header logo image


Page 1,418«..1020..1,4171,4181,4191,420..1,4301,440..»

Could Stem Cells Treat Autism? Newly Approved Study May Tell

October 13th, 2012 6:26 am

By Mary Brophy Marcus HealthDay Reporter

FRIDAY, Oct. 12 (HealthDay News) -- Autism researchers have been given the go-ahead by the U.S. Food and Drug Administration to launch a small study in children with autism that evaluates whether a child's own umbilical cord blood may be an effective treatment.

Thirty children with the disorder, aged 2 to 7, will receive injections of their own stem cells from umbilical cord blood banked by their parents after their births. All of the cord blood comes from the Cord Blood Registry, the world's largest stem cell bank.

Scientists at Sutter Neuroscience Institute, in Sacramento, Calif., said the placebo-controlled study will evaluate whether the stem cell therapy helps improve language and behavior in the youngsters.

There is anecdotal evidence that stem cell infusions may have a benefit in other conditions such as cerebral palsy, said lead study investigator Dr. Michael Chez, director of pediatric neurology at the institute.

"We're hoping we'll see in the autism population a group of patients that also responds," Chez said. Other autism and stem cell research is going on abroad, but this study is the first to use a child's own cord blood stem cells.

Chez said the study will involve only patients whose autism is not linked to a genetic syndrome or brain injury, and all of the children will eventually receive the stem cells.

Two infusions will take place during the 13-month study. At the start of the research, the children will be split into two groups, half receiving an infusion of cord blood stem cells and half receiving a placebo. At six months, the groups will swap therapies. The infusions will be conducted on an outpatient basis with close monitoring, Chez said.

"We're working with Sutter Children's Hospital, who does our oncology infusions with the same-age children," he said. "They are very experienced nurses who work with preschool and school-age kids to help them get through medical experiences."

Each child and his or her parents will be given a private room with a television and videos, beverages, and perhaps a visit from the hospital's canine therapy dog, and then a topical anesthetic will be applied to the arm to numb the skin before intravenous needle placement. A hematology expert will be giving the infusions and monitoring for safety, said Chez, who noted that each child will be watched closely for an hour and a half before heading home. They will be seen the next day as well for a safety check.

Read more here:
Could Stem Cells Treat Autism? Newly Approved Study May Tell

Read More...

Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

October 13th, 2012 6:25 am

AUSTIN, Texas, Oct. 12th, 2012 /PRNewswire-USNewswire/ -- Prominent stem cell scientists, physicians, and advocates from leading medical facilities and research institutions across Texas and California will highlight the 3rd Annual Stem Cell Research Symposium: Spotlight on Texas, on October 19, 2012, at the Texas State Capitol.

This free, public symposium, produced and co-hosted by the Austin-based nonprofit Texas Cures Education Foundation (Texas Cures), is designed to educate the public about the exciting stem cell research andclinical trials currently under way in Texas.The event will also include a discussion of recent Texas laws affecting stem cell research, the potential economic impact of stem cell research and highlight the current progress in one of the most promising areas of medicine.

This year, more than a dozen local and national advocacy groups, institutions and foundations showed their support for the efforts of the hosting organizations Texas Cures and Texans for Stem Cell Research including the Genetics Policy Institute, Alliance for Regenerative Medicine and Texans for Advancement of Medical Research.

The symposium begins at 8:30 a.m. in the Capitol Extension Auditorium (E1.004), located at the Texas State Capitol Building. Admission is free and open to the public.Registration is recommended.

This program unites the diverse stem cell research and regenerative medicine community to provide a unified voice for promising science that holds unmatched potential to benefit patients. Leading speakers at the event will include:

For additional details about the program and presentation topics, please visit TexasCures.org.

The 3rd Annual Stem Cell Research Symposium: Spotlight on Texas is an official World Stem Cell Awareness Day Event. Follow @TexasCures and #stemcellday for live Twitter updates and announcements.

Texas Cures Education Foundation (Texas Cures) TexasCures.orgis a non-partisan, nonprofit 501(c)3] organization based in Austin, Texas. It was founded for the purpose of advancing knowledge of the life-saving work that doctors and researchers perform every day on behalf of patients and their families. Texas Cures facilitates stem cell public education for the betterment of healthcare and the growth of companies, research hospitals, and institutions, charities, and volunteer patient group organizations that include a broad range of regenerative medicine stakeholders. Texas Cures advocates for responsible public policy and encourages legislative and regulatory proposals that expand access to stem cell clinical applications.

SOURCE Texas Cures Education Foundation

Read the original post:
Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

Read More...

Scientists Identify Mammal Model of Bladder Regeneration

October 13th, 2012 6:25 am

Newswise WINSTON-SALEM, N.C. While it is well known that starfish, zebrafish and salamanders can re-grow damaged limbs, scientists understand very little about the regenerative capabilities of mammals. Now, researchers at Wake Forest Baptist Medical Centers Institute for Regenerative Medicine report on the regenerative process that enables rats to re-grow their bladders within eight weeks.

In PLOS ONE, a peer-reviewed, online publication, the scientists characterize this unique model of bladder regeneration with the goal of applying what they learn to human patients.

A better understanding of the regenerative process at the molecular and cellular level is a key to more rapid progress in applying regenerative medicine to help patients, said George Christ, Ph.D., senior researcher and professor of regenerative medicine at Wake Forest Baptist.

In a previous study by Christs team, research in rats showed that when about 75 percent of the animals bladders were removed, they were able to regenerate a complete functional bladder within eight weeks. The current study focused on how the regeneration occurs.

There is very little data on the mechanisms involved in organ regeneration in mammals, said Christ. To our knowledge, bladder regeneration holds a unique position there is no other mammalian organ capable of this type of regeneration.

The ability of the liver to grow in size when lobes are removed is sometimes referred to as regeneration, but this is a misnomer, said co-author Bryon Petersen, Ph.D., who was a professor of regenerative medicine at Wake Forest Baptist during the period the research occurred. Instead, through a proliferation of cells, the remaining tissue grows to compensate for the lost size. In contrast, the hallmark of true regeneration is following natures pattern to exactly duplicate size, form and function, Petersen said.

If we can understand the bladders regenerative process, the hope is that we can prompt the regeneration of other organs and tissues where structure is important from the intestine and spinal cord to the heart, said Petersen.

The current study showed that the animals bodies responded to injury by increasing the rate at which certain cells divided and grew. The most notable proliferative response occurred initially in the urothelium, the layer of tissue that lines the bladder.

As the proliferative activity in the bladder lining waned, it continued elsewhere: in the fibrous band (lamina propria) that separates the bladder lining from the bladder muscles and in the bladder muscle itself.

The researchers have several theories about how the process works, said Christ. One possibility is that cells in the bladder lining transition and become a type of stem cell that can proliferate throughout the bladder. Other theories are that cells in the bladder lining signal other cells to replicate and that injury prompts stem cells to arrive through the blood stream to repair the bladder damage.

Follow this link:
Scientists Identify Mammal Model of Bladder Regeneration

Read More...

Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

October 12th, 2012 4:11 pm

AUSTIN, Texas, Oct. 12th, 2012 /PRNewswire-USNewswire/ -- Prominent stem cell scientists, physicians, and advocates from leading medical facilities and research institutions across Texas and California will highlight the 3rd Annual Stem Cell Research Symposium: Spotlight on Texas, on October 19, 2012, at the Texas State Capitol.

This free, public symposium, produced and co-hosted by the Austin-based nonprofit Texas Cures Education Foundation (Texas Cures), is designed to educate the public about the exciting stem cell research andclinical trials currently under way in Texas.The event will also include a discussion of recent Texas laws affecting stem cell research, the potential economic impact of stem cell research and highlight the current progress in one of the most promising areas of medicine.

This year, more than a dozen local and national advocacy groups, institutions and foundations showed their support for the efforts of the hosting organizations Texas Cures and Texans for Stem Cell Research including the Genetics Policy Institute, Alliance for Regenerative Medicine and Texans for Advancement of Medical Research.

The symposium begins at 8:30 a.m. in the Capitol Extension Auditorium (E1.004), located at the Texas State Capitol Building. Admission is free and open to the public.Registration is recommended.

This program unites the diverse stem cell research and regenerative medicine community to provide a unified voice for promising science that holds unmatched potential to benefit patients. Leading speakers at the event will include:

For additional details about the program and presentation topics, please visit TexasCures.org.

The 3rd Annual Stem Cell Research Symposium: Spotlight on Texas is an official World Stem Cell Awareness Day Event. Follow @TexasCures and #stemcellday for live Twitter updates and announcements.

Texas Cures Education Foundation (Texas Cures) TexasCures.orgis a non-partisan, nonprofit 501(c)3] organization based in Austin, Texas. It was founded for the purpose of advancing knowledge of the life-saving work that doctors and researchers perform every day on behalf of patients and their families. Texas Cures facilitates stem cell public education for the betterment of healthcare and the growth of companies, research hospitals, and institutions, charities, and volunteer patient group organizations that include a broad range of regenerative medicine stakeholders. Texas Cures advocates for responsible public policy and encourages legislative and regulatory proposals that expand access to stem cell clinical applications.

SOURCE Texas Cures Education Foundation

View post:
Leading Researchers to Unite at Texas State Capitol for Regenerative Medicine and Stem Cell Research

Read More...

Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

October 12th, 2012 4:10 pm

Regenevda recently opened its brand new flagship facility in Beverly Hills, specializing in cutting edge anti-aging treatments such as Stem Cell Therapy.

Beverly Hills, CA (PRWEB) October 12, 2012

Dr. Thom Lobe is an internationally respected surgeon and has been in practice for over 30 years. Consistently pioneering advances in medicine, Dr. Lobe was one of the first doctors to ever separate conjoined twins. Consistently working to help make advances in medicine, Dr. Lobe also has over 200 publications to his credit.

Overseeing the business aspect of Regenevda is Lindsey Combs. She is responsible for sales, staff, accounting, facility management, and business development. A graduate of the University of California, Los Angeles, Ms. Combs has been working in the anti-aging field for over 10 years and has been a California Licensed Esthetician since 2003.

Being one of the very few physicians in the country to hold the most advanced board certification (FAARM), Dr. Lobe is able to offer Stem Cell Therapy at the Regenevda clinic. Inside each persons own body, there are special cells in nearly every organ and tissue that have the ability to help heal damage. These special cells are called Stem Cells and this therapy works by harvesting these cells from a persons own blood, bone marrow, or fat and can help with different conditions. Some examples of procedures that use Stem Cell Therapy are: Stem Cell Facelifts, Stem Cell Breast Augmentation, and Stem Cell Joint Therapy. Stem Cell treatments are safe, non-invasive, and are done under local anesthesia.

Intravenous Nutrition Therapy (or IV Vitamin Therapy) is another anti-aging and rejuvenation treatment that can also help patients prevent migraines, lose weight, fight chronic infections like hepatitis, candida, lyme disease, as well as fight acute infections like the flu and mono. IV Therapy works by using intravenous solutions to deliver vitamins and minerals directly to the body cells. This bypasses the digestive system and provides a more direct method of delivery, which ensures that all of the nutrients required are delivered, allowing the patient to feel an improvement in condition almost immediately.

Human Growth Hormone (HGH) Therapy is another advanced treatment offered at Regenevda. HGH is secreted by the Pituitary gland and fuels cell growth and reproduction. This production peaks at adolescence. Over time, due to the effect of aging, the production of HGH slows down dramatically. As production declines, it makes it more difficult for the body to recover from physical and mental exertion. HGH Therapy acts as a supplement for HGH deficient adults to lessen body fat, boost lipid lineament, improve memory, promote bone density, as well as decrease risk factors that involve cardio-vascular conditions. If used at the onset of the decrease in HGH production, HGH Therapy can help curtail early aging and even be used as preventive measure against osteoporosis. A complete analysis of the patients sex hormones, evaluation of glucose regulation and functions of the adrenal gland, thyroid gland, and pancreas are performed before the treatment is administered for optimal results.

Combining decades of medical experience with the most cutting edge advances in medical technology, the Regenevda clinic looks to pave the way for the future of anti-aging treatments. The Regenevda Beverly Hills Institute of Cellular Therapy is located at 50 North La Cienega Boulevard. For any inquiries, they can be reached at 855-734-3638, or visit http://www.regeneveda.com.

About Regenevda :

Regeneveda, home of The Beverly Hills Institute of Cellular Therapy, provides state-of-the-art Stem Cell Therapy. Stem Cell Therapy is an effective treatment for chronic conditions such as Arthritis, Diabetes, Chronic Sports Injuries, and Chronic Pain, but is also revolutionizing anti-aging treatments such as Breast Enhancement, Erectile Dysfunction, and Facial Aging.

The rest is here:
Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

Read More...

Stem cells safe for rare brain disorder

October 12th, 2012 2:21 pm

Four young boys with a rare, fatal brain condition have made it through a dangerous ordeal. Scientists have safely transplanted human neural stem cells into their brains.

Twelve months after the surgeries, the boys have more myelin a fatty insulating protein that coats nerve fibers and speeds up electric signals between neurons and show improved brain function, a new study in Science Translational Medicine reports. The preliminary trial paves the way for future research into potential stem cell treatments for the disorder, which overlaps with more common diseases such as Parkinson's disease and multiple sclerosis.

"This is very exciting," says Douglas Fields, a neuroscientist at the National Institutes of Health in Bethesda, Md., who was not involved in the work. "From these early studies one sees the promise of cell transplant therapy in overcoming disease and relieving suffering."

Without myelin, electrical impulses traveling along nerve fibers in the brain can't travel from neuron to neuron says Nalin Gupta, lead author of the study and a neurosurgeon at the University of California, San Francisco (UCSF). Signals in the brain become scattered and disorganized, he says, comparing them to a pile of lumber.

"You wouldn't expect lumber to assemble itself into a house," he notes, yet neurons in a newborn baby's brain perform a similar feat with the help of myelin-producing cells called oligodendrocytes. Most infants are born with very little myelin and develop it over time. In children with early-onset Pelizaeus-Merzbacher disease, he says, a genetic mutation prevents oligodendrocytes from producing myelin, causing electrical signals to die out before they reach their destinations. This results in serious developmental setbacks, such as the inability to talk, walk or breathe independently, and ultimately causes premature death.

Although researchers have long dreamed of implanting human neural stem cells to generate healthy oligodendrocytes and replace myelin, it has taken years of research in animals to develop a stem cell that can do the job, says Stephen Huhn, vice president of Newark, Calif.-based StemCells Inc., the biotechnology company that created the cells used in the study and that funded the research. However, he says, a separate study by researchers at Oregon Health and Science University, in Portland, found that the StemCells Inc. cells specialized into oligodendrocytes 60 percent to 70 percent of the time in mice, producing myelin and improved survival rates in myelin-deficient animals. So the team was able to test the cells' safety and efficacy in the boys.

Led by Gupta, the researchers drilled four small holes in each child's skull and then used a fine needle to insert millions of stem cells into white matter deep in their frontal lobes. The scientists administered a drug that suppressed the boys' immune systems for nine months to keep them from rejecting the cells and checked their progress with magnetic resonance imaging and a variety of psychological and motor tests. After a year, each of the boys showed brain changes consistent with increased myelination and no serious side effects such as tumors, says David Rowitch, one of the neuroscientists on the UCSF team. In addition, three of the four boys showed "modest" improvements in their development. For example, the 5-year-old the oldest child in the study had begun for the first time to feed himself and walk with minimal assistance.

Although these signs are encouraging, Gupta and Rowitch say, a cure for Pelizaeus-Merzbacher disease is not near. Animal studies strongly support the idea that the stem cells are producing myelin-making oligodendrocytes in the boys, but it's possible that the myelination didn't result from the transplant but from a bout of normal growth. Rowitch adds that although such behavioral improvements are unusual for the disease, they could be a fluke. Huhn acknowledges that the study is small and has no control, but he's is still excited.

"We are for the first time seeing a biological effect of a neural stem cells transplantation into the brain [in humans]." The most important thing, he says, is that the transplants appear safe. This gives the researchers a green light to pursue larger, controlled studies, he says.

It "isn't the flashiest thing," but demonstrating that it's feasible to transplant these stem cells into children's brains without negative consequences at least so far is "extremely hopeful," says Timothy Kennedy, a neuroscientist at McGill University in Montreal.

Here is the original post:
Stem cells safe for rare brain disorder

Read More...

Doubt cast on clinical stem cell tests

October 12th, 2012 2:16 pm

Friday, Oct. 12, 2012

Harvard University said neither it nor Massachusetts General Hospital have ever authorized any iPS-related clinical studies by Hisashi Moriguchi, who claims to have achieved the first clinical application using the revolutionary stem cell technology.

"No clinical trials related to Moriguchi's work have been approved by institutional review boards at either Harvard University or Massachusetts General Hospital," a statement issued by Harvard and related institutes said Thursday.

The statement confirmed that Moriguchi "was a visiting fellow at Massachusetts General Hospital from 1999-2000," but added that he "has not been associated with (the institution) or Harvard since that time."

Moriguchi, a researcher at University of Tokyo Hospital, claimed to be a visiting lecturer at Harvard and to have conducted clinical trials at Massachusetts General Hospital with other researchers to transplant artificial cardiac muscle cells developed from iPS cells into six patients with heart disease.

The claim came just after Shinya Yamanaka of Kyoto University and a British scholar were jointly awarded this year's Nobel Prize in physiology or medicine for their research on iPS cells. Yamanaka and John Gurdon were credited with the discovery that mature human cells can be reprogrammed as immature cells capable of developing into all types of body parts.

"Research has been conducted after going through due procedures, such as consultations with a university ethics committee," Moriguchi claimed. "I have been told my method of creating iPS cells is different from the one used by Yamanaka (and Gurdon), but I have been doing it my way and no problems have been identified after transplants."

Moriguchi, who is thought to have asked a heart surgeon to carry out cell transplants, unveiled details about the treatment at a meeting of annual stem-cell research conference at Rockefeller University in New York held Wednesday and Thursday.

But the event's organizer, the nonprofit New York Stem Cell Foundation, subsequently said it "has received information from Harvard University that raises legitimate questions concerning a poster presentation" by Moriguchi, and has withdrawn it from the conference.

Moriguchi graduated from Tokyo Medical and Dental University with a degree in nursing science and does not have a license to practice medicine, according to a professor who taught him as an undergraduate.

Read more:
Doubt cast on clinical stem cell tests

Read More...

Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

October 12th, 2012 2:13 pm

Beverly Hills, CA (PRWEB) October 12, 2012

Regenevda (http://www.regeneveda.com) recently opened its brand new flagship facility in Beverly Hills. Founded by world renowned surgeon Dr. Thom Lobe, Regenevda specializes in cutting edge anti-aging treatments such as Stem Cell Therapy, IV Vitamin Therapy, and HGH Therapy.

Dr. Thom Lobe is an internationally respected surgeon and has been in practice for over 30 years. Consistently pioneering advances in medicine, Dr. Lobe was one of the first doctors to ever separate conjoined twins. Consistently working to help make advances in medicine, Dr. Lobe also has over 200 publications to his credit.

Overseeing the business aspect of Regenevda is Lindsey Combs. She is responsible for sales, staff, accounting, facility management, and business development. A graduate of the University of California, Los Angeles, Ms. Combs has been working in the anti-aging field for over 10 years and has been a California Licensed Esthetician since 2003.

Being one of the very few physicians in the country to hold the most advanced board certification (FAARM), Dr. Lobe is able to offer Stem Cell Therapy at the Regenevda clinic. Inside each persons own body, there are special cells in nearly every organ and tissue that have the ability to help heal damage. These special cells are called Stem Cells and this therapy works by harvesting these cells from a persons own blood, bone marrow, or fat and can help with different conditions. Some examples of procedures that use Stem Cell Therapy are: Stem Cell Facelifts, Stem Cell Breast Augmentation, and Stem Cell Joint Therapy. Stem Cell treatments are safe, non-invasive, and are done under local anesthesia.

Intravenous Nutrition Therapy (or IV Vitamin Therapy) is another anti-aging and rejuvenation treatment that can also help patients prevent migraines, lose weight, fight chronic infections like hepatitis, candida, lyme disease, as well as fight acute infections like the flu and mono. IV Therapy works by using intravenous solutions to deliver vitamins and minerals directly to the body cells. This bypasses the digestive system and provides a more direct method of delivery, which ensures that all of the nutrients required are delivered, allowing the patient to feel an improvement in condition almost immediately.

Human Growth Hormone (HGH) Therapy is another advanced treatment offered at Regenevda. HGH is secreted by the Pituitary gland and fuels cell growth and reproduction. This production peaks at adolescence. Over time, due to the effect of aging, the production of HGH slows down dramatically. As production declines, it makes it more difficult for the body to recover from physical and mental exertion. HGH Therapy acts as a supplement for HGH deficient adults to lessen body fat, boost lipid lineament, improve memory, promote bone density, as well as decrease risk factors that involve cardio-vascular conditions. If used at the onset of the decrease in HGH production, HGH Therapy can help curtail early aging and even be used as preventive measure against osteoporosis. A complete analysis of the patients sex hormones, evaluation of glucose regulation and functions of the adrenal gland, thyroid gland, and pancreas are performed before the treatment is administered for optimal results.

Combining decades of medical experience with the most cutting edge advances in medical technology, the Regenevda clinic looks to pave the way for the future of anti-aging treatments. The Regenevda Beverly Hills Institute of Cellular Therapy is located at 50 North La Cienega Boulevard. For any inquiries, they can be reached at 855-734-3638, or visit http://www.regeneveda.com.

About Regenevda :

Regeneveda, home of The Beverly Hills Institute of Cellular Therapy, provides state-of-the-art Stem Cell Therapy. Stem Cell Therapy is an effective treatment for chronic conditions such as Arthritis, Diabetes, Chronic Sports Injuries, and Chronic Pain, but is also revolutionizing anti-aging treatments such as Breast Enhancement, Erectile Dysfunction, and Facial Aging.

Original post:
Regenevéda Opens Flagship Stem Cell Therapy Clinic in Beverly Hills

Read More...

Riken to test iPS cells in human trial

October 12th, 2012 12:19 am

Friday, Oct. 12, 2012

Stem cells derived from a mouse's skin won Shinya Yamanaka the Nobel Prize in physiology or medicine on Monday. Now researchers in Japan are seeking to use his pioneering technology for an even greater prize: restoring sight.

Scientists at the Riken Center for Developmental Biology in Kobe plan to use induced pluripotent stem (iPS) cells in a human trial using patients with macular degeneration, a disease in which the retina becomes damaged and results in loss of vision, Yamanaka, a Kyoto University professor, told reporters the same day in San Francisco.

Companies including Pfizer Inc. are already planning trials of stem cells derived from human embryos, but Riken's will be the first to use a technology that mimics the power of embryonic cells while avoiding the ethical controversy that accompanies them.

"The work in that area looks very encouraging," John B. Gurdon, 79, a professor at the University of Cambridge who shared this year's Nobel Prize with Yamanaka, said in an interview in London.

Yamanaka and Gurdon split the 8 million Swedish kronor (about 94 million) award for experiments 50 years apart demonstrating that mature cells in latent form retain all of the DNA they had as immature stem cells, and that they can be returned to that potent state.

Their findings offer the potential for a new generation of therapies against hard-to-treat diseases like macular degeneration.

In a study published in 1962, Gurdon took a cell from a tadpole's gut, extracted the nucleus and inserted it into the egg cell of an adult frog whose own nucleus had been removed. The reprogrammed egg cell developed into a tadpole with the genetic characteristics of the original tadpole, and subsequent trials yielded adult frogs.

Yamanaka, 50, built on Gurdon's work by adding four genes to a skin cell from a mouse, returning it to its immature state as a stem cell with the potential to become any cell in the body.

He dubbed them induced pluripotent stem cells.

Read the original post:
Riken to test iPS cells in human trial

Read More...

Generation of functional thyroid tissue from stem cells

October 12th, 2012 12:19 am

ScienceDaily (Oct. 11, 2012) The generation of functional thyroid tissue from stem cells could allow the treatment of patients, which suffer from thyroid hormone deficiency due to defective function, or abnormal development of the thyroid gland. The team of Sabine Costagliola at the IRIBHM (Universit Libre de Bruxelles) recently developed a protocol that allowed for the first time the efficient generation of functional thyroid tissue from stem cells in mice and published the results of their studies in the scientific journal Nature.

Thyroid hormones are a class of iodide-containing molecules that play a critical role in the regulation of various body function including growth, metabolism and heart function and that are crucial for normal brain development. The thyroid gland, an endocrine organ that has been specialized in trapping iodide, is the only organ where these hormones are produced. It is, however, of note that one out of 3000 human newborns is born with congenital hypothyroidism, a condition characterized by insufficient production of thyroid hormones. In the absence of a medical treatment with thyroid hormones -- initiated during the first days after birth -- the child will be affected by an irreversible mental retardation. Moreover, a life-long hormonal treatment is necessary in order to maintain proper regulation of growth and general metabolism.

By employing a protocol in which two important genes can be transiently induced in undifferentiated stem cells, the researchers at IRIBHM were able to efficiently push the differentiation of stem cells into thyrocytes, the primary cell type responsible for thyroid hormone production in the thyroid gland.

A first exciting finding of these studies was the development of functional thyroid tissue already within the culture dishes. As a next step, the team of Sabine Costagliola transplanted the stem-cell-derived thyrocytes into mice lacking a functional thyroid gland. Four weeks after transplantation, the researchers observed that transplanted mice had re-established normal levels of thyroid hormones in their blood and were rescued from the symptoms associated with thyroid hormone deficiency. These findings have several important implications. First, the cell system employed by the IRIBHM group provides a vital tool to better characterize the molecular processes associated with embryonic thyroid development. Second, the results of the transplantation studies open new avenues for the treatment of thyroid hormone deficiency but also for the replacement of thyroid tissue in patients suffering from thyroid cancer.

The researchers are currently developing a similar protocol based on human stem cells and explore ways to generate functional human thyroid tissue by reprogramming pluripotent stem cells (iPS) derived from skin cells.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Universit Libre de Bruxelles, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Read more from the original source:
Generation of functional thyroid tissue from stem cells

Read More...

Clues to cancer metastasis: Discovery points to potential therapies for bone metastasis

October 12th, 2012 12:19 am

ScienceDaily (Oct. 11, 2012) In recent years investigators have discovered that breast tumors are influenced by more than just the cancer cells within them. A variety of noncancerous cells, which in many cases constitute the majority of the tumor mass, form what is known as the "tumor microenvironment." This sea of noncancerous cells and the products they deposit appear to play key roles in tumor pathogenesis.

Among the key accomplices in the tumor microenvironment are mesenchymal stem cells (MSCs), a group of adult progenitor cells which have been shown to help breast cancers maneuver and spread to other parts of the body.

Now, new research sheds further light on how this is happening. Led by investigators at Beth Israel Deaconess Medical Center (BIDMC), the findings demonstrate that the lysyl oxidase (LOX) gene is spurred to production in cancer cells as a result of their contact with MSCs, and once produced, can help ensure the spread of otherwise weakly metastatic cancer cells from primary tumors to the lung and bones. Described on-line in the Proceedings of the National Academy of Sciences (PNAS), this discovery not only provides key insights into the basic biology of tumor formation, but also offers a potential new direction in the pursuit of therapies for the treatment of bone metastasis.

"We don't have a lot of therapies that can target breast cancer once it has metastasized, particularly once cancer cells have lodged in the bone," says senior author Antoine Karnoub, PhD, an investigator in the Department of Pathology at BIDMC and Assistant Professor of Pathology at Harvard Medical School. "When breast cancer cells reach the skeleton, one way in which they cause damage is by breaking down bone tissue, which results in the bone's rich matrix releasing numerous factors. These factors, in turn, feed the cancer cells, setting in motion a vicious cycle that leaves patients susceptible to fractures, pain, and further metastasis."

MSCs are non-hematopoietic progenitor cells predominantly produced in the bone marrow that generate bone, cartilage, fat, and fibrous connective tissue. They additionally support immune cell development and are recruited to inflammatory sites throughout the body to help shut down immune responses and regenerate damaged tissues, as might occur during wound healing. Several years ago, as a postdoctoral researcher at the Whitehead Institute of the Massachusetts Institute of Technology, Karnoub began exploring the idea that MSCs were migrating to tumors after mistaking the cancer sites for inflammatory lesions in need of healing.

"We discovered that once MSCs had reached the tumor sites, they were actually helping in cancer metastasis, causing primary cancer cells to spread to other sites in the body," he explains. In this new paper, Karnoub wanted to find out, in greater molecular detail, how breast cancer cells respond to the influences of MSCs in order to better understand how cancer cells cross-talk with recruited cells in the microenvironment.

His scientific team first embarked on a straightforward experiment. "We took two dishes of cells, cancer cells and MSCs, and mixed them together," explains Karnoub. After three days, they removed the cancer cells and studied them to see how they had changed.

"We found that the lysyl oxidase [LOX] gene was highly upregulated in the cancer cells," he says. "It turns out that when a cancer cell comes in contact with an MSC, it flips on this LOX gene, turning it up by a factor of about 100. So our next question was, 'What happens to the cancer cells when they encounter this boost of LOX that they themselves have produced?'"

The answer, as revealed in subsequent experiments, was that LOX was setting in motion a cell program called epithelial-to-mesenchymal transition (EMT). During EMT, cancer cells that usually clump together undergo a transformation into cells that exhibit decreased adhesion to their neighbors and go their own way. As a result, these cancerous cells are able to migrate, significantly enhancing their ability to metastasize.

"When we put these cells back into mice, they not only formed tumors that metastasized to the lung, but also to the bone," says Karnoub. "This makes you wonder whether the cancer cells in primary tumors have become so acclimated to interacting with bone-derived MSCs that they can now grow more easily in the bone once they leave the tumor."

More:
Clues to cancer metastasis: Discovery points to potential therapies for bone metastasis

Read More...

Hormone-Producing Thyroid Grown from Embryonic Stem Cells

October 12th, 2012 12:19 am

The achievement is the latest success in the relatively new field of regenerative medicine

By Dan Jones and Nature magazine

WE CAN REBUILD HIM: Regenerative successes in mice are adding up. Image: Nature News

Showcasing more than fifty of the most provocative, original, and significant online essays from 2011, The Best Science Writing Online 2012 will change the way...

Read More

From Nature magazine

A series of achievements have stoked excitement about the potential of regenerative medicine, which aims to tackle diseases by replacing or regenerating damaged cells, tissues and organs. A paper in Nature today reports another step towards this goal: the generation of working thyroid cells from stem cells.

Sabine Costagliola, a molecular embryologist at the Free University of Brussels, and her team study the development of the thyroid gland, which regulates how the body uses energy and affects sensitivity to other hormones. Their research shows that thyroid function can be re-established even after the gland has been destroyed at least in mice. If the same technique could be applied to humans, it would help the roughly 1 in 3,000 babies born with deficient thyroid activity, or hypothyroidism, which can result in stunted physical and mental development.

The thyroid is the latest in a growing list of body parts that can now be fixed in mice, with the potential to treat diseases from diabetes to Parkinsons (see 'We can rebuild him'). Progress has been very rapid over the past decade, says Charles ffrench-Constant, director of the MRC Centre for Regenerative Medicine at the University of Edinburgh, UK. In recent years weve seen a number of very important studies in which mouse stem cells have been converted to a desired cell type that has then been shown to be functional in vivo, and to confer benefits in mouse models of human diseases.

Key ingredient Costagliola and her colleagues first genetically engineered embryonic stem cells to express two proteins NKX2-1 and PAX8 that are expressed together only in the thyroid. When these cells were grown in Petri dishes in the presence of thyroid-stimulating hormone, they turned into thyroid cells.

Link:
Hormone-Producing Thyroid Grown from Embryonic Stem Cells

Read More...

Stem Cells Safely Implanted in Brains of Boys with Neurological Disorder | 80beats

October 12th, 2012 12:19 am

An oligodendrocytethe type of cell that manufactures myelin.

At first, the infants seem to be progressing normally. But it soon turns out they may have vision or hearing problems, and when the time comes to lift their heads, the milestone comes and goes. It often gets worse from there. Children with the rare PelizaeusMerzbacher disease, like others who lack the usual insulating sheaths on their neurons, have trouble controlling their muscles, and often develop serious neurological and motor problems early in life. There is no cure for the genetic disorder. Nor is there a standardized treatment.

PMD, as its called, and related diseases are some of the leading candidates for potential treatment with stem cells. The idea is that if stem cells that produce the missing insulator, the fatty substance called myelin, can be successfully implanted in the brains of patients, perhaps they will pitch in what the patients native cells cannot.

This week saw two incremental but encouraging advances toward such treatments, both published inScience Translational Medicine.In one study, mice without the ability to make myelin were implanted with human neural stem cells that, within weeks, developed into myelin-making cells 60-70% of the time and produced the substance in the brain. In the other study, four young boys with early onset PMD underwent an experimental treatment: the same type of stem cells were implanted into their brains, and, after 9 months of drugs to surpress the childrens immune systems so the cells could take hold, MRI exams, psychological tests, and motor tests are consistent with more myelin having formed.

Since there was no control group in the human study, the scientists have no way of knowing whether the new myelin formation is actually due to the implanted cells (for that, they would need a group of boys who received every step of the treatment except getting the cells, to compare). And there are, of course, only four subjects. But the fact that there have been no major side effectsespecially tumors, which not unheard-of after stem cell treatmentsis in and of itself heartening. It indicates that future studies using these cells can tentatively proceed. Image courtesy of Methoxyroxy / Wikimedia Commons

See the article here:
Stem Cells Safely Implanted in Brains of Boys with Neurological Disorder | 80beats

Read More...

Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

October 12th, 2012 12:18 am

Stem cell transfusions may someday replace the need for transplants in patients who suffer from liver failure caused by hepatitis B, according to a new study coming out of Beijing. . The results are published in the October issue of STEM CELLS Translational Medicine. Worldwide more than 500,000 people die each year from this condition.

Durham, NC (PRWEB) October 11, 2012

In China, hepatitis B virus (HBV) infection accounts for the highest proportion of liver failure cases. While liver transplantation is considered the standard treatment, it has several drawbacks including a limited number of donors, long waiting lists, high cost and multiple complications. Our study shows that mesenchymal stem cell (MSCs) transfusions might be a good, safe alternative, said Fu-Sheng Wang, Ph.D., M.D., the studys lead author and director of the Research Center for Biological Therapy (RCBT) in Beijing.

Wang along with RCBT colleague, Drs. Ming Shi and Zheng Zhang of the Research Center for Biological Therapy, The Institute of Translational Hepatology led the group of physician-scientists from the centers and Beijing 302 Hospital who conducted the study.

MSC transfusions had already been shown to improve liver function in patients with end-stage liver diseases. This time, the researchers wanted to gauge the safety and initial efficacy of treating acute-on-chronic liver failure (ACLF) with MSCs. The American Association for the Study of Liver Diseases and the European Association for the Study of the Liver define ACLF as an acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at three months due to multisystem organ failure. The short-term mortality rate for this condition is more than 50 percent.

MSCs have self-renewing abilities and the potential to differentiate into various types of cells. More importantly, they can interact with immune cells and cause the immune system to adjust to the desired level.

Of the 43 patients in this pilot study each of whom had liver failure resulting from chronic HBV infection 24 were treated with MSCs taken from donated umbilical cords and 19 were treated with saline as the control group. All received conventional therapy as well. The liver function, adverse events and survival rates were then evaluated during the 48-week or 72-week follow-up period.

Along with increased survival rates, the patients liver function improved and platelet count increased. No significant side effects were observed throughout the treatment and follow-up period.

While the results are preliminary and this pilot study includes a small number of patients, MSC transfusions appear to be safe and may serve as a novel therapeutic approach for HBV-associated ACLF patients, Dr. Shi said.

The study also highlights several key issues that will need to be considered in the design of future clinical studies, such as the optimal type of stem cells that will be infused, the minimum effective number of the cells and the best route of administration, Dr. Wang added.

More here:
Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

Read More...

Stem Cells Show Early Promise for Rare Brain Disorder

October 12th, 2012 12:13 am

By Emily Underwood, ScienceNOW

Four young boys with a rare, fatal brain condition have made it through a dangerous ordeal. Scientists have safely transplanted human neural stem cells into their brains. Twelve months after the surgeries, the boys have more myelin a fatty insulating protein that coats nerve fibers and speeds up electric signals between neurons and show improved brain function, a new study in Science Translational Medicine reports. The preliminary trial paves the way for future research into potential stem cell treatments for the disorder, which overlaps with more common diseases such as Parkinsons disease and multiple sclerosis.

This is very exciting, says Douglas Fields, a neuroscientist at the National Institutes of Health in Bethesda, Maryland, who was not involved in the work. From these early studies one sees the promise of cell transplant therapy in overcoming disease and relieving suffering.

Without myelin, electrical impulses traveling along nerve fibers in the brain cant travel from neuron to neuron says Nalin Gupta, lead author of the study and a neurosurgeon at the University of California, San Francisco (UCSF). Signals in the brain become scattered and disorganized, he says, comparing them to a pile of lumber. You wouldnt expect lumber to assemble itself into a house, he notes, yet neurons in a newborn babys brain perform a similar feat with the help of myelin-producing cells called oligodendrocytes. Most infants are born with very little myelin and develop it over time. In children with early-onset Pelizaeus-Merzbacher disease, he says, a genetic mutation prevents oligodendrocytes from producing myelin, causing electrical signals to die out before they reach their destinations. This results in serious developmental setbacks, such as the inability to talk, walk, or breathe independently, and ultimately causes premature death.

Although researchers have long dreamed of implanting human neural stem cells to generate healthy oligodendrocytes and replace myelin, it has taken years of research in animals to develop a stem cell that can do the job, says Stephen Huhn, vice president of Newark, California-based StemCells Inc., the biotechnology company that created the cells used in the study and that funded the research. However, he says, a separate study by researchers at Oregon Health & Science University, Portland, found that the StemCell Inc. cells specialized into oligodendrocytes 60 percent to 70 percent of the time in mice, producing myelin and improved survival rates in myelin-deficient animals. So the team was able to test the cells safety and efficacy in the boys.

Led by Gupta, the researchers drilled four small holes in each childs skull and then used a fine needle to insert millions of stem cells into white matter deep in their frontal lobes. The scientists administered a drug that suppressed the boys immune systems for 9 months to keep them from rejecting the cells and checked their progress with magnetic resonance imaging and a variety of psychological and motor tests. After a year, each of the boys showed brain changes consistent with increased myelination and no serious side effects such as tumors, says David Rowitch, one of the neuroscientists on the UCSF team. In addition, three of the four boys showed modest improvements in their development. For example, the 5-year-old boy the oldest child in the study had begun for the first time to feed himself and walk with minimal assistance.

Although these signs are encouraging, Gupta and Rowitch say, a cure for Pelizaeus-Merzbacher disease is not near. Animal studies strongly support the idea that the stem cells are producing myelin-making oligodendrocytes in the boys, but its possible that the myelination didnt result from the transplant but from a bout of normal growth. Rowitch adds that although such behavioral improvements are unusual for the disease, they could be a fluke. Huhn acknowledges that the study is small and has no control, but hes is still excited. We are for the first time seeing a biological effect of a neural stem cells transplantation into the brain [in humans]. The most important thing, he says, is that the transplants appear safe. This gives the researchers a green light to pursue larger, controlled studies, he says.

It isnt the flashiest thing, but demonstrating that its feasible to transplant these stem cells into childrens brains without negative consequences at least so far is extremely hopeful, says Timothy Kennedy, a neuroscientist at McGill University in Montreal, Canada.

Although hes concerned that myelination seen in mouse models might not scale up to a disease as severe as Pelizaeus-Merzbacher in humans, Ian Duncan, a neuroscientist at the University of Wisconsin, Madison, describes the study as setting a precedent for translating animal research in stem cells to humans. If you could improve quality of life by targeting key areas of the brain with these cells, he says, that would be a huge advance.

Link:
Stem Cells Show Early Promise for Rare Brain Disorder

Read More...

Nobel Prize for Physiology or Medicine Goes to Stem Cell Researchers

October 11th, 2012 4:17 pm

The Nobel Prize for Physiology or Medicine was announced on Monday. The award this year went to Sir John B. Gurdon and Dr. Shinya Yamanaka. The two men were awarded the Nobel Prize jointly, for their individual work in cloning and stem cell research.

Monday's recognition marked the awarding of the first Nobel Prize for 2012. The rest of the Nobel Prize recipients will be announced throughout the next two weeks.

Here is some of the key information regarding Gurdon and Yamanaka's work and Monday's Nobel Prize announcement.

* Yamanaka and Gurdon did not work together or present shared research, even though they both concentrate their studies on a similar area of research.

* Gurdon is actually being honored for work he did back in 1962. According to a New York Times report, he was the first person to clone an animal, a frog, opening the door to further research into stem cells and cloning.

* Gurdon was able to produce live tadpoles from the adult cells of a frog, by removing the nucleus of a frog's egg and putting the adult cells in its place.

* This "reprogramming" by Gurdon laid the groundwork for Yamanaka's work four decades later. Yamanaka's work, which dates back only six years, to 2006, focused on the mechanisms behind Gurdon's results.

* According to the Los Angeles Times, Yamanaka was sharply criticized at first for his own work, in which he sought to discover how cells are able to reprogram themselves the way that Gurdon's work first suggested that they could.

* Ultimately, Yamanaka was able to isolate just four cells that were needed in order to be able to reprogram other cells back to an embryonic state, allowing them to be manipulated into developing into any particular kind of cell that was needed. These cells have now been dubbed "induced pluripotent stem cells," or iPS cells, according to reports by CNN and other media outlets.

* Scientists are reproducing Yamanaka's technique in their own labs to be able to replicate disease cells, like those of Alzheimer's or Parkinson's, in order to study them and even to test the effects of potential new treatments.

Continued here:
Nobel Prize for Physiology or Medicine Goes to Stem Cell Researchers

Read More...

Transplanted Neural Stem Cells Produced Myelin, UCSF Study Shows

October 11th, 2012 2:26 am

David Rowitch, MD, PhD, professor and chief of neonatology, in the NICU.

A Phase I clinical trial led by investigators from the University of California, San Francisco (UCSF) and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.

The study, published in Wednesday's issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients brains one year post transplant.

The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, MD, PhD, a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Childrens Hospital and a Howard Hughes Medical Institute Investigator.

Nalin Gupta, MD, PhD

For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease, said Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.

We also saw modestgains in neurological function, and while these cant necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients,the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients.

The study, one of the first neural stem cell trials ever conducted in the United States, is emblematic of UCSFs pioneering role in the stem cell field. In 1981, Gail Martin, PhD, professor of anatomy, co-discovered embryonic stem cells in mice. In 2001, Roger Pedersen, PhD, professor emeritus of obstetrics, gynecology and reproductive sciences, derived two of the first human embryonic stem cell lines. On Monday, Shinya Yamanaka, MD, PhD, of the UCSF-affiliated Gladstone Institutes and Kyoto University, received the Nobel Prize in Physiology or Medicine for his discovery that adult cells can be reprogrammed to behave like embryonic stem cells.

In the trial, human neural stem cells developed by Stem Cells, Inc., of Newark, California, were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).

This image illustrates direct injection of human neural stem cells into the brain's white matter, which is composed of bundles of nerve axons. There is lack of myelin, an insulating coating, in the severe pediatric condition Pelizaeus-Merzbacher disease (PMD). Over time, some stem cells become myelinating oligodendrocytes as reported in the papers from Uchida et al. and Gupta et al. Image by Kenneth Probst.

See more here:
Transplanted Neural Stem Cells Produced Myelin, UCSF Study Shows

Read More...

Duke med school gets FDA approval for stem cell product

October 11th, 2012 2:26 am

BY LAURA OLENIACZ

loleniacz@heraldsun.com; 919-419-6636

DURHAM Stem cells from umbilical cord blood saved at 14-month-old Jase Howells birth are now being used in research to see if the cells can help his brain heal.

The research is looking into the use of the stem cells to treat brain damage from hydrocephalus, a condition characterized by the buildup of fluid in the skull.

His family traveled from Texas so he could receive an infusion on Tuesday at the Duke Childrens Hospital & Health Center of cord blood that was saved at his birth.

Mommys so proud of you, said LeaAnn Howell, to Jase, as he lay on a hospital bed, surrounded by medical personnel and family.

He periodically lifted his leg up and down to the beat of The Wheels on the Bus and other songs played by music therapist Tray Batson during the procedure.

Like I said, we were going to do anything humanly possible that we can do, Howell said in an interview prior to the procedure. Its a tough thing to fly, but once we (get here), I think the results are worth the wait, I guess.

The research into the use of cord blood stem cells to treat brain injury from hydrocephalus is being led by Dr. Joanne Kurtzberg, chief of the Division of Pediatric Blood and Marrow Transplantation at Duke.

The research is being done under a U.S. Food and Drug Administration Investigational New Drug application, Kurtzberg said.

The rest is here:
Duke med school gets FDA approval for stem cell product

Read More...

Human neural stem cells study offers new hope for children with fatal brain diseases

October 11th, 2012 2:26 am

ScienceDaily (Oct. 10, 2012) Physician-scientists at Oregon Health & Science University Doernbecher Children's Hospital have demonstrated for the first time that banked human neural stem cells -- HuCNS-SCs, a proprietary product of StemCells Inc. -- can survive and make functional myelin in mice with severe symptoms of myelin loss. Myelin is the critical fatty insulation, or sheath, surrounding new nerve fibers and is essential for normal brain function.

This is a very important finding in terms of advancing stem cell therapy to patients, the investigators report, because in most cases, patients are not diagnosed with a myelin disease until they begin to show symptoms. The research is published online in the journal Science Translational Medicine.

Myelin disorders are a common, extremely disabling, often fatal type of brain disease found in children and adults. They include cerebral palsy in children born prematurely as well as multiple sclerosis, among others.

Using advanced MRI technology, researchers at OHSU Doernbecher Children's Hospital also recently recognized the importance of healthy brain white matter at all stages of life and showed that a major part of memory decline in aging occurs due to widespread changes in the white matter, which results in damaged myelin and progressive senility (Annals of Neurology, September 2011).

In this breakthrough study, Stephen A. Back, M.D., Ph.D., senior author and clinician-scientist in the Pap Family Pediatric Research Institute at OHSU Doernbecher Children's Hospital, used a transgenic mouse model (Shiverer-immunodeficient) that develops progressive neurological deterioration because it is unable to make a key protein required to make normal myelin. Although this mouse has been widely investigated, prior to this study, true human brain-derived stem cells had not been tested for their potential to make new myelin in animals that were already deteriorating neurologically.

"Typically, newborn mice have been studied by other investigators because stem cells survive very well in the newborn brain. We, in fact, found that the stem cells preferentially matured into myelin-forming cells as opposed to other types of brain cells in both newborn mice and older mice. The brain-derived stem cells appeared to be picking up on cues in the white matter that instructed the cells to become myelin-forming cells," explained Back.

Although Back, in collaboration with investigators at StemCells Inc., had achieved success implanting stem cells in presymptomatic newborn animals, it was unclear whether the cells would survive after transplant into older animals that were already declining in health. Back and his colleagues put these cells to the test by transplanting them in animals that were declining neurologically and found that the stem cells were able to effectively survive and make functional myelin.

The study also is important because the research team was able to confirm by MRI that new myelin had been made by the stem cells within weeks after the transplant. Until now, it was unclear whether stem cell-derived myelin could be detected without major modifications to the stem cells, such as filling them with special dyes or iron particles that can be detected by the MRI.

These studies were particularly challenging, Back explained, because the mice were too sick to survive in the MRI scanner. Fortunately, OHSU is home to a leading national center for ultra-high field MRI scanners that were used to detect the myelin made by normal, unmodified stem cells.

"This is an important advance because it provides proof of principle that MRI can be used to track the transplants as myelin is being made. We actually confirmed that the MRI signal in the white matter was coming from human myelin made by the stem cells," Back said.

Read more:
Human neural stem cells study offers new hope for children with fatal brain diseases

Read More...

Brain Stem-Cell Implants Help Children With Rare Illness

October 11th, 2012 2:26 am

Four boys with a rare and often fatal brain disease were implanted with stem cells that began fixing damage that impeded their ability to walk, talk and eat, a trial found.

The findings, published today in the journal Science Translational Medicine, are from the first stage of human tests funded by StemCells Inc. (STEM), a Newark, California-based company.

The children have a genetic disorder called Pelizaeus- Merzbacher, in which the brain cant make myelin, the fatty insulation for nerve cells that helps conduct brain signals. The children all had evidence of myelin growth a year later. The increased abilities shown by three of the boys in the University of California San Francisco study may bode well for other diseases caused by a lack of myelin insulation, including multiple sclerosis and cerebral palsy, the authors wrote.

Those were severely impaired children, said Stephen Back, a professor of pediatrics and neurology at Portlands Oregon Health & Science University, in a telephone interview. The fact that they showed any neurological improvement is very encouraging.

Back did work in mice that preceded todays work in humans, which he wasnt directly involved in. His study, published simultaneously, showed that the animals with no myelin at all grew some after being implanted with human stem cells.

Pelizaeus-Merzbacher disease causes the degeneration of the nervous system, and there is no cure or standard treatment. People with the illness experience a loss of coordination, thinking and motor abilities. Its one of several disorders linked to genes that control myelin production.

The incidence of the disease is 1 in 200,000 to 500,000 people, according to todays study of the boys.

The boys were between the ages of 1 and 6. They were given purified neural stem cells from a fetal brain, which was then grown in culture. The stem cells were inserted into the frontal lobe, using brain imaging as a guide. The boys brains were scanned 24 to 48 hours after surgery to assess safety.

The children were on drugs to suppress their immune systems and prevent their bodies from rejecting the stem cells for nine months. Side effects included rashes, diarrhea and fever. One boy had fluid collect under his scalp, which later vanished on its own. A second subject had some bleeding in the brain after the surgery, which was without clinical consequence, according to the paper.

One of the boys developed the ability to take steps with assistance and began to speak single words. Another started eating solid food on his own. A third began to walk without the assistance of a walker and began eating on his own.

Excerpt from:
Brain Stem-Cell Implants Help Children With Rare Illness

Read More...

Page 1,418«..1020..1,4171,4181,4191,420..1,4301,440..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick