way," said Heather Brown, vice president of scientific & medical affairs at CBR. "Looking back, the creation of our bank allowed families for the first time to preserve a genetically-related source of newborn stem cells, ready and available if needed for a lifesaving transplant to regenerate a person's immune system after radiation or chemotherapy. As we look to the future, we are helping shape new areas of regenerative medicine. We are the only family bank actively pioneering clinical trials evaluating new therapeutic uses of cord blood stem cells for unexpected injuries and conditions with no current cure."

Expanding Areas of Clinical Research: Helping the Body Heal Injured Nerves Until very recently, the prevailing medical opinion in neurology has been that damage to the central nervous system caused by injuries like birth trauma, accidents or stroke is often permanent. Currently, intervention after injury focuses on stabilizing the patient to minimize damage. However, data from animal research in recent years has challenged this assumption, leading to cord blood stem cell clinical research to study whether these cells may stimulate neural cell and tissue repair to restore function and alleviate neurological impairments.

CBR is taking the lead in moving animal research rapidly into the clinic to investigate the ability for cord blood stem cells to trigger the body's own mechanisms to initiate nerve repair by establishing specific clinical trials at leading medical institutions across the country. By pairing researchers with children who have been diagnosed with chronic conditions like cerebral palsy, traumatic brain injury or hearing loss-- and who also have access to their own cord blood stem cells -- CBR is helping physicians move beyond surgery and drugs to evaluate how newborn stem cells may help the body repair itself.

Celebrating a History of Firsts Throughout its history, CBR has taken many of the first steps to create and advance the notion of preserving and ensuring access to high quality newborn stem cells that are viable for use. Among the company's contributions to stem cell medicine and science, CBR was:

"CBR continuously improves our systems and technology to maintain the highest published cell recovery rate in the industry of 99%, every single time. We treat every sample as if it belongs to our own child or grandchild," says Tom Moore, CEO and founder of CBR. "That care and precision is what we offer clinical researchers, who are partnering exclusively with CBR to evaluate the use of a child's own cord blood stem cells to help treat chronic diseases like cerebral palsy, hearing loss and traumatic brain injury."

About Cord Blood RegistryCBR (Cord Blood Registry) is the world's largest and most experienced cord blood bank.The company has consistently led the industry in technical innovations and safeguards more than 425,000 cord blood collections for individuals and their families. CBR was the first family bank accredited by AABB and the company's quality standards have been recognized through ISO 9001:2008 certificationthe global business standard for quality. CBR has also released more client cord blood units for specific therapeutic use than any other family cord blood bank. Our research and development efforts are focused on helping the world's leading clinical researchers advance regenerative medical therapies.For more information, visit http://www.cordblood.com.

Follow this link:
CBR - World's Largest Stem Cell Bank - Applies Two Decades of Experience to Advance Regenerative Medicine

Read More...

LIFE Focuses on Stem Cell Research

June 20th, 2012 9:18 pm

Given the recent flurry of activities, it seems that Life Technologies Corporation (LIFE) is focused on strengthening its foothold in the field of stem cell research. The company recently signed a non-exclusive agreement with iPS Academia of Japan for its induced pluripotent stem (iPS) cell patent portfolio. Based on this agreement, the company will be able to expand its portfolio for the iPS cell research community.

Besides, it is well placed to create iPS cells and differentiate them into various cell types to be used in drug discovery and pre-clinical research. The license also enables Life Technologies to provide creation, differentiation and screening services of iPS cell to scientists globally. We consider the agreement to be a significant achievement for the company in the field of stem cell research as iPS cells are gaining attention for use in the areas of drug discovery, disease research and other areas of biotechnology.

The agreement with iPS Academia of Japan comes on the heels of the partnership with Cellular Dynamics International, the world's largest producer of human cells derived from iPS cells. The partnership will aim at commercializing a set of three new products optimized to consistently develop and grow human iPS cells for both research and bioproduction.

These initiatives undertaken by Life Technologies should strengthen its Research Consumables segment. This segment includes molecular and cell biology reagents, endpoint PCR and other benchtop instruments and consumables. These products include RNAi, DNA synthesis, sample prep, transfection, cloning and protein expression profiling and protein analysis, cell culture media used in research, stem cells and related tools, cellular imaging products, antibodies and cell therapy related products. In the most recent quarter, this division recorded a 4% year-over-year increase in revenues to $420 million on the back of growth in cell culture workflow products, endpoint PCR products and molecular and cell biology consumables.

Life Technologies enjoys a strong position in the life sciences market, though management prefers to maintain a cautious but optimistic outlook for the remainder of the year. We are encouraged by the improvement in margins amidst the tight competitive scenario with the presence of players such as Thermo Fisher Scientific (TMO), Illumina (ILMN), among others.

We have a Neutral recommendation on Life Technologies. The stock retains a Zacks #3 Rank (hold) in the short term.

Read the Full Research Report on TMO

Read the Full Research Report on ILMN

Zacks Investment Research

More From Zacks.com

Read more here:
LIFE Focuses on Stem Cell Research

Read More...

Diabetes drug may kill cancer stem cells, study says

June 20th, 2012 2:28 pm

Results from a new study suggest low doses of the diabetes drug metformin may effectively destroy pancreatic cancer stem cells, reducing the risk of tumor growth or recurrence.

Metformin has previously shown promise in reducing breast cancer risk, after researchers found women who took the drug were 25 percent less likely to develop breast cancer during their lifetimes than women who did not.

This study, conducted in mice, is the first to suggest metformin may actually target the root of certain cancers the tumor-initiating stem cells.

We didnt have any clue regarding the effects of metformin on pancreatic stem cancer cells, study researcher Dr. Christopher Heeschen, professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid, Spain, told FoxNews.com. Its been implied in past studies of pancreatic cancer that patients who use metformin show better outcomes, but there have been no randomized trials yet.

When metformin was combined with a standard chemotherapy to treat pancreatic cancer, the drugs were able to eradicate both cancer stem cells and the differentiated cells that made up the tumor.

Novel strategies for treating pancreatic cancer have to be multi-modal, Heeschen explained. Right now, metformin is used as a second phase treatment, but I could also envision it as a first phase treatment but it has to be in combination with chemotherapy. I dont think the drug alone could wipe out the primary tumor, which is crucial.

In the study, it appeared that metformin merely arrested cancer cell growth in existing tumors, rather than destroying them.

Metformin targets the root of cancer, which has more of an effect on preventing cancer relapse, Heeschen said.

According to Heeschen, researchers are not yet certain as to why metformin appears to have cancer stem cell-killing properties, but from a pragmatic point of view, you see this striking response with a well-established drug thats safe I think its reasonable to move forward with clinical trials, he said.

One clinical trial is already in the recruitment phase, and Heeschen predicted results of the trial would be available by the end of the year.

See the original post here:
Diabetes drug may kill cancer stem cells, study says

Read More...

Long-term pesticide exposure is harmful: STM study

June 20th, 2012 2:28 pm

Calcutta News.net Wednesday 20th June, 2012

Long-time exposure to pesticides via inhalation may cause moderate to severe blood toxicity and reduction in the total number of bone marrow cells, leading to several degenerative diseases like aplastic anaemia, researchers at the School of Tropical Medicine (STM) here say.

The researches arrived at the conclusion from procedures performed on mice.

"As a whole, exposure to pesticides reduced the total number of bone marrow cells or, in other words, suppressed them," Sujata Law, assistant professor (Stem Cell Biology) at STM's Department of Medical Biotechnology, told IANS.

Bone marrow is the soft, flexible tissue found in long bones such as the thigh bone and the hip bone that contain immature cells called stem cells.

Stem cells, particularly the haematopoeitic stem cells (HSC) or the blood-forming stem cells can develop into the following types - red blood cells that carry oxygen, white blood cells that fight infection and platelets that help to clot blood.

So, in effect, bone marrow is the birthplace of these important cells.

"Bone marrow suppression leads to a number of degenerative diseases like aplastic anaemia, where the deficiency in the number of cells in the circulating blood (peripheral cytopenia) is the main feature," Law said.

The exact underlying mechanism is unknown but it has been concluded from the research published in the Journal of Environmental Toxicology that the microenvironment of the stem cells, in which they develop, is somehow deranged and this prevents their development into the various types of cells.

"In order to prevent degenerative diseases related to pesticide exposure, it is of prime importance that those handling pesticides take precautions like wearing protective clothing, including masks and gloves," she said.

Read more:
Long-term pesticide exposure is harmful: STM study

Read More...

Anchoring points determine fate of stem cells

June 20th, 2012 2:26 pm

Mesenchymal Stem Cells (hMSCs) cultured on a Polyacrylamide gel for 7 days: Cells stained in blue are ALP positive which is a marker for osteogenic differentiation, while the cells that contain red oil droplets underwent adipogenic differentiation. Credit: Bojun Li and Prof. Viola Vogel / ETH Zurich

(Phys.org) -- Researchers were positive: a substrates softness influences the behaviour of stem cells in culture. Now other researchers have made a new discovery: the number of anchoring points to which the cells can adhere is pivotal.

How stem cells differentiate is evidently not so much a question of the stiffness of the substrate upon which they thrive, as the cells mechanical anchoring on the substrate surface. This is shown in a study recently published in Nature Materials by researchers from various European universities, including ETH Zurich.

Since 2006 the research community has been convinced that stem cells can feel the softness of materials they grow upon. Scientists mainly drew this conclusion from correlations between the softness of the substrate and the cells behavior.

The new research project, to which ETH-Zurich professor Viola Vogel and her doctoral student Bojun Li made a key contribution, has come to another conclusion. It reveals that the properties of the network structure of polymers are instrumental in regulating the anchoring of the collagen proteins to which the cells ultimately adhere. And these anchors influence the differentiation of stem cells.

Good protein adhesion makes surface seem stiff

In a series of experiments, which Britta Trappmann from Cambridge University partly conducted at ETH Zurich, the cells were applied to two different polymers of the same softness. However, the polymers differed in terms of their surface structure, which regulates the number of firmly anchored collagen proteins.

If the researchers reduced the number of well-anchored proteins on a hard surface, the cells behaved in the same way as on a soft base. If the anchors were close together, the stem cells differentiated into bone cells. If the anchors were further apart, they became fat cells. The simple correlation that a materials stiffness or elasticity can govern the differentiation of stem cells is therefore not universally valid, says Vogel.

Paradigm shift in cultivation of stem cells

With their experiment, the researchers shake a paradigm. In a study conducted in 2006, scientists revealed a connection between polymer stiffness and the degree of cell differentiation. However, the researchers varied the stiffness of the polymer by varying its network structure.

Continued here:
Anchoring points determine fate of stem cells

Read More...

Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

June 20th, 2012 2:25 pm

Newswise LOS ANGELES (June 19, 2012) Cedars-Sinais Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institutes work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process, said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a disease-in-a-dish that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesnt allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive, said Dhruv Sareen, director of Cedars-Sinais Induced Pluripotent Stem Cell Core Facility and a primary author on the study. This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials.

The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.

# # #

Visit link:
Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

Read More...

Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy

June 20th, 2012 2:25 pm

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES (June 19, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials."

###

See more here:
Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy

Read More...

Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

June 20th, 2012 6:14 am

RIO DE JANEIRO--(BUSINESS WIRE)--

Cryopraxis established in 2001 as the pioneer private umbilical cord blood bank in Brazil will be present at Bio 2012 in Boston. Eduardo Cruz, chairman of the board, will be a speaker at the Brazilian break-out session speaking about The Brazilian Biotechnology Sector and showing the results of the company's commitment to R&D. Cryopraxis has already collected and processed more than 25000 cord blood units (CBU) and is actively involved in several R&D projects in Brazil and abroad.

A spin-off of Cryopraxis, Cellpraxis, has recently finished one of the world's first cell therapy project clinical trials in Brazil: ReACT. ReACT is a stem cell formulation. This regenerative medicine pioneer product aims on treating an orphan disease condition called refractory angina. Refractory angina patients suffer from untreatable severe chest pain and the results of the clinical trial in a 5 years follow up proved ReACT to positively interfere in the course of the pathology. Most of the individuals treated experienced relief in pain and better quality of life. ReACT will be presented at Bio2012 as an example of Brazil's dynamic biotechnology research.

Cryopraxis is accredited by the American Association of Blood Bank since 2009.

According to Tatiana Lima, Technical Director at Cryopraxis, "extensive training and strict adherence to good laboratory practices are basic principles in Cryopraxis' corporate strategy." Janaina Machado, cell lab director describes the company's primary mission: "maximizing safety and efficiency of collection procedures to make sure our clients get what they look for: the highest quality standards."

Cryopraxis is part of Axis Biotec (www.axisbiotec.com.br) and it has the largest biological cryogenic storage facility in Brazil and one of the largest in the World. It is the largest umbilical cord blood bank in Brazil. The company is involved in several research projects in Brazil and abroad.For more information, visitwww.cryopraxis.com.brand http://www.cellpraxis.com

See the original post here:
Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

Read More...

Animal Stem Cell Therapy

June 20th, 2012 6:14 am

BYRON, MN--It's a dream for many in the medical field, to use a person's own stem cells to help them heal. And it's a reality already happening in our area.

But it's not humans who are being treated. In this case, dogs are the ones being treated.

Animal Stem Cell Regenerative Therapy has been performed a few thousand times now across the U.S. Doctors harvest stem cells and re-enter them where the animal is having problems.

Both Marley and Vinnie have bad ligaments in their legs, and like many dogs suffering from arthritis, they are subject to monthly doses of expensive drugs.

That is until today.

Dr. Garren Kelly, D.V.M. at Meadow View Veterinary Clinic just outside Rochester says, "If you'd of asked me 5 years ago if I would be doing anything like this, I would have said no. But then as soon as I saw it i'm like 'Yeah that's for me'. I kind of like staying on the cutting edge of technology and surgeries".

The two are undergoing a first of its kind surgery in minnesota, using regenerative stem cells.

Blood is taken from the dogs, as well as fat tissue.

Then stem cells are separated out from the fat, activated with an led light, and injected back into the affected area. All in the same day.

MediVet America trainer Jordan Smith says, "It's a better quality of life, we're not promising to give them 10 years or 5 years but we are promising that the years that they do have remaining are a lot more enjoyable".

Go here to read the rest:
Animal Stem Cell Therapy

Read More...

Leukemia inhibitory factor may be a promising target against pancreatic cancer

June 19th, 2012 11:17 pm

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Jeremy Moore jeremy.moore@aacr.org 215-446-7109 American Association for Cancer Research

LAKE TAHOE, Nev. Pancreatic cancer is one of the deadliest forms of cancer, defying most treatments. Its ability to evade therapy may be attributable to the presence of cancer stem cells, a subset of cancer cells present in pancreatic tumors that drive tumor growth by generating bulk tumor cells. Cancer stem cells are notorious for their ability to resist traditional chemotherapies.

However, scientists at the University of California, San Francisco (UCSF), have discovered that two proteins KRAS and leukemia inhibitory factor (LIF) help create cancer stem cells and that the latter can be targeted to block them.

These results were presented at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held here from June 18-21.

In many different types of tumors, a constitutively active, mutant form of the signaling protein KRAS helps drive the uncontrolled tumor cell proliferation that is a hallmark of cancer. In fact, more than 90 percent of pancreatic cancers exhibit KRAS mutations, but the link between KRAS and cancer stem cells has been tenuous until now.

Using human pancreatic cancer cell lines and mouse fibroblasts and pancreatic cancer cells, Man-Tzu Wang, Ph.D., a postdoctoral researcher in the McCormick lab at the Helen Diller Family Comprehensive Cancer Center at UCSF, and colleagues showed that KRAS causes cells to acquire and maintain stem cell-like properties.

"We know that KRAS is a very potent driver of pancreatic cancer, but we don't know how to drug it," said Wang. "Our results showed we can block KRAS-mediated cancer stem cells by blocking LIF activity."

KRAS is difficult to target therapeutically. Taking the next logical step, the researchers began looking for proteins that function downstream of KRAS in the generation of pancreatic cancer stem cells to determine if any of them could be potential drug targets. They found a number of candidates but focused on LIF, a protein known to regulate stem cell development. Moreover, they found that LIF is "druggable," making it a potential target for treatment.

Using neutralizing antibodies or shRNA, the team knocked down LIF activity or expression and found that each reduced the in vitro stem cell-like properties of mouse pancreatic cancer cells.

Read the original post:
Leukemia inhibitory factor may be a promising target against pancreatic cancer

Read More...

French scientists revive stem cells of dead people

June 19th, 2012 11:17 pm

French scientists revive stem cells of dead people

A group from the Pasteur Institute was able to reactivate muscle stem cells from deceased persons after 17 days, which functioned normally after transplant...

by Fabrice Chretien

French scientists were able to revive stem cells of muscle and bone marrow from persons who were already dead for 17 days, reports the journal Nature Communications in a paper released on Wednesday (13th) in France.

A team of researchers from the Pasteur Institute demonstrated that it is possible to reactivate the muscle stem cells from human cadavers and transplant them to make new ones born in perfect condition.

The scientists found that these cells did not die with the person. That's because they reduced their activity to a minimum and, after discarding the mitochondria (small bodies that help with breathing), were in a state of hibernation.

Thus, cells could survive even in an environment so hostile, without oxygen and in the middle of an acid bath, as well as in the case of a muscle injury, "sleeping and waiting out the storm," as Professor Fabrice Chrtien affirmed to the newspaper Libration.

"This reserve of stem cells could serve to make bone marrow transplants used to treat leukemia and blood diseases, among other conditions. They could also address the lack of donors," said Chretien, who led the study alongside researcher, Shahragim Tajbakhsh.

Despite the advances that have also been successfully tested in rats, the experiment showed an increase of one type of substance called ROS, which, in turn, has an incompatibility with the cells and genome, Professor Jean-Marc Lemaitre pointed out to the paper, Le Figaro. Due to this fact, the study still needs to determine whether these new cells, even in perfect condition, can hide still undetected malformations.

Translated from the Portuguese version by:

Follow this link:
French scientists revive stem cells of dead people

Read More...

New method generates cardiac muscle patches from stem cells

June 19th, 2012 11:17 pm

Public release date: 18-Jun-2012 [ | E-mail | Share ]

Contact: Shantell M. Kirkendoll smkirk@umich.edu 734-764-2220 University of Michigan Health System

A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated cardiac cells is displayed on the cover of the current issue of Circulation Research, a publication of the American Heart Association.

For those suffering from common, but deadly, heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's electrical impulses that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived cardiac muscle cells have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for heart disease, however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using stem cells generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Follow this link:
New method generates cardiac muscle patches from stem cells

Read More...

European researchers crack embryonic stem cells mystery

June 19th, 2012 11:17 pm

European researchers discover that embryonic stem cell properties are impacted by the laboratory conditions used to grow them.

In their groundbreaking study, a European team of researchers evaluated embryonic stem cells grown in a pure undifferentiated state. The use of next generation sequencing technology enabled them to analyse gene expression (i.e. transcriptome) and chromatin modifications (i.e. epigenome). The study is presented in the journal Cell. The results pinpoint key differences between pure stem cells and embryonic stem cells grown in laboratory settings.

What allows embryonic stem cells to stay pluripotent? Researchers have been investigating this mystery for some time. Now a team of researchers from Germany, the Netherlands and the United Kingdom provide key answers, giving us information we need to know about how cells are controlled and what is the optimal way to grow them. The findings overturn previous reports suggesting that embryonic stem cells are both unstable and primed to differentiate. This information could help lead to the development of new and effective treatments.

Researchers from Nijmegen Centre for Molecular Life Sciences (NCMLS) and Radboud University in the Netherlands, as well as the Wellcome Trust Centre for Stem Cell Research, Stem Cell Institute and the University of Cambridge in the United Kingdom, and Technische Universitt Dresden in Germany confirmed that transcriptome analysis allows scientists to identify which genes are turned on or off inside the cells. The gene's level of activity is also calculated through this method. Meanwhile, epigenome analysis provides researchers insight into how genes are controlled. This study went a step further by unlocking the mystery of how embryonic stem cells maintain their pluripotency, which experts describe as the capacity to make various cell types.

Through this study, researchers obtained key reference information in their quest to create a novel kind of human pluripotent stem cell equivalent to mouse embryonic stem cells. According to the team, the data represents the ground state of pluripotency.

Commenting on the results of the study, EUROSYSTEM ('European consortium for systematic stem cell biology') coordinator Austin Smith said: "These findings show how much we are still learning about stem cells. They also point to an underlying difference between true embryonic stem cells isolated from mice and the currently available human stem cells which are less pure and more variable."

More information: Marks, H., et al. 'The Transcriptional and Epigenomic Foundations of Ground State Pluripotency', Cell, 2012, 149(3), 590-604. doi:10.1016/j.cell.2012.03.026

Journal reference: Cell

Provided by CORDIS

See the original post here:
European researchers crack embryonic stem cells mystery

Read More...

Neuralstem Pioneering Efforts In ALS – Analyst Blog

June 19th, 2012 11:17 pm

By Jason Napodano, CFA

Neuralstem, Inc. (NYSE MKT: CUR ) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.

Neuralstem's lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrig 's disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.

ALS Background

ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.

The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.

Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).

The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.

Neuralstem's Approach For ALS

Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patient's spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.

See original here:
Neuralstem Pioneering Efforts In ALS - Analyst Blog

Read More...

The Hospital for Sick Children in Toronto Adopts Life Technologies' Ion Proton™ Sequencer to Launch New Centre for …

June 19th, 2012 11:15 pm

CARLSBAD, Calif., June 19, 2012 /PRNewswire/ -- Life Technologies Corporation (LIFE) today announced it has partnered with The Hospital for Sick Children (SickKids) to advance pediatric genomic research on the Ion Proton Sequencer. Under the agreement, the semiconductor-based platform will be the primary instrument on which multiple clinical research samples will be mapped daily on four sequencers in the hospital's newly launched Centre for Genetic Medicine.

SickKids and Life Technologies will collaborate on developing sequencing workflows and protocols for the Ion Proton System that are tailored for studies of interest to researchers in the Centre. The first collaborative project will focus on sequencing clinical research samples to better understand the genetics behind autism, with a long-term goal to sequence up to 10,000 genomes per year to study various diseases in children.

"The perfect storm of unparalleled advances in genome sequencing technology and information science, and a captivated hospital striving for new ways to move forward in medical treatment, bring us to this important day," says the new Centre's Co-Director, Dr. Stephen Scherer, who also leads The Centre for Applied Genomics at SickKids and the University of Toronto's McLaughlin Centre. "We are very excited to work with Life Technologies to enhance our sequencing capabilities, such that 'genomic surveillance' may soon become the first line of investigation in all clinical research studies ongoing at our institution."

"Since the first published draft sequence of the human genome, our knowledge in genetics has exponentially increased," says Dr. Ronald Cohn, Co-Director of the SickKids Centre for Genetic Medicine. "With the help of this new technology, we will be able to further deepen our understanding of the genetic basis of human disease and translate this directly into daily clinical practice. We have finally reached a point, where individualized medicine is not just a theoretical concept, but will become an integral part of clinical care and management."

The Ion Proton Sequencer is designed to sequence an entire human genome in a day for $1,000. Unlike traditional next generation systems, it relies on semiconductor chips to map human exomes and genomes, making it much faster and less expensive to analyze DNA at unprecedented throughput levels and generate accurate sequencing data.

The Ion Proton Systemis based on the same proven technology as its predecessor, the Ion Personal Genome Machine (PGM), which is designed for sequencing small genomes or sets of genes. Combined with Life Technologies' AmpliSeq targeted sequencing technology, researchers can sequence panels of genes associated with disease on the PGM or exomes and genomes on the Ion Proton Sequencer in just a few hours.

"SickKids has a rich history of being at the forefront of pediatric medicine and we are pleased that its leaders have chosen the Ion Proton Sequencer as the Centre's primary technology to push the boundaries of genomics," said Mark Stevenson, President and Chief Operating Officer of Life Technologies. "Ion semiconductor technology's speed, simplicity and scalability are democratizing sequencing, and it will now be applied in disease research to benefit children."

The above mentioned technology is for research use only and not intended for human diagnostic or therapeutic use.

About Life Technologies Life Technologies Corporation (LIFE) is a global biotechnology company with customers in more than 160 countries using its innovative solutions to solve some of today's most difficult scientific challenges. Quality and innovation are accessible to every lab with its reliable and easy-to-use solutions spanning the biological spectrum with more than 50,000 products for translational research, molecular medicine and diagnostics, stem cell-based therapies, forensics, food safety and animal health. Its systems, reagents and consumables represent some of the most cited brands in scientific research including: Ion Torrent, Applied Biosystems, Invitrogen, GIBCO, Ambion, Molecular Probes, Novex, and TaqMan. Life Technologies employs approximately 10,400 people and upholds its ongoing commitment to innovation with more than 4,000 patents and exclusive licenses. LIFE had sales of $3.7 billion in 2011. Visit us at our website: http://www.lifetechnologies.com.

Life Technologies' Safe Harbor StatementThis press release includes forward-looking statements about our anticipated results that involve risks and uncertainties. Some of the information contained in this press release, including, but not limited to, statements as to industry trends and Life Technologies' plans, objectives, expectations and strategy for its business, contains forward-looking statements that are subject to risks and uncertainties that could cause actual results or events to differ materially from those expressed or implied by such forward-looking statements. Any statements that are not statements of historical fact are forward-looking statements. When used, the words "believe," "plan," "intend," "anticipate," "target," "estimate," "expect" and the like, and/or future tense or conditional constructions ("will," "may," "could," "should," etc.), or similar expressions, identify certain of these forward-looking statements. Important factors which could cause actual results to differ materially from those in the forward-looking statements are detailed in filings made byLife Technologies with the Securities and Exchange Commission.Life Technologies undertakes no obligation to update or revise any such forward-looking statements to reflect subsequent events or circumstances.

Follow this link:
The Hospital for Sick Children in Toronto Adopts Life Technologies' Ion Proton™ Sequencer to Launch New Centre for ...

Read More...

bluebird bio Receives U.S. and European Orphan Drug Designation for Novel Gene Therapy to Treat Adrenoleukodystrophy

June 19th, 2012 11:14 pm

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

bluebird bio, a leader in the development of innovative gene therapies for severe genetic disorders, announced today that both the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have granted an orphan drug designation to its investigational gene therapy product for the treatment of adrenoleukodystrophy (ALD). The product consists of the patients own CD34+ hematopoietic stem cells transduced with bluebird bios lentiviral vector, Lenti-D, encoding the human ABCD1 cDNA. Based on promising early clinical proof of concept results, bluebird bio plans to initiate a Phase 2/3 clinical study in childhood cerebral ALD in both the United States and Europe in 2013.

Receiving orphan drug designation is a positive step forward in our efforts to bring hope to ALD patients and their families, said David Davidson, M.D., chief medical officer of bluebird bio. We believe our lentiviral technology has the potential to be a one-time transformative therapy for patients suffering from rare genetic disorders like ALD for whom there are limited treatment options. bluebird is committed to advancing the clinical and commercial development of our gene therapy platform because of the dramatic benefit it may have on the lives of patients.

Orphan drug designation, which is intended to facilitate drug development for rare diseases, provides substantial benefits to the sponsor, including the potential for funding for certain clinical studies, study-design assistance, and several years of market exclusivity for the product upon regulatory approval.

About ALD

Adrenoleukodystrophy (ALD) is a rare X-linked, inherited neurological disorder that, in its most severe form, causes damage to the myelin sheath (an insulating layer of membranes that surrounds nerve cells in the brain) and progressive dysfunction of the adrenal glands. Also known as Lorenzo's Oil disease, ALD is estimated to affect one in every 21,000 boys worldwide. In the childhood cerebral form (CCALD), symptoms usually occur between the ages of 4 and 10. Boys afflicted with this form of ALD develop normally until the onset of symptoms. The symptoms of this disorder often progress rapidly and, in a matter of years, can lead to a vegetative state and, ultimately, death. Current treatment options are limited to allogeneic stem cell transplantation when there is an appropriate donor. Allogeneic transplants carry a significant risk of serious morbidity and death.

About bluebird bio's CCALD Product Development

bluebird bios CCALD product program has the potential to halt the progression of CCALD by providing a functional ABCD1 gene to the patients own stem cells. These stem cells proliferate, and some of the progeny cells travel to the brain where they become microglial cells incorporating the corrective gene. Data from the first clinical study treating X-linked CCALD patients with the companys lentiviral gene therapy product demonstrated continued stable expression of the transgene and the corresponding ABCD-1 protein for over four years in two CCALD patients, resulting in prolonged disease stabilization. bluebird bio plans to initiate a Phase 2/3 clinical study in CCALD in both the United States and Europe in 2013.

About bluebird bio

bluebird bio is developing innovative gene therapies for severe genetic disorders. At the heart of bluebird bios product creation efforts is its broadly applicable gene therapy platform for the development of novel treatments for diseases with few or no clinical options. The companys novel approach uses stem cells harvested from the patients own bone marrow into which a healthy version of the disease causing gene is inserted. bluebird bios approach represents a true paradigm shift in the treatment of severe genetic diseases by eliminating the potential complications associated with donor cell transplantation and presenting a one-time potentially transformative therapy using a patients own stem cells. bluebird bio has two later stage clinical products in development for childhood cerebral adrenoleukodystrophy (CCALD) and beta-thalassemia/sickle cell anemia. Led by a world-class team, bluebird bio is privately held and backed by top-tier life sciences investors, including Third Rock Ventures, TVM Capital, ARCH Venture Partners, Forbion Capital Partners, Easton Capital and Genzyme Ventures. Its operations are located in Cambridge, Mass. and Paris, France. For more information, please visit http://www.bluebirdbio.com.

View post:
bluebird bio Receives U.S. and European Orphan Drug Designation for Novel Gene Therapy to Treat Adrenoleukodystrophy

Read More...

Neuralstem Pioneering Efforts In ALS

June 19th, 2012 11:14 pm

By Jason Napodano, CFA

Neuralstem, Inc. (NYSE MKT:CUR) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.

Neuralstems lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrigs disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.

ALS Background

ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.

The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.

Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).

The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.

Neuralstems Approach For ALS

Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patients spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.

Original post:
Neuralstem Pioneering Efforts In ALS

Read More...

CUR – Neuralstem Pioneering Efforts In ALS

June 19th, 2012 11:14 pm

As of now, management is planning to conduct the pivotal program on its own, mostly likely seeking funding through grants with the ALS Association and U.S. National Institutes of Health. However, management is also in discussion with potential pharmaceutical partners on the pivotal program. ALS is a highly attractive area for Big Pharma. Depending on the strength of the phase 1 / 2 data, Neuralstem may be able to strike a commercialization partnership in 2014 to help defer the costs of the planned pivotal trial. We expect that any deal with a larger pharmaceutical company would include a substantial upfront payment that Neuralstem would then use to fund expansion of the development platform into new indications, such as spinal cord injury (IND filed) or stroke.

Market Opportunity

In February 2011, the U.S. FDA granted Neuralstem an Orphan Drug designation for its human spinal cord stem cells (HSSC) for the treatment of ALS. As noted above, there are approximately 30,000 patients in the U.S. living with ALS. We estimate that approximately half of these patients are characterized with an FVC > 60% and may be eligible for treatment with Neuralstems hNSCs. Given the Orphan Drug designation, the limited patient population, and the lack of any meaningful treatment options, we think Neuralstem or its commercialization partner could price this therapy at upwards of $100,000. Therefore, the peak market opportunity for Neuralstem is $1.5 billion.

That being said, drug development in ALS has been a graveyard for pharmaceutical companies. One would assume, based on numerous past clinical failures, that Neuralstems chances in ALS are slim. Small molecules including gabapentin, topiramate, celecoxib, tamoxifen, indinavir, minocycline, and xaliproden, many of which are approved for other indications and have posted annual sales over a billion dollars, have all failed human clinical programs for ALS. Even Vitamin E and Creatine have been tested, to little avail, in ALS. Failed mechanisms of action included calcium channel blockers, glutamate regulators, neuroprotectants, immunosuppressants, GABA receptors, anti-inflammatory agents, and antioxidants.

However, there is one thing in common we see in all of the above failures. They are one molecule targeting one mechanism of action or one pathway. ALS is a high complex and largely uncharacterized disease. Neuralstems approach uses human spinal stem cells that, once injected, can provide multiple mechanisms of action on multiple pathways to affect the disease. Plus, Neuralstems approach is highly targeted, with the cells injected directly into the lumbar or cervical spine. Following grafting, the hypothesis is that the cells rebuild circuitry with the patient motor neurons and protect existing neurons from further degradation. Its clearly a unique approach, and one we believe has a better chance of success than many of the previous failed theories enacted over the past decade.

Read the original:
CUR - Neuralstem Pioneering Efforts In ALS

Read More...

Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

June 19th, 2012 11:14 pm

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Jeremy Moore jeremy.moore@aacr.org 215-446-7109 American Association for Cancer Research

LAKE TAHOE, Nev. Results of some preclinical trials have shown that low doses of the antidiabetic drug metformin may effectively destroy cancer stem cells, a group of cells that are considered to be responsible for tumor initiation and, because they are resistant to standard chemotherapies, tumor relapse.

In addition, when metformin was combined with a standard chemotherapy used for pancreatic cancer, the combination treatment was able to efficiently eradicate both cancer stem cells and more differentiated cancer cells, which form the bulk of the tumor, according to data presented by Christopher Heeschen, M.D., Ph.D., at the American Association for Cancer Research's Pancreatic Cancer: Progress and Challenges conference, held in Lake Tahoe, Nev., from June 18-21, 2012. Heeschen is professor for experimental medicine at the Spanish National Cancer Research Centre in Madrid, Spain.

Most clinical trials of pancreatic cancer conducted during the last 15 years have failed to show marked improvement in median survival, suggesting that the selected approaches were not sufficient for several reasons, according to Heeschen. In recent years, researchers have identified cancer stem cells which, as opposed to the cancer cells that make up the bulk of the tumor, are a small subset of cells that are resistant to conventional therapy.

"Therefore, efficiently targeting these cells will be crucial for achieving higher cure rates in patients with pancreatic cancer," he said. "Our newly emerging data now indicate that metformin, a widely used and well-tolerated drug for the treatment of diabetes, is capable of efficiently eliminating these cells."

Specifically, the researchers found that metformin-pretreated cancer stem cells were particularly sensitive to alterations to their metabolism through the activation of AMPK. In fact, metformin treatment resulted in the death of cancer stem cells. In contrast, treatment of more differentiated cancer cells with metformin only arrested the cells' growth.

"As the cancer stem cells represent the root of pancreatic cancer, their extinction by reprogramming their metabolism with metformin in combination with the stalling of the proliferation of more differentiated cells should result in tumor regression and long-term, progression-free survival," Heeschen said.

The researchers generated data to support this idea when they treated immunocompromised mice implanted with a diverse set of patient-derived tumors with a combination of metformin and gemcitabine, the standard chemotherapeutic treatment for pancreatic cancer. They found that the treatment resulted in reduced tumor burden and the prevention of relapse as compared with treatment with either drug alone.

"Intriguingly, in all tumors treated with metformin to date, relapse of disease was efficiently prevented and there were no noticeable adverse effects," Heeschen said.

Excerpt from:
Metformin treatment caused cancer stem cell death in pancreatic cancer cell lines

Read More...

Animal Stem Cell Therapy

June 19th, 2012 11:13 pm

BYRON, MN--It's a dream for many in the medical field, to use a person's own stem cells to help them heal. And it's a reality already happening in our area.

But it's not humans who are being treated. In this case, dogs are the ones being treated.

Animal Stem Cell Regenerative Therapy has been performed a few thousand times now across the U.S. Doctors harvest stem cells and re-enter them where the animal is having problems.

Both Marley and Vinnie have bad ligaments in their legs, and like many dogs suffering from arthritis, they are subject to monthly doses of expensive drugs.

That is until today.

Dr. Garren Kelly, D.V.M. at Meadow View Veterinary Clinic just outside Rochester says, "If you'd of asked me 5 years ago if I would be doing anything like this, I would have said no. But then as soon as I saw it i'm like 'Yeah that's for me'. I kind of like staying on the cutting edge of technology and surgeries".

The two are undergoing a first of its kind surgery in minnesota, using regenerative stem cells.

Blood is taken from the dogs, as well as fat tissue.

Then stem cells are separated out from the fat, activated with an led light, and injected back into the affected area. All in the same day.

MediVet America trainer Jordan Smith says, "It's a better quality of life, we're not promising to give them 10 years or 5 years but we are promising that the years that they do have remaining are a lot more enjoyable".

More:
Animal Stem Cell Therapy

Read More...

Page 1,424«..1020..1,4231,4241,4251,426..1,4301,440..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick