header logo image


Page 141«..1020..140141142143..150160..»

Oxurion Announces Results of the Extraordinary and Annual Shareholders’ Meetings of 3 May 2022 and Invitation to the Extraordinary Shareholders’…

May 8th, 2022 1:54 am

See the original post here:
Oxurion Announces Results of the Extraordinary and Annual Shareholders’ Meetings of 3 May 2022 and Invitation to the Extraordinary Shareholders’...

Read More...

Fate Therapeutics to Present at Upcoming May Investor Conferences

May 8th, 2022 1:54 am

SAN DIEGO, May 06, 2022 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. (the “Company” or “Fate Therapeutics”) (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, today announced that the Company will present at the following upcoming investor conferences:

Link:
Fate Therapeutics to Present at Upcoming May Investor Conferences

Read More...

Affimed Provides Update on ASCO AFM13-104 Oral Presentation

May 8th, 2022 1:54 am

HEIDELBERG, Germany, May 06, 2022 (GLOBE NEWSWIRE) -- Affimed N.V. (Nasdaq: AFMD) (“Affimed”, or the “Company”), a clinical-stage immuno-oncology company committed to giving patients back their innate ability to fight cancer, today announced that the American Society of Clinical Oncology (ASCO) has informed the Company’s collaborator that it has removed the previously announced oral presentation on AFM13-104, the investigator sponsored trial that evaluates AFM13 pre-complexed with NK cells in patients with relapsed/refractory CD30-positive lymphomas, from the upcoming conference program.

Continue reading here:
Affimed Provides Update on ASCO AFM13-104 Oral Presentation

Read More...

Neuronetics Reports Inducement Grant Under Nasdaq Listing Rule 5635(c)(4)

May 8th, 2022 1:54 am

MALVERN, Pa., May 06, 2022 (GLOBE NEWSWIRE) -- Neuronetics, Inc. (NASDAQ: STIM), a commercial stage medical technology company focused on designing, developing, and marketing products that improve the quality of life for patients who suffer from neurohealth disorders, today announced the granting of inducement awards to eight new non-executive employees. In accordance with NASDAQ Listing Rule 5635(c)(4), the awards were approved by Neuronetics’ Compensation Committee and made as a material inducement to each employee's entry into employment with the Company.

Continued here:
Neuronetics Reports Inducement Grant Under Nasdaq Listing Rule 5635(c)(4)

Read More...

Avicanna Announces Closing of Strategic Private Placement

May 8th, 2022 1:54 am

NOT FOR DISTRIBUTION TO UNITED STATES NEWSWIRE SERVICES OR FOR DISSEMINATION IN THE UNITED STATES. ANY FAILURE TO COMPLY WITH THIS RESTRICTION MAY CONSTITUTE A VIOLATION OF UNITED STATES SECURITIES LAWS

Continue reading here:
Avicanna Announces Closing of Strategic Private Placement

Read More...

Mereo BioPharma to Host Conference Call Highlighting Top-line Clinical Data from “ASTRAEUS” Phase 2 Study of Alvelestat

May 8th, 2022 1:54 am

Call scheduled for Monday, May 9, 2022 at 10:30 a.m. ET Call scheduled for Monday, May 9, 2022 at 10:30 a.m. ET

Read the original post:
Mereo BioPharma to Host Conference Call Highlighting Top-line Clinical Data from “ASTRAEUS” Phase 2 Study of Alvelestat

Read More...

CORRECTION — Gritstone Reports First Quarter 2022 Financial Results and Provides Business Update

May 8th, 2022 1:54 am

-- Clinical programs continue progressing, with multiple Phase 2 data catalysts from neoantigen oncology vaccine programs and additional human data evaluating self-amplifying mRNA (samRNA) vaccines against viruses expected over the next 18 months ---- Recent presentations reinforce expertise in vaccine design and delivery and potential of Gritstone’s platform technologies in oncology and infectious diseases --

Read more from the original source:
CORRECTION -- Gritstone Reports First Quarter 2022 Financial Results and Provides Business Update

Read More...

Exosome Therapeutics Market Increasing Demand with Leading Players, Comprehensive Analysis and Forecast Queen Anne and Mangolia News – Queen Anne and…

May 8th, 2022 1:54 am

A recent market research report entitled Exosome Therapeutics Market Size, Share, Growth, Industry Trends, and Forecast, done by our research team depicts the comprehensive and collaborative analysis of industry during past, present, and forecast periods. The report determines historic growth analysis and current scenario of Exosome Therapeutics Market place and intends to offer actionable insights on global market growth projections. The report sheds light on all the industry verticals like competitive market scenario, regional presence, and development opportunities. The next part covers the market competition landscape based on revenue and growth rate. Further, it explains market types, applications, and price analysis.

Get Sample Report at https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&yog

The global exosome therapeutics market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses that the market is growing with a CAGR of 16.9% in the forecast period of 2022 to 2029 and is expected to reach USD 1,602.54 thousand by 2029 from USD 468.98 thousand in 2021. The rising prevalence of chronic inflammatory autoimmune diseases and technological developments in exosome therapeutics are likely to be the major drivers which propel the demand of the market in the forecast period.

Some of the major companies providing the global exosome therapeutics market are Stem Cells Group, Exosome Sciences, AEGLE Therapeutics, Capricor Therapeutics, Avalon Globocare Corp, CODIAK, Kimera Labs, Stem Cell Medicine Ltd, Exopharm, Jazz Pharmaceuticals, Inc., evox THERAPEUTICS, ReNeuron Group plc, and EV Therapeutics, among others.

Our Reports Will Help Clients Solve the Following Issues:

Uncertainty about the future: Our research and insights assist our clients forecast revenue compartments and growth ranges in the future. This will assist our clients in investing in or selling their assets.

Grasp market opinions: For a strategy, it is critical to have an objective understanding of market opinions. Our research provides a clear picture of market mood. We maintain this surveillance by engaging with Key Opinion Leaders from each industrys value chain.

Recognizing the most dependable investment hubs: Our analysis assesses market investment centres based on projected demand, returns, and profit margins. By using our market research, our clients may concentrate on the most important investment centres.

Identifying and assessing possible business partners: Our research and insights assist our clients in identifying business partners.

For More Inquiry Contact us at https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&yog

Global Exosome Therapeutics Market, By Type (Natural Exosome, Hybrid Exosome), Source (Mesenchymal Stem Cells, Blood, Body Fluids, Urine, Dendritic Cells, Saliva, Milk, and Others), Therapy (Immunotherapy, Chemotherapy, and Gene Therapy), Transporting Capacity (Bio Macromolecules and Small Molecules), Application (Metabolic Disorders, Oncology, Cardiac Disorders, Neurology, Inflammatory Disorders, Organ Transplantation, Gynecology Disorders, Blood Disorders, and Others), Route of administration (Parenteral and Oral), End User (Research and Academic Institutes, Hospitals and Diagnostic Centers), Country (U.S., Mexico, South Korea, Australia, Hong-Kong, Rest of Asia-Pacific, Brazil, Argentina, Venezuela, Colombia, Ecuador, Peru, Uruguay, Costa Rica, Panama, Dominican Republic, Rest of Latin America and Turkey) Industry Trends and Forecast To 2029

Major Points Covered in Table of Contents:

Click to View Full Report TOC, figure and tables at https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&yog

Some of the important question for stakeholders and business professional for expanding their position in the Exosome Therapeutics Market:

Q 1. Ahead of 2022, which region offers the most lucrative open doors for the market?

Q 2. What are the business threats, as well as the impact of the most recent scenario on market growth and estimation?

Q 3. In terms of applications, types, and areas, what are the most promising, high-development possibilities for the Canned Wine movement?

Q 4.What segments of the Exosome Therapeutics Market are attracting the most attention in 2022 and beyond?

Q 5. Who are the major participants in the Exosome Therapeutics Market, both now and in the future?

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, LATAM, Europe or Southeast Asia or Just Eastern Asia

Related Trending Market Reports:

Global Auto Parts and Accessories Market, By Product (Engine Parts, Electrical Parts, Drive and Transmission Steering Parts, Suspension and Braking Parts Equipment and Others), Vehicle Type (Passenger, Commercial, Light Commercial Vehicle, Sports Vehicles and Others), Type (Driveline and Powertrain, Interiors and Exteriors, Electronics, Seating, Lighting, and Other Types), Application (OEM, and Aftermarket), Country (U.S., Canada, Mexico, Brazil, Argentina, Rest of South America, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of the Middle East and Africa) Industry Trends and Forecast to 2029.

https://www.databridgemarketresearch.com/reports/global-auto-parts-and-accessories-market

Global Database Encryption Market, By Database Encryption Type (Transparent Encryption, Column-Level Encryption, File-System Encryption, Application- Level Encryption, Key Management), Database Operational Models (Data-At-Rest, Data-In-Motion) Deployment Type (On-Premises, Cloud) End User (Smbs, Enterprises) Vertical (IT & Telecom, Banking, Financial Services, And Insurance (BFSI), Healthcare, Retail And E-Commerce, Government & Public Sectors, Aerospace & Defense, Others) Country (U.S., Canada, Mexico, Brazil, Argentina, Rest of South America, Germany, France, Italy, U.K., Belgium, Spain, Russia, Turkey, Netherlands, Switzerland, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, U.A.E, Saudi Arabia, Egypt, South Africa, Israel, Rest of Middle East and Africa) Industry Trends and Forecast to 2029.

https://www.databridgemarketresearch.com/reports/global-database-encryption-market

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

More:
Exosome Therapeutics Market Increasing Demand with Leading Players, Comprehensive Analysis and Forecast Queen Anne and Mangolia News - Queen Anne and...

Read More...

Pharmadrug Advances Opthalmology Program with Final Selection of Lead DMT-Analogue to Provide Sustained Control of Elevated Intraocular Pressure for…

May 8th, 2022 1:53 am

Selection of lead candidate from initial short-list of 6 DMT-analogues

Lead candidate displays superior potency in two in vitro bioassays on two relevant human cell types

In vitro safety and biocompatibility testing using drug-loaded medical device demonstrates tolerability at doses anticipated to be within therapeutic range

Results to be leveraged by filing of Provisional Patent detailing a novel approach to treating primary open angle glaucoma

Initiates plans for second stage of R&D with Terasaki Institute for Biomedical Innovation

Toronto, Ontario--(Newsfile Corp. - May 3, 2022) - PharmaDrug Inc. (CSE: PHRX) (OTCQB: LMLLF) ("PharmaDrug" or the "Company"), a specialty pharmaceutical company focused on the research, development and commercialization of controlled-substances and natural medicines such as psychedelics, cannabis and naturally-derived approved drugs, is pleased to announce that in collaboration with the Terasaki Institute for Biomedical Innovation (TIBI), has selected its final lead drug candidate from a short list of six N,N-Dimethyltryptamine (DMT) analogue molecules. This decision, based on successful completion of the first phase of the sponsored research agreement, derives from the demonstration of lead candidate superiority as it relates to in vitro potency in two predictive bioassays, a favorable toxicity profile as well as physical, chemical, and metabolic properties necessary to fabricate a proprietary medical device capable of conveniently delivering sub-psychedelic levels of drug to the front of the eye over a sustained period.

With efforts related to discovery and candidate selection now complete, the Company intends to advance its program in primary open angle glaucoma (POAG) by entering into a second sponsored research collaboration with TIBI to undertake 1) mechanism of action studies, 2) optimize medical device drug release characteristics, 3) in vitro host-species justification studies to support, 4) evaluation of drug efficacy in an IND-enabling study of POAG with the goal of providing all necessary support to file an investigative new drug (IND) application with the United States Food and Drug Administration (the "FDA") to conduct clinical studies.

Paul Van Slyke, CSO of PharmaDrug, commented, "We are excited to announce that in collaboration with TIBI, we have successfully completed the studies necessary to elect the Company's lead drug candidate for the treatment of POAG. The next phase of this ongoing collaboration will start shortly and is underlined by the Company's strong commitment to work with outstanding research and development groups from around the world to provide innovative, life changing medications to patients at risk of vision loss as a consequence of insufficiently treated glaucoma."

Story continues

Under the terms of the first sponsored research agreement, PharmaDrug's DMT-analogue research program aimed to elect a drug development lead based on biological potency and toxicity and to use the development lead to engineer a medical device capable of sustained drug delivery to the front of the eye. The Company has now selected its lead candidate and completed fabrication and initial testing of its novel medical device designed to deliver therapeutic quantities of its DMT-analogues to the front of the eye. Specifically, drug-loaded medical device prototypes were suspended in a biological solution meant to mimic the somewhat harsh environment of the eye. Samples, maintained at body temperature were removed at defined periods of time over sixteen days and were quantified to determine concentration and rate of drug release and breakdown. Stability of the lead candidate molecule met necessary criteria set forth by the Company. The biocompatibility of drug-loaded medical device was examined by way of quantifying cell proliferation and live/dead staining on human ciliary muscle cells over time. Concentrations expected to be within the therapeutic range were found to not statistically impact cell viability the drug-loaded medical devices.

Most recently, potency of the lead candidate was evaluated in an in vitro cyclic adenosine 3':5' monophosphate (cAMP) production assay using human, primary trabecular meshwork (TM) cells and ciliary muscle (CM) cells. These cells, richly decorated with serotonin receptor 1a and 2a (5HT-1a, 5HT-2a), play a central role in the maintenance of healthy intraocular pressure. Tryptamine molecules, such as the Company's lead candidate are thought to bind to these receptors and elicit downstream biological outcomes which assist in the active drainage (reduction of pressure) of aqueous humor from the front of the eye to the posterior compartment. The Company's lead candidate demonstrated potent cAMP production following application, a statistically significant superiority compared to other candidate molecules examined (p<0001), and an unexpected bias towards cAMP production in TM cells versus CM cells.

Test article potency was previously evaluated using an in vitro calcium mobilization assay on TM and CM cells. Calcium mobilization is understood to provoke smooth muscle contraction, and specifically in the case of TM and CM cells, is thought to contribute to the maintenance of healthy IOP by channeling aqueous humor away from the front of the eye. The Company's lead candidate was found to activate calcium mobilization, to levels that were comparable or greater than the experimental positive control, ionomycin. The lead candidate was also examined for in vitro toxicity and found to be non-toxic to TM and CM cells at concentrations expected to be used in treatment for various eye diseases. Collectively results from the first phase of the sponsored research agreement will be used to draft an upcoming Provisional Patent application which describes use of tryptamine family members, fabricated into a proprietary medical device, to treat conditions marked by elevated intraocular pressure.

The Need for Improved Medications to Treat Primary Open Angle Glaucoma

Glaucoma is a disorder of the optic nerve that results in irreversible vision loss and is the second leading cause of blindness in the world, according to the World Health Organization. Glaucoma impacts more than 2.7 million people aged 40 or older in the United States and current treatments are known to have poor rates of compliance of up to 80% of patients. The global market for glaucoma was estimated by Market Scope at $4.8 billion in 2019 with the U.S. market representing $1.9 billion. Although the exact etiology of primary open angle glaucoma remains poorly understood, and may be variable across patient subsets, it is generally accepted that the observed increase in IOP correlates with progressive vision loss1. Current treatments for POAG primarily consist of eyedrops that can be grouped into three main categories: prostaglandin analogues, carbonic anhydrous inhibitors, and alpha-2 agonists. While these approaches usually provide partial improvement, they often result in side effects such as redness and stinging and require multiple daily applications; all of which diminish patient compliance. Tryptamines, including DMT-analogues are thought to work in a completely distinct way to lower IOP and as such potentially embody a new class of glaucoma medications that may be used alone, or in combination with already approved medications. The Company's streamlined focus on two highly promising, undisclosed tryptamines as a potential therapeutic solution in treating glaucoma represents a potential paradigm shift.

Modulating the serotonin receptor pathway to improve glaucoma outcomes

Key regions of the eye that regulate fluid dynamics, including maintenance of healthy IOP, are known to be richly decorated with various serotonin receptor family members. Previous research has highlighted the role of serotonin receptor signaling in the regulation of IOP2-5. Tryptamines, often hallucinogenic above certain threshold concentrations, constitute a large collection of molecules that selectively act on multiple different serotonin receptors including 5-HT1A and 5-HT2A. Topical application of several different tryptamines have shown early promise in preclinical models of elevated IOP, however formulation, delivery, the potential for undesirable hallucinogenic side effects, and the controlled substances act of 1970 have all contributed to a lack of development of tryptamines to treat this serious threat to vision.

About Terasaki Institute for Biomedical Innovation

The Terasaki Institute for Biomedical Innovation is a biotechnology institute which develops medical devices and cutting-edge protocols for a variety of diagnostic, monitoring and treatment applications. Their research platforms include work in biomaterials, cellular and tissue engineering, wearable biosensors and organs-on-a-chip, with specific expertise in novel polymer development.

About PharmaDrug Inc.

PharmaDrug is a specialty pharmaceutical company focused on the research, development and commercialization of controlled-substances and natural medicines such as psychedelics, cannabis and naturally-derived approved drugs. PharmaDrug owns 100% of Pharmadrug Production GmbH ("Pharmadrug Production"), a German medical cannabis distributor, with a Schedule I European Union narcotics license and German EuGMP certification allowing for the importation and distribution of medical cannabis to pharmacies in Germany and throughout the European Union. PharmaDrug owns 100% Sairiyo Therapeutics ("Sairiyo"), a biotech company that specializes in researching and reformulating established natural medicines with a goal of bringing them through clinical trials and the associated regulatory approval process in the US and Europe. Sairiyo is currently developing its patented reformulation of cepharanthine, a drug that has shown substantial third party validated potential for the treatment of infectious disease and rare cancers. Sairiyo is also conducting R&D in the psychedelics space for the treatment of non-neuropsychiatric conditions. The Company also owns 100% of Super Smart, a company building a vertically integrated retail business with the goal to elevate the use of functional mushrooms, and psilocybin mushrooms where federally legal, as natural based medicines.

For further information, please contact:

Daniel Cohen, Chairman and CEO dcohen@pharmadrug.co(647) 202-1824

Caution Regarding Forward-Looking Information:

THE CANADIAN SECURITIES EXCHANGE HAS NOT REVIEWED NOR DOES IT ACCEPT RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THIS RELEASE.

This press release contains "forward-looking information" within the meaning of applicable securities legislation. All statements, other than statements of historical fact, included herein are forward-looking information. Generally, forward-looking information may be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "proposed", "is expected", "budgets", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases, or by the use of words or phrases which state that certain actions, events or results may, could, would, or might occur or be achieved. In particular, this press release contains forward-looking information in relation to: future in vivo efficacy testing in an accepted model of primary open angle glaucoma (POAG), the ability to complete the required studies and obtain regulatory approval, and the impact the Company's potential products will have on treating glaucoma. This forward-looking information reflects the Company's current beliefs and is based on information currently available to the Company and on assumptions the Company believes are reasonable. These assumptions include, but are not limited to the ability of the Company to successfully execute on its plans for the Company and its affiliated entities; the ability to obtain required regulatory approvals and the Company's continued response and ability to navigate the COVID-19 pandemic being consistent with, or better than, its ability and response to date.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information. Such risks and other factors may include, but are not limited to: general business, economic, competitive, political and social uncertainties; general capital market conditions and market prices for securities; the actual results of the Company's future operations; competition; changes in legislation affecting the Company; the ability to obtain and maintain required permits and approvals, the timing and availability of external financing on acceptable terms; lack of qualified, skilled labour or loss of key individuals; risks related to the COVID-19 pandemic including various recommendations, orders and measures of governmental authorities to try to limit the pandemic, including travel restrictions, border closures, non-essential business closures, service disruptions, quarantines, self-isolations, shelters-in-place and social distancing, disruptions to markets, economic activity, financing, supply chains and sales channels, and a deterioration of general economic conditions; and a deterioration of financial markets that could limit the Company's ability to obtain external financing.

A description of additional risk factors that may cause actual results to differ materially from forward-looking information can be found in the Company's disclosure documents on the SEDAR website at http://www.sedar.com. Although the Company has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking information, there may be other factors that cause results not to be as anticipated, estimated or intended. Accordingly, readers should not place undue reliance on forward-looking information. Readers are cautioned that the foregoing list of factors is not exhaustive. Readers are further cautioned not to place undue reliance on forward-looking information as there can be no assurance that the plans, intentions or expectations upon which they are placed will occur. Such information, although considered reasonable by management at the time of preparation, may prove to be incorrect and actual results may differ materially from those anticipated.

The Company's securities have not been registered under the U.S. Securities Act of 1933, as amended (the "U.S. Securities Act"), or applicable state securities laws, and may not be offered or sold to, or for the account or benefit of, persons in the United States or "U.S. Persons", as such term is defined in Regulations under the U.S. Securities Act, absent registration or an applicable exemption from such registration requirements. This press release shall not constitute an offer to sell or the solicitation of an offer to buy nor shall there be any sale of the securities in the United States or any jurisdiction in which such offer, solicitation or sale would be unlawful.

Forward-looking information contained in this press release is expressly qualified by this cautionary statement. The forward-looking information contained in this press release represents the expectations of the Company as of the date of this press release and, accordingly, are subject to change after such date. However, the Company expressly disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, except as expressly required by applicable securities law.

References:

Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, Martin KR. Primary open-angle glaucoma. Nat Rev Dis Primers. 2016 Sep 22;2:16067. doi: 10.1038/nrdp.2016.67. PMID: 27654570.

May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J Pharmacol Exp Ther. 2003 Jul;306(1):301-9. doi: 10.1124/jpet.103.049528. Epub 2003 Apr 3. PMID: 12676887.

Sharif NA. Serotonin-2 receptor agonists as novel ocular hypotensive agents and their cellular and molecular mechanisms of action. Curr Drug Targets. 2010 Aug;11(8):978-93. doi: 10.2174/138945010791591278. PMID: 20426763.

Najam A Sharif & Jesse A May (2011) Potential for serotonergic agents to treat elevated intraocular pressure and glaucoma: focus on 5-HT2 receptor agonists, Expert Review of Ophthalmology, 6:1, 105-120, DOI: 10.1586/eop.10.69

Sharif NA, McLaughlin MA, Kelly CR. AL-34662: a potent, selective, and efficacious ocular hypotensive serotonin-2 receptor agonist. J Ocul Pharmacol Ther. 2007 Feb;23(1):1-13. doi: 10.1089/jop.2006.0093. PMID: 17341144.

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/122498

See the original post:
Pharmadrug Advances Opthalmology Program with Final Selection of Lead DMT-Analogue to Provide Sustained Control of Elevated Intraocular Pressure for...

Read More...

Best Eye Hospital in North-East Region : The Retina Centre, Guwahati – APN News

May 8th, 2022 1:53 am

There has been a significant increase in eye diseases in the people of India for the last several years. The doctors of The Retina Centre, Guwahati told the media on this subject that there can be many reasons for eye problems, including pollution, excessive use of mobile Use, stress, use of tobacco and other intoxicants, disordered eating, eye injury etc. are prominent.

Our eyes are precious but our slightest carelessness towards the eyes can also make us a victim of blindness. Many people ignore the initial symptoms of eye problems and gradually these problems take a serious form in them. That is why it is necessary not to ignore eye diseases and consult a doctor immediately as soon as the initial symptoms appear.

The officials of The Retina Center told the media that this institute of theirs has become the best eye hospital in the entire North-East region. Officials said that not only are the best doctors working here, but advanced medical procedures are available at affordable rates through modern resources.

The following eye diseases are treated by The Retina Centre.

Retinal Diseases:

The retina is the tissue that lines the inside of the eye and is sensitive to light. It sends visual messages to the brain through the optic nerve. Retinal diseases can affect any part of the retina and vary widely, but most of them cause visual symptoms. In the hospital, scleral buckling, vitrectomy (without suture), pneumorretinopexy, anti VEGF treatment, laser treatment etc. are done.

Corneal Disorders:

The cornea is a clear layer in front of the iris and the pupil. It protects the iris and lens and helps to focus light on the retina. Corneal disease is a serious condition that can lead to deformity, scarring and eventually blindness. Keratoplasty andTreatment services like Keratoprosthesis are available.

cataracts :

Cataract is a serious disease of the eyes. Cataracts usually occur with ageing or develop for no apparent reason. Most cataracts can be removed and replaced with artificial lenses. For this, facilities like Phacoemulsification with IOL implantation are available in the hospital.

Glaucoma:

Glaucoma is progressive optic nerve damage that leads to irreversible loss of vision. Glaucoma can occur at any age but it is 6 times more common in people over the age of 60. The Retina Center provides treatment for this like Filtration Surgery, Valve Implantation.

eye surgery:

Eye surgery Early diagnosis of eye conditions can help prevent further deterioration in eye health, improve vision and cure most eye diseases. Treatment includes simple medication, non-invasive and invasive procedures may be involved. For this, facilities like Retina Surgery, Glaucoma, Cataract Surgery, Neuro Opthalmology, Squint, Oculoplasty, Pediatric, Opthalmology are available in the hospital.

Hospital Address and Contact:

5th and 6th Floor, Subham Bijay Crescent,

6th Mile, Rukmini Gaon,

GS Road, Guwahati-781022, Assam

http://www.theretinacentre.com

Go here to read the rest:
Best Eye Hospital in North-East Region : The Retina Centre, Guwahati - APN News

Read More...

Bucks hospitals rally to deliver urgent supplies to Ukraine – Bucks Herald

May 8th, 2022 1:53 am

Led by Ukrainian doctor practicing in the UK, Dr Sergey Tadtayev a consultant urologist surgeon, staff at Chiltern in Great Missenden, and Shelburne Hospital have managed to deliver supplies to the war-torn country.

Circle Health Group, Sergeys hospital operator, has also played a key role in getting the urgent supplies to Ukraine.

In response to direct requests from Ukrainian doctors, the hospitals have worked with the Ukrainian doctors union (Ukraine Medical Association) and the British Red Cross to identify needs in war-hit hospitals.

Also, Sergey has galvanised his Circle colleagues to gather 10-truck loads including 200 pallets of vital kit and medical supplies from across the groups national network of 53 hospitals.

Sergey said: My heart breaks for my fellow doctors back home who are fighting heroically to care for the sick and wounded even as the bombs continue to fall.

"Hospitals are struggling to get basic supplies because transport and manufacturing have been so badly disrupted, so I knew I had to do something to help.

Moving 100+ tonnes of medical supplies between hospitals separated by thousands of miles and several borders has been an incredible team effort, and I have been overwhelmed by the generosity of my colleagues at Circle Health Group.

"They are moving heaven and earth to get help to those who really need it on the frontline, and I am humbled by the solidarity and support for my homeland.

Ventilators, crutches, walking frames, respiratory masks, scrubs, bandages, wound kits, operating tables and other medical supplies have been stock-piled from Circle hospitals across the country and delivered directly to the doors of five hospitals covering North, South, East and West Ukraine.

Upon receipt of the urgent supplies, the hospitals distribute a portion to local community hospitals.

A team of volunteers from the UK, Poland and Ukraine have made the journey on a weekly basis since 15 March to deliver urgent supplies, navigating their way through war-torn regions and areas of conflict to reach the hospitals in Kyiv, Kharkiv, Mykolaiv, Odessa and Lviv.

Circle Health Group has committed to continue the weekly delivery programme for as long as the supplies are required.

The latest delivery, which departed the UK on Wednesday 13 April and arrived at a Kharkiv hospitals on Easter Sunday (17 April), contained 185,500 of medical equipment loaded on 35 pallets, including five ventilators, an operating table, patient monitors, suction tubing and chest drainage sets and sterile gowns.

One of the hospitals opthalmic consultants, Mandeep Bindra, and Healthcare Assistant Adinda Ecott, co-ordinated the collection of supplies ranging from blankets to hot water bottles and baby food. Mandeep personally drove the supplies to two collection centres, one in Hounslow and one at the Olympic Lodge in Aylesbury.

The collected items will then be transported by lorry to the Polish border where they will be given to Ukrainian families.

Overall, 1.4 million worth of supplies have been sent from Circle Health Group hospitals.

Paolo Pieri, CEO of Circle Health Group, said: Were so grateful to the hundreds of people across the country who have contributed to this effort, from staff to partners and suppliers, and the brave drivers who have put themselves at considerable personal risk."

Read the rest here:
Bucks hospitals rally to deliver urgent supplies to Ukraine - Bucks Herald

Read More...

At ISCT This Week, Cell & Gene Therapy Grows Up – BioSpace

May 8th, 2022 1:52 am

Sven Kili, ISCT 2022 Annual Meeting co-chair/Courtesy of YouTube

The cell and gene therapy space is growing up and spawning myriad scientific gatherings, including two on the immediate horizon. On May 16, the 25th annual meeting of the American Society of Gene & Cell Therapy (ASGCT) will commence in Washington, DC. And this week in San Francisco, industry, investors, regulators, physicians and patients will convene at the International Society for Cell & Gene Therapy (ISCT)s annual conference the first to be held in person since 2019.

Sven Kili, CEO at Antion Biosciences and 2022 Annual Meeting co-chair told BioSpace that the conference will set the pace for the next 12 months in terms of the most intriguing technology, key investments and key moves.

We often talk jokingly, but it's actually quite serious, that this represents almost the G7 summit of cell and gene therapy, Kili said. Rather than being a place where partnerships and M&A activity is announced (though that may come after), ISCT is focused on really changing the landscape of the cell and gene therapy space.

A summit evokes the idea of key community leaders coming together to make important decisions, and the organizers of ISCT felt it important that every voice is at the table for every key discussion, as opposed to branching off into their own siloed manufacturing or cancer tracks.

At typical scientific meetings, You have a regulatory track and you have a manufacturing track and everyone toddles off to their own track where they sit in isolation and hear about the latest developments, Kili said. ISCT wanted to provide better educational value for its attendees. So, this years meeting will reflect the development pathway of a cell and gene therapy product.

When you develop a therapy, you sit down with a bunch of different people. You sit down with scientists, you sit down with clinicians, you sit down with patients; you might even have a commercial person and a regulatory person. You have a variety of people around the table," Kili said.

This years theme: Bench to Bedside to Benefit - Creating Value for Patients through CGT Translational Science, will integrate the full chorus of voices discussing four main topics: Innovation and R&D the cool new technology; translation into the clinic; late-stage clinical development; and launch and patient access.

Speaking of cool new technology, Geneva, Switzerland-based Antion will be presenting new data around its proprietary miCAR platform, which aims to overcome some of the current limitations in gene editing.

Gene editing, as incredible and as powerful as it is, has some major drawbacks when we try to make more than three or four changes to a cell. As we try to make more and more changes to cells, which we are going to need to do as we get into more complex tumors and solid tumors, gene editing really falls down, Kili said.

This is where Antion, which recently entered into a collaboration funding agreement with Allogene Therapeutics, comes in.

This miCAR platform allows us to silence up to six different genes and add a CAR or a TCR all in a single construct, in a single transduction step, he explained, adding that the technology enables Antion to create very highly modified cells that have very high efficiency and a very good recovery, all without exhausting the cells during the manufacturing process.

This week, Antion will present data that shows the functional silencing of six different genes with a CAR and the activation and activity of the chimeric antigen receptor.

Kili said to also anticipate announcements regarding technological advances in COVID-19 and Acute Respiratory Distress Syndrome (ARDS). Interest in each is understandably at a fever pitch. The second track will focus on overcoming some of the big challenges in early clinical work, such as patient enrollment and running remote clinical trials, while the third will look at the later stages of clinical development.

Its the fourth track, however, where Kili focused most of his thoughts.

This is kind of a coming of age for ISCT, he shared. ISCT, in the many years before, was focused on a lot of R&D work and clinical translation, but we've seen in the last few years more products come into the market and this is an area of creating really good launch excellence. How do you launch and provide therapies that are good value, that change patients lives, that make patients lives easier in the administration? All of these things are going to be critical to discuss.

On May 6, Kili will host a discussion entitled Are Cell & Gene Therapies a First World Only Luxury?

We sit in our first world countries, all very happy and we have access to many of these therapies. But what about patients in South America and Sub-Saharan Africa? What are we doing as an environment about making these therapies available to them? he asked. Kili has brought together panelists including the Institute for Cellular and Molecular Medicine in South Africa, Caring Cross in the United States, Universidad de los Andes in Chile and Novartis.

Looking ahead to the next five-to-10 years, I think we're going to understand the pathophysiology and we're going to understand the cause of particularly cancers like solid tumors, but also some immunology diseases. We're going to understand them on a much better molecular level, Kili predicted. At the moment, we tend to go in, take a cancer and say, these cancer cells have got a little flag that says hello, I'm a CD19, so we say, let's arm a cell and chuck it in there. But we forget that there's an entire orchestra going on in inside that space, and then we wonder why sometimes it doesn't work.

This stronger molecular science will then translate into better understanding and better refinement of the technologies, the cell-based therapies that we're using, so our ability to penetrate and survive those cells in solid tumors in that tumor microenvironment, Kili continued.

He envisions the space making more progress in solid tumors, as well as a progression away from cancer and into immunotherapies, using cell and gene-modified cell therapies for immune conditions, such as diabetes and Systemic lupus erythematosus (SLE).

In the manufacturing space, Kili said the key will be to learn how to usevectors better to create better in vivo therapies, be they gene-modified cell therapies or pure gene therapies. All of these aspects need to move forward, he said, to allow us to decrease the cost of goods for these therapies so that we can make them available to more people both in our very privileged first world, but also in low and middle-income countries.

In conclusion, Kili said, I think we're going to see a lot of very rapid changes and very rapid improvements.

ISCT kicks off Wednesday, May 4, with the excitement continuing through Saturday. BioSpace will have the highlights from both this conference andASGCT.

Excerpt from:
At ISCT This Week, Cell & Gene Therapy Grows Up - BioSpace

Read More...

Tenaya Therapeutics to Present Preclinical Data on Gene Therapy Programs and Platform Capabilities at the American Society of Gene and Cell Therapy…

May 8th, 2022 1:52 am

SOUTH SAN FRANCISCO, Calif.--(BUSINESS WIRE)--Tenaya Therapeutics, Inc. (NASDAQ: TNYA), a biotechnology company with a mission to discover, develop and deliver curative therapies that address the underlying causes of heart disease, announced that it will present preclinical data for its TN-401 and DWORF gene therapy programs, as well as data on its capsid engineering capabilities at the upcoming American Society of Gene and Cell Therapy (ASGCT) 25th Annual Meeting taking place May 1619, 2022, in Washington, D.C. and virtually.

TN-401 is Tenayas gene therapy candidate being developed for the potential treatment of arrhythmogenic right ventricular cardiomyopathy (ARVC) caused by PKP2 gene mutations. Mutations of the PKP2 gene are the leading genetic cause of ARVC and can result in severe disease, including significant arrhythmia and sudden cardiac death in adults and children. These mutations are estimated to affect more than 70,000 patients in the U.S. alone. Data being presented at ASGCT will detail the impact of a single dose of PKP2 gene therapy on arrhythmias, disease progression and survival in a Pkp2-deficient mouse model of ARVC. Tenaya will support the establishment of a global natural history study of ARVC caused by PKP2 mutations in 2022 and expects to submit an Investigational New Drug application (IND) to the U.S. Food and Drug Administration for TN-401 in 2023.

The companys DWORF gene therapy is being developed for the potential treatment of genetic dilated cardiomyopathy (DCM). DWORF is a muscle specific micro-peptide first discovered by Tenaya co-founder Eric Olson, Ph.D. that acts on the SERCA pathway, which is widely considered to be a promising target in heart failure. Data to be shared at ASGCT will review initial tolerability and efficacy of adeno-associated viral (AAV) delivered DWORF in a DCM mouse model. Tenayas DWORF program is currently at candidate selection stage.

Tenaya believes its capsid engineering efforts will ultimately help support successful clinical development of its product candidates by enhancing the efficacy and safety of gene therapies. Data being presented for Tenayas capsid engineering efforts will showcase the work being done to enhance the specificity and expression of genes delivered to cardiomyocytes using novel capsids.

Details of the presentations are as follows:

Tuesday, May 17, 20225:30 p.m. 6 :30 p.m. ETCardiovascular and Pulmonary Diseases session

To view full event programming, please visit the ASGCT 25th Annual Meeting website.

About Tenaya Therapeutics

Tenaya Therapeutics is a biotechnology company committed to a bold mission: to discover, develop and deliver curative therapies that address the underlying drivers of heart disease. Founded by leading cardiovascular scientists from Gladstone Institutes and the University of Texas Southwestern Medical Center, Tenaya is developing therapies for rare genetic disorders as well as for more prevalent heart conditions through three distinct but interrelated product platforms: Gene Therapy, Cellular Regeneration and Precision Medicine. For more information, visit http://www.tenayatherapeutics.com.

Forward-Looking Statements

This press release contains forward-looking statements as that term is defined in Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Statements in this press release that are not purely historical are forward-looking statements. Words such as will, potential, expects and believes, and similar expressions are intended to identify forward-looking statements. Such forward-looking statements include, among other things, Tenayas plans to present preclinical data on its TN-401 and DWORF gene therapy programs at the ASGCT 25th Annual Meeting; the therapeutic potential of TN-401 as a treatment for ARVC caused by PKP2 gene mutations; Tenayas plans to support the establishment of a global natural history study of ARVC caused by PKP2 mutations and expectations regarding the timing of the IND filing for TN-401; the therapeutic potential of Tenayas DWORF gene therapy program as a treatment for DCM; and Tenayas belief that its capsid engineering efforts will enhance the efficacy and safety of gene therapies. The forward-looking statements contained herein are based upon Tenayas current expectations and involve assumptions that may never materialize or may prove to be incorrect. These forward-looking statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, including but not limited to: the availability of data at the referenced times; risks associated with the process of discovering, developing and commercializing drugs that are safe and effective for use as human therapeutics and operating as an early stage company; Tenayas ability to develop, initiate or complete preclinical studies and clinical trials, and obtain approvals, for any of its product candidates; the timing, progress and results of preclinical studies for TN-401, DWORF and Tenayas other programs; Tenayas ability to raise any additional funding it will need to continue to pursue its business and product development plans; negative impacts of the COVID-19 pandemic on Tenayas manufacturing and operations, including preclinical studies and planned clinical trials; the timing, scope and likelihood of regulatory filings and approvals; the potential for any clinical trial results to differ from preclinical, interim, preliminary, topline or expected results; Tenayas manufacturing, commercialization and marketing capabilities and strategy; the loss of key scientific or management personnel; competition in the industry in which Tenaya operates; Tenayas reliance on third parties; Tenayas ability to obtain and maintain intellectual property protection for its product candidates; general economic and market conditions; and other risks. Information regarding the foregoing and additional risks may be found in the section entitled Risk Factors in documents that Tenaya files from time to time with the Securities and Exchange Commission. These forward-looking statements are made as of the date of this press release, and Tenaya assumes no obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

More:
Tenaya Therapeutics to Present Preclinical Data on Gene Therapy Programs and Platform Capabilities at the American Society of Gene and Cell Therapy...

Read More...

BioMarin to Present Findings from Ongoing Studies of Valoctocogene Roxaparvovec, Investigational Gene Therapy, at the World Federation of Hemophilia…

May 8th, 2022 1:51 am

BioMarin to Present Findings from Ongoing Studies of Valoctocogene Roxaparvovec, Investigational Gene Therapy, at the World Federation of Hemophilia 2022 World Congress, May 8-11, 2022, Including Five Platform Presentations

Ongoing Clinical Development Program Represents Largest and Longest Development Program for any Gene Therapy in Hemophilia A, Demonstrates Commitment to Advancing Care for People with Hemophilia A

SAN RAFAEL, Calif., May 5, 2022 /PRNewswire/ -- BioMarin Pharmaceutical Inc. (NASDAQ:BMRN) today announced five platform presentations and one poster presentation on valoctocogene roxaparvovec, an investigational gene therapy for the treatment of adults with severe hemophilia A, at the World Federation of Hemophilia (WFH) 2022 World Congress from May 8-11 in Montreal, Canada.

"We're pleased to provide updated data on durability of effect in patients treated over two years ago, on molecular contributors to variability, on hepatotoxicity and the role of immunosuppression, on the potential for integration-related oncogenicity, and on health-related quality of life. We continue to learn about the potential for investigational valoctocogene roxaparvovec to transform lives and the optimal way to manage patients through their journey," said Hank Fuchs, M.D., President of Worldwide Research and Development at BioMarin. "We are progressing our regulatory efforts with the intent to deliver a therapy that may represent an important and valuable treatment choice for patients with severe Hemophilia A, as no presently available treatment offers such freedom from prophylaxis and reduced bleeding frequency at the same time."

"BioMarin is generating valuable data about investigational valoctocogene roxaparvovec that potentially could enable shared decision making between physicians and patients on what is the best therapy in each personal situation," said Professor Wolfgang Miesbach, Head of the Department of Coagulation Disorders and the Comprehensive Care Haemophilia Centre at the Goethe University Hospital in Frankfurt/Main, Germany.

Presentation of data at WFH follows positive two-year results from the ongoing, global phase 3 GENEr8-1 study of valoctocogene roxaparvovec presented at a medical meeting earlier in the year, as well as publication of one-year results from the pivotal clinical trial in the New England Journal of Medicine in March 2022.

BioMarin's presentations at WFH include:

Platform Presentations

Immune suppression following gene therapy in HemophiliaProfessor Wolfgang Miesbach, Head of the Department of Coagulation Disorders and the Comprehensive Care Haemophilia Centre, Goethe University Hospital, Frankfurt/Main, GermanyMonday, May 9, 2022, 1:30 -2:30 PM ET

Exploratory analyses of healthy liver biopsies and a single case of parotid acinar cell carcinoma do not identify a role for valoctocogene roxaparvovec vector insertion in altering cell growthKevin Eggan, Group Vice President, Head of Research and Early Development / BioMarinMonday, May 9, 2022, 1:30 -2:30 PM ET

Health-related quality of life over 2 years following valoctocogene roxaparvovec adeno-associated virus gene transfer for severe hemophilia A: Results from GENEr8-1Dr. Amy Dunn, Director of Pediatric Hematology, Nationwide Children's Hospital, Columbus, OhioTuesday, May 10, 2022, 1:30-2:30 PM ET

Human liver biopsy analysis showed interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia A Sylvia Fong, Head of Hematology Research, BioMarinWednesday, May 11, 2022, 1:30 -2:30 PM ET

Interim 52-week analysis of immunogenicity to the vector capsid and transgene-expressed human FVIII in GENEr8-1, a phase 3 clinical study of valoctocogene roxaparvovec, an AAV5-mediated gene therapy for hemophilia A Brian Long, Principal Scientist, Clinical Immunology, BioMarinWednesday, May 11, 2022, 4-5 PM ET

Poster Presentation

Use of immunosuppressives in patients with hemophilia receiving gene therapy: Evidence generation using a mixed-methods approach Professor Wolfgang Miesbach, Head of the Department of Coagulation Disorders and the Comprehensive Care Haemophilia Centre, Goethe University Hospital, Frankfurt/Main, Germany

BioMarin-Sponsored Symposia

Gene Therapy Clinical Trial Patient Journey: A Look Into Shared Decision MakingMonday, May 9, 12:15 1:15 PM ET

About Hemophilia A

People living with hemophilia A lack sufficient functioning Factor VIII protein to help their blood clot and are at risk for painful and/or potentially life-threatening bleeds from even modest injuries. Additionally, people with the most severe form of hemophilia A (FVIII levels <1%) often experience painful, spontaneous bleeds into their muscles or joints. Individuals with the most severe form of hemophilia A make up approximately 50 percent of the hemophilia A population. People with hemophilia A with moderate (FVIII 1-5%) or mild (FVIII 5-40%) disease show a much-reduced propensity to bleed. The standard of care for individuals with severe hemophilia A is a prophylactic regimen of replacement Factor VIII infusions administered intravenously up to two to three times per week or 100 to 150 infusions per year. Despite these regimens, many people continue to experience breakthrough bleeds, resulting in progressive and debilitating joint damage, which can have a major impact on their quality of life.

Hemophilia A, also called Factor VIII deficiency or classic hemophilia, is an X-linked genetic disorder caused by missing or defective Factor VIII, a clotting protein. Although it is passed down from parents to children, about 1/3 of cases are caused by a spontaneous mutation, a new mutation that was not inherited. Approximately 1 in 10,000 people have Hemophilia A.

About BioMarin

BioMarin is a global biotechnology company that develops and commercializes innovative therapies for people with serious and life-threatening rare diseases and medical conditions. The Company selects product candidates for diseases and conditions that represent a significant unmet medical need, have well-understood biology and provide an opportunity to be first-to-market or offer a significant benefit over existing products. The Company's portfolio consists of seven commercial products and multiple clinical and preclinical product candidates for the treatment of various diseases. For additional information, please visitwww.biomarin.com.

Forward Looking Statements

This press release contains forward-looking statements about the business prospects of BioMarin Pharmaceutical Inc., including without limitation, statements about: the data presented at WFH, including the five platform presentations, one poster, and one BioMarin sponsored symposia, the development of BioMarin's valoctocogene roxaparvovec program generally, the impact of valoctocogene roxaparvovec gene therapy for treating patients with severe hemophilia A and the potential to transform the lives of these patients and the ongoing clinical programs generally. These forward-looking statements are predictions and involve risks and uncertainties such that actual results may differ materially from these statements. These risks and uncertainties include, among others: results and timing of current and planned preclinical studies and clinical trials of valoctocogene roxaparvovec, including final analysis of the above data and additional data from the continuation of these trials and the entire development program, including further assessment of safety events, any potential adverse events observed in the continuing monitoring of the patients in the clinical trials; the content and timing of decisions by the FDA, the EMA and other regulatory authorities; the content and timing of decisions by local and central ethics committees regarding the clinical trials; our ability to successfully manufacture valoctocogene roxaparvovec; and those factors detailed in BioMarin's filings with the Securities and Exchange Commission (SEC), including, without limitation, the factors contained under the caption "Risk Factors" in BioMarin's Quarterly Report on Form 10-Q for the quarter ended March 31, 2022 as such factors may be updated by any subsequent reports. Stockholders are urged not to place undue reliance on forward-looking statements, which speak only as of the date hereof. BioMarin is under no obligation, and expressly disclaims any obligation to update or alter any forward-looking statement, whether as a result of new information, future events or otherwise.

BioMarin is a registered trademark of BioMarin Pharmaceutical Inc.

Contacts:

Investors

Media

Traci McCarty

Debra Charlesworth

BioMarin Pharmaceutical Inc.

BioMarin Pharmaceutical Inc.

(415) 455-7558

(415) 455-7451

SOURCE BioMarin Pharmaceutical Inc.

The rest is here:
BioMarin to Present Findings from Ongoing Studies of Valoctocogene Roxaparvovec, Investigational Gene Therapy, at the World Federation of Hemophilia...

Read More...

Top 12 Emerging Gene and Cell Therapy Technologies Likely to Impact Patient Care Announced in Annual Disruptive Dozen from Mass General Brigham – Mass…

May 8th, 2022 1:51 am

Mass General Brigham is the nations largest academic research enterprise. More than 150 life science and biotechnology companies have been established in Massachusetts as a result of the more than$2 billion in government funded and privately sponsored research that Mass General Brigham attracts every year. The groundbreaking research performed at Mass General Brigham is integral to developing and commercializing life-changing therapies which sustains Massachusetts competitive advantage in the innovation economy.

Following are descriptions of the 2022 Disruptive Dozen:

1. Restoring sight by mending broken genes

Roughly 200 genes are directly linked to vision disorders. In the last several years, groundbreaking new gene therapies have emerged that can compensate for faulty genes in the eye by adding new, healthy copies a molecular fix that promises to restore sight to those who have lost it. The approach, known as CRISPR-Cas-9 gene editing, could open the door to treating genetic forms of vision loss that are not suited to conventional gene therapy, and a host of other medical conditions. A clinical trial is now underway to evaluate a CRISPR-Cas 9 gene-editing therapy for a severe form of childhood blindness, Leber congenital amaurosis type 10, for which there currently are no treatments. Although this treatment is still experimental, it is already historic it is the first medicine based on CRISPR-Cas-9 to be delivered in vivo, or inside a patients body. Similar gene-editing therapies are also under development that correct genes within blood cells.

2. A gene editing solution to increase the supply of donor organs

In the U.S. alone, more than 100,000 people await a life-saving organ transplant. But an inadequate supply of donor organs leads to prolonged waiting times and many patients die before receiving a life-saving organ. The only foreseeable solution to this crisis is xenotransplantation harvesting organs from animals and placing them into human patients. Advances in gene editing technology make it possible to remove, insert, or replace genes with relative ease and precision. This molecular engineering can sidestep the human immune system, which is highly adept at recognizing foreign tissues and triggering rejection. Over the last 20 years, scientists have been working to devise successful gene editing strategies that will render pig organs compatible with humans. The field has taken another major step forward in the past year: transplanting gene-edited pig organs, including the heart and kidney, into humans. While extensive clinical testing is needed before xenotransplantation becomes a reality, that future now seems within reach.

3. Cell therapies to conquer common forms of blindness

The eye has been a proving ground for pioneering gene therapies and is also fueling new cell-based therapies that can restore sight, offering a functional cure by replacing critical cells that have been lost or injured. One approach involves stem cells from the retina that can give rise to light-sensitive cells, called photoreceptors, which are required for healthy vision. Scientists are harnessing retinal stem cells to develop treatments for incurable eye diseases, including retinitis pigmentosa. Because the immune system doesnt patrol the eye as aggressively as other parts of the body, retinal stem cells from unrelated, healthy donors can be transplanted into patients with vision disorders. Other progress includes cell therapies that harness patients own cells, for example, from blood or skin, that can be converted into almost any cell type in the body, including retinal cells. Another novel treatment being tested utilizes stem cells from a patients healthy eye to repair the affected cornea of the other eye.

4. Harnessing the power of RNA to treat brain cancer

RNA is widely known for its helper functions, carrying messages from one part of a cell to another to make proteins. But scientists now recognize that RNA plays a more central role in biology and are tapping its hidden potential to create potent new therapies for a range of diseases, including a devastating form of brain cancer called glioblastoma. This cancer is extremely challenging to treat and highly adaptable. New approaches that either target RNA or mimic its activity could hold promise, including an intriguing class of RNA molecules called microRNAs. One team identified a trio of microRNAs that plays important roles in healthy neurons but is lost when brain cancer develops. These microRNAs can be stitched together into a single unit and delivered into the brain using a virus. Initial studies in mice reveal that this therapeutic can render tumors more vulnerable to existing treatments, including chemotherapy. Another team is also exploring a microRNA called miR-10b. Blocking its activity causes tumor cells to die. Now, scientists are working to develop a targeted therapeutic against miR-10b that can be tested in clinical trials.

5. Realizing the promise of gene therapy for brain disorders

Gene therapy holds enormous promise for serious and currently untreatable diseases, including those of the brain and spinal cord. But some big obstacles remain. For example, a commonly-used vehicle for gene therapy a virus called AAV cannot penetrate a major biological roadblock, the blood-brain barrier. Now, researchers are engineering new versions of AAV that can cross the blood-brain barrier. Using various molecular strategies, a handful of teams have modified the protein shell that surrounds the virus so it can gain entry and become broadly distributed within the brain. These modified viral vectors are now under development and could begin clinical testing within a few years. Scientists are also tinkering with the inner machinery of AAV to sidestep potential toxicities. With a safe, effective method for accessing the brain, researchers will be able to devise gene therapies for a range of neurological conditions, including neurodegenerative diseases, cancers, and devastating rare diseases that lack any treatment.

6. A flexible, programmable approach to fighting viruses

The COVID-19 pandemic has laid bare the tremendous need for rapidly deployable therapies to counteract emerging viruses. Scientists are now developing a novel form of anti-viral therapy that can be programmed to target a range of different viruses from well-known human pathogens, such as hepatitis C, to those less familiar, such as the novel coronavirus SARS-CoV-2. This new approach harnesses a popular family of gene editing tools, known as CRISPR-Cas. While CRISPR-based systems have gained attention for their capacity to modify human genes, their original purpose in nature was to defend bacteria from viral infections. As a throwback to these early roots, scientists are now adapting CRISPR tools to tackle a variety of viruses that infect humans. Researchers are studying the potential of these programmable anti-viral agents in the context of several different viruses, including ones that pose significant threats to global health, such as SARS-CoV-2, hepatitis C, and HIV.

7. On the move: Cell therapies to restore gut motility

The human digestive tract or gut has its own nervous system. This second brain, known as the enteric nervous system, is comprised of neurons and support cells that carry out critical tasks, like moving food through the gut. When enteric neurons are missing or injured, gut motility can be impaired. Now, scientists are developing an innovative cell replacement therapy to treat diseases of gut motility. Donor cells can be isolated from a patients own gut or from a more readily available source, such as subcutaneous fat. These cells are then cultivated in the laboratory and coaxed to form the progenitors that give rise to enteric neurons. Researchers are also devising off-the-shelf approaches, which could create a supply of donor cells that are shielded from the immune system and can therefore be transplanted universally across different patients. Early research shows that transplanted enteric neurons can also take up residence in the brain. That means these forays in cell therapy for the gut could also help pave a path toward cell therapies for the brain and spinal cord.

8. CAR-T cell therapies take aim at autoimmune diseases

CAR-T cells have emerged as powerful treatments for some forms of cancer, especially blood cancers. By harnessing the same underlying concept rewiring patients own T cells to endow them with therapeutic properties scientists are working to develop novel CAR-T therapies for a variety of autoimmune diseases. Several research teams are engineering CAR-T cells so they can seek out and destroy harmful immune cells, such as those that produce auto-antibodies immune proteins that target and attack the bodys own tissues. For example, one team is using CAR-T cells to destroy certain immune cells, called B cells, as a potential treatment for lupus, a serious autoimmune disease that mainly affects women. Scientists are also developing CAR-T therapies that take aim at other rogue members of the immune system. These efforts could yield novel treatments for diseases with clear auto-immune mechanisms.

9. Regrowing cells in the inner ear to treat hearing loss

In the U.S. alone, some 37 million people suffer from a hearing deficit. Currently, there are no drugs that can halt, prevent, or even reverse hearing loss. Scientists are working on a novel regenerative approach that could restore the cells in the inner ear required for normal hearing, offering hope to millions of patients who grapple with hearing loss. Healthy hearing requires specialized cells in the inner ear called hair cells, which have fine, hair-like projections. If the cells are damaged or lost, which often happens with age or after repeated exposure to loud sounds, the body cannot repair them. But researchers have discovered a potential workaround that can stimulate existing cells in the ear to be converted and give rise to new hair cells. Scientists are now working to convert this molecular strategy, which is being studied in animal models, into a therapeutic that is safe and effective for hearing loss patients.

10. New technologies for delivering gene therapies

A formidable challenge in the field of gene therapy is delivery getting gene-based therapeutics into the body and into the right target cells. Researchers are exploring the potential of new delivery methods that could expand the reach of gene therapy, including microneedles. When applied to the skin, a microneedle patch can penetrate the outermost layer with minimal pain and discomfort. This novel delivery method can readily access the legion of immune cells that reside in the skin -- important targets for vaccines as well as for the treatment of various diseases, including cancer and autoimmune conditions. Another emerging technology involves an implantable device made of biodegradable materials. When placed inside the body, this device can provide localized, sustained release of therapeutics with few side effects. The approach is now being tested for the first time in cancer patients using standard chemotherapy drugs administered directly at tumor sites. In the future, this method could be customized for the delivery of gene therapy payloads, an advance that could revolutionize cancer treatment, particularly for difficult-to-treat tumors like pancreatic cancer.

11. Engineering cancer-killing cells that target solid tumors

Despite great leaps in cancer treatment, solid tumors remain the most challenging tumors to treat, in part due to the hostile environment in which they grow, which suppresses the immune system. Now, scientists are devising innovative cell therapies that promise to open new therapeutic opportunities for solid tumors. One approach involves making CAR-T cells more like computers, relying on simple logic to decide which cells are cancer and which are not. By building several logic gates and combining them together, researchers are hoping to pave the way toward targeting new tumor types. Scientists are also devising other groundbreaking forms of cancer-killing cell therapy, including one that uses cancer cells themselves. This approach exploits a remarkable feature: once disseminated within the body, cancer cells can migrate back to the original tumor. Researchers are now harnessing this rehoming capability and, with the help of gene editing and other molecular engineering technologies, turning tumor cells into potent cancer killers. An early version of this technology uses patients own cells. Now, the scientists are developing an off-the-shelf version with dual properties killing cancer cells and modulating the immune system that can be universally applied to patients.

12. Reawakening the X-chromosome: a therapeutic strategy for devastating neurodevelopmental diseases

The X chromosome is one of two sex-determining chromosomes in humans, and it carries hundreds of disease-causing genes. These diseases often affect males and females differently. In females, one X chromosome is naturally, and randomly, chosen and rendered inactive. Although X-inactivation was once thought to be permanent, scientists are uncovering ways to reverse it. Scientists are now exploiting this unusual biology to reawaken the dormant X chromosome a strategy that could yield much-needed treatments for a group of rare, yet devastating neurodevelopmental disorders, which predominantly affect females. This new approach could hold promise for females with Rett syndrome, a severe X-linked disorder. A similar strategy could also hold promise for other serious X-linked disorders, including fragile X syndrome and CDKL5 syndrome.

Click here for detailed information on each of the Disruptive Dozen technologies, including video updates. Click here for more information on gene and cell therapy at Mass General Brigham.

The World Medical Innovation Forum was established in 2015 in response to the intensifying transformation of health care and its impact on innovation. The Forum is rooted in the belief that no matter the magnitude of change, the center of health care needs to be a shared, fundamental commitment to collaborative innovation industry and academia working together to improve patient lives. In 2022, Bank of America joined with Mass General Brigham as presenting sponsor of the Forum, bringing together two leading organizations with extensive healthcare expertise and a shared commitment to support Bostons continued growth as a global biotech and investment hub.

Mass General Brigham is an integrated academic healthcare system, uniting great minds in medicine to make life-changing impact for patients in our communities and people around the world. Mass General Brigham connects a full continuum of care across a system of academic medical centers, community and specialty hospitals, a health insurance plan, physician networks, community health centers, home care, and long-term care services. Mass General Brigham is a non-profit organization that is committed to patient care, research, teaching, and service to the community. In addition, Mass General Brigham is one of the nations leading biomedical research organizations and a principal teaching affiliate of Harvard Medical School. For more information, please visit massgeneralbrigham.org.

Bank of America is one of the worlds leading financial institutions, serving individual consumers, small and middle-market businesses and large corporations with a full range of banking, investing, asset management and other financial and risk management products and services. The company provides unmatched convenience in the United States, serving approximately 66 million consumer and small business clients with approximately 4,300 retail financial centers, approximately 17,000 ATMs, and award-winning digital banking with approximately 41 million active users, including approximately 32 million mobile users. Bank of America is a global leader in wealth management, corporate and investment banking and trading across a broad range of asset classes, serving corporations, governments, institutions and individuals around the world. Bank of America offers industry-leading support to approximately 3 million small business households through a suite of innovative, easy-to-use online products and services. The company serves clients through operations across the United States, its territories and approximately 35 countries. Bank of America Corporation stock (NYSE: BAC) is listed on the New York Stock Exchange. http://www.bankofamerica.com

Tracy M. DoyleMass General Brigham Innovation[emailprotected](M) 262 227 5514

Go here to read the rest:
Top 12 Emerging Gene and Cell Therapy Technologies Likely to Impact Patient Care Announced in Annual Disruptive Dozen from Mass General Brigham - Mass...

Read More...

Mustang Bio Announces Data on Treatment with Lentiviral Viral Vector Gene Therapy for X-Linked Severe Combined Immunodeficiency Selected for Oral…

May 8th, 2022 1:51 am

Mustang Bio, Inc.

Data represent largest cohort of infants with XSCID, also known as bubble boy disease, who received lentiviral gene therapy with the longest follow-up to date

Seventeen of 18 patients with follow-up greater than 6 months achieved robust immune reconstitution

All 23 treated patients are alive and 20 patients with follow-up greater than 4 months recovered from pre-existing infections, are off protective isolation and prophylactic antimicrobials, and have normal growth velocity

WORCESTER, Mass., May 03, 2022 (GLOBE NEWSWIRE) -- Mustang Bio, Inc. (Mustang) (NASDAQ: MBIO), a clinical-stage biopharmaceutical company focused on translating todays medical breakthroughs in cell and gene therapies into potential cures for hematologic cancers, solid tumors and rare genetic diseases, today announced that interim Phase 1/2 data on treatment with the same lentiviral vector used in MB-107, Mustangs lentiviral gene therapy for X-linked severe combined immunodeficiency (XSCID), also known as bubble boy disease, in newly diagnosed infants under the age of two, were selected for an oral presentation during the Clinical Trials Spotlight Symposium at the American Society of Gene & Cell Therapy (ASGCT) 25th Annual Meeting taking place May 16-19, 2022, both virtually and in Washington, D.C.

The presentation will include updated data from a multicenter Phase 1/2 clinical trial for XSCID in newly diagnosed infants under the age of two at St. Jude Childrens Research Hospital (St. Jude), UCSF Benioff Childrens Hospital in San Francisco and Seattle Childrens Hospital. The lentiviral gene therapy is also being assessed in a Phase 1/2 clinical trial at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, for XSCID patients who have been previously treated with hematopoietic stem cell transplantation (HSCT) and for whom re-treatment is indicated.

The data include 23 infants with XSCID treated with the lentiviral vector at a median age of 3 months (range: 2.4-13.8) with a median follow-up of 2.4 years (range: 1.4 months to 5.4 years), making it the largest known cohort of infants treated with lentiviral (LV) gene therapy with the longest follow-up. Transduced autologous bone marrow CD34+ cells were generated for all patients with a median vector copy number (VCN) of 0.81/cell (range: 0.16-1.81), and a median CD34+ cell dose of 9.61x106/kg (range 4.4-18.95). Prior to the infusion of cells, patients received busulfan targeted to a cumulative area-under-the-curve (cAUC) of 22 mg*hr/L. All had hematopoietic recovery.

Story continues

Seventeen of 18 patients with a follow up of >6 months achieved robust immune reconstitution [median CD3+ 2,545/uL (range: 922-4,321), CD4+ 1,568/uL (range: 436-3,556), CD4+/CCR7+/CD45RO- 1,416/uL (range: 298-3,307)]. In these 17 patients, T cells matured appropriately as assessed by normal T cell receptor excision circles (TRECs) and TCRv repertoire diversity and were functional as judged by phytohemagglutinin activation. As presented previously in St. Judes 2019 New England Journal of Medicine paper (N Engl J Med 2019;380:1525-34.) and the accompanying Supplemental Appendix, the eighteenth patient achieved robust immune reconstitution as well following a gene therapy boost 12 months after the first infusion. Immunoglobulin replacement was discontinued in 15 patients, 12 have been immunized and two more have begun immunizations. Substantial multilineage engraftment occurred in all patients and was sustained over time as judged by VCN analysis in T, B, NK, and myeloid cells separated from peripheral blood. This analysis included 55 samples of 14 patients with 1.5 years of follow-up (VCN sample range: 1.5 to 5 years).

All treated patients are alive and 20 patients with a follow-up >4 months recovered from pre-existing infections, are off protective isolation and prophylactic antimicrobials, and have normal growth velocity. Identified integration site hotspots were consistent with previous reports for LV vectors, and no evidence of clonal expansion was observed.

Were looking forward to the upcoming presentation by St. Judes Dr. Ewelina Mamcarz at the ASGCT 25th Annual Meeting, as it will highlight updated data representing the largest cohort of infants with XSCID, also known as bubble boy disease, who have been treated with lentiviral gene therapy and the longest follow-up to date, said Manuel Litchman, M.D., President and Chief Executive Officer of Mustang. Mustang plans to initiate a multicenter pivotal Phase 2 trial for MB-107 under the Companys Investigational New Drug (IND) application in the second half of this year.

Details of the presentation are as follows:

Title: Lentiviral Gene Therapy with Low Dose Busulfan for Infants with X-Linked Severe Combined Immune Deficiency (XSCID) results in the Development of a Normal and Sustained Immune System: Interim Results of an ongoing Phase I/II Clinical StudySession: Clinical Trials Spotlight SymposiumDate and Time: Thursday, May 19, 8:45 9 a.m. ETPresenter: Ewelina Mamcarz, M.D., Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Childrens Research Hospital, Memphis, TN

For more information about the ASGCT 25th Annual Meeting, please visit: https://annualmeeting.asgct.org

About X-linked Severe Combined Immunodeficiency (XSCID)X-linked severe combined immunodeficiency is characterized by the absence or lack of function of key immune cells, resulting in a severely compromised immune system and death by 1 year of age if untreated. Patients with XSCID have no T-cells or natural killer (NK) cells. Although their B-cells are normal in number, they are not functional. As a result, XSCID patients are usually affected by severe bacterial, viral or fungal infections early in life and often present with interstitial lung disease, chronic diarrhea and failure to thrive. Among patients who receive allogeneic hematopoietic stem cell transplant (HSCT), many are unable to establish adequate T-cell immunity or lose T-cell immunity over time. Further, approximately two-thirds of patients who receive HSCT lack sufficient B-cell immunity and need lifelong immunoglobulin replacement therapy. XSCID is a rare genetic disorder that occurs in approximately 1 per 225,000 births. There are approximately 2,800 patients with XSCID worldwide who have been previously treated with HSCT, and who therefore might be eligible for gene therapy now or in the future.

The specific genetic disorder that causes XSCID is a mutation in the gene coding for the common gamma chain (c), a protein that is shared by the receptors for at least six interleukins. These interleukins and their receptors are critical for the development and differentiation of immune cells. The gene coding for c is known as IL-2 receptor gamma, or IL2RG. Because IL2RG is located on the X-chromosome, XSCID is inherited in an X-linked recessive pattern, resulting in almost all patients being male.

About Mustang BioMustang Bio, Inc. is a clinical-stage biopharmaceutical company focused on translating todays medical breakthroughs in cell and gene therapies into potential cures for hematologic cancers, solid tumors and rare genetic diseases. Mustang aims to acquire rights to these technologies by licensing or otherwise acquiring an ownership interest, to fund research and development, and to outlicense or bring the technologies to market. Mustang has partnered with top medical institutions to advance the development of CAR T therapies across multiple cancers, as well as lentiviral gene therapies for severe combined immunodeficiency. Mustang is registered under the Securities Exchange Act of 1934, as amended, and files periodic reports with the U.S. Securities and Exchange Commission (SEC). Mustang was founded by Fortress Biotech, Inc. (NASDAQ: FBIO). For more information, visit http://www.mustangbio.com.

ForwardLooking Statements This press release may contain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, each as amended. Such statements include, but are not limited to, any statements relating to our growth strategy and product development programs and any other statements that are not historical facts. Forward-looking statements are based on managements current expectations and are subject to risks and uncertainties that could negatively affect our business, operating results, financial condition and stock value. Factors that could cause actual results to differ materially from those currently anticipated include: risks relating to our growth strategy; our ability to obtain, perform under, and maintain financing and strategic agreements and relationships; risks relating to the results of research and development activities; risks relating to the timing of starting and completing clinical trials; uncertainties relating to preclinical and clinical testing; our dependence on third-party suppliers; our ability to attract, integrate and retain key personnel; the early stage of products under development; our need for substantial additional funds; government regulation; patent and intellectual property matters; competition; as well as other risks described in our SEC filings. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations or any changes in events, conditions or circumstances on which any such statement is based, except as required by law, and we claim the protection of the safe harbor for forward-looking statements contained in the Private Securities Litigation Reform Act of 1995.

Company Contacts:Jaclyn Jaffe and Bill BegienMustang Bio, Inc.(781) 652-4500ir@mustangbio.com

Investor Relations Contact:Daniel FerryLifeSci Advisors, LLC(617) 430-7576daniel@lifesciadvisors.com

Media Relations Contact:Tony Plohoros6 Degrees(908) 591-2839tplohoros@6degreespr.com

More here:
Mustang Bio Announces Data on Treatment with Lentiviral Viral Vector Gene Therapy for X-Linked Severe Combined Immunodeficiency Selected for Oral...

Read More...

OPC UA for Sample Process Automation Improving Data Harmonization for Biobanks and Cell and Gene Therapies – Technology Networks

May 8th, 2022 1:51 am

Data mustnt sit still. It is imperative that information can be exchanged within machines, between machines and from machines to systems where it is secure in order for researchers to read their data. To improve connectivity and enable efficient and secure exchange of data, Thermo Fisher Scientific now offers the CryoMed Controlled-Rate Freezer with Open Platform Communications Unified Architecture (OPC UA) functionality.

Technology Networks had the pleasure of talking to Wilfredo Marn, senior product application specialist from Thermo Fisher Scientific, to learn more about OPC UA and how it is suited to biobanking and cell and gene therapy development. In this interview, Wilfredo also highlights the benefits of incorporating OPC UA into the CryoMed Controlled-Rate Freezer, and the importance of OPC UA functionality in the lab of the future.

Zoe Braybrook (ZB): Can you briefly describe what OPC UA is and the benefits it offers?

Wilfredo Marn (WM): Sure, OPC UA stands for Open Platform Communications Unified Architecture allowing for information exchange in a standardized manner. This means that it is a well-organized and defined protocol allowing for interoperability of instruments. The benefits include flexibility to work across operating system platforms, data security and scalability as the data is transformed into information. In industrial settings, OPC UA offers end-users the building blocks to fit into their control system workflows.

ZB: OPC UA has already been successfully integrated into other industries including food and beverage as well as energy and utilities, could you perhaps discuss how you think its suited to biobanking and those producing cell and gene therapies?

WM: It certainly has been integrated in many other industries as they can make better and faster business decisions using insights from the accessible information. That is the key to OPC UA, as it follows industry advised companion specifications to provide contextualized data in a process system. For biobankers, it helps support the sample traceability, standardization and documentation process that is sought for collaboration. As these researchers look to modernize their facilities and potentially grow operations within a building information management system, OPC UA functionality in their equipment offers similar advantages as having biomaterial with associated clinical data.

For cell and gene therapy production facilities, cryopreservation is a vital step to maintain the integrity of cells being modified, stored or distributed. Having a controlled-rate freezer with OPC UA integrates nicely as a server to communicate with several types of client programs they currently utilize.

ZB: Why did Thermo Fisher Scientific choose to incorporate this function into the CryoMed Controlled-Rate Freezer in particular?

WM: Thermo Fisher Scientific is continually at the forefront of innovation that enables our customers to succeed. The investment into research and development is tremendous and our same customers provided valuable feedback to support how we implemented OPC UA as the previous updated model was being launched. As a former end-user, the CryoMed Controlled-Rate Freezer was a great choice to update as an instrument that is necessary for several important research and production workflows. Cryopreservation of biomaterial is performed at several points, so it was vital to maintain the precision performance and reliability that the CryoMed is known to deliver.

ZB: How does CryoMed provide researchers with modern connectivity but also ensure their data remains safe?

WM: The CryoMed has several options to connect in a research setting including wireless remote monitoring, PC-connected remote control and now OPC UA functionality. It was also one of the first cryopreservation products to meet 21 CRF Part 11 requirements by the FDA for electronic records. On the new user-interface, as a starting point, the updated firmware asks for unique usernames with passwords, defines user roles and retains audit and event logs. Taking a step further, OPC UA also has security built into its protocol for access control, authentication and encryption. So, in a control system, there will always be rules between different levels to connect, find and read data as information.

ZB: What factors should labs wanting to improve their processes consider with regard to OPC UA adoption? How easy is it for labs looking to improve their processes to adopt OPC UA products?

WM: One factor that we continue to highlight is that OPC UA communication has been well-supported and industry-approved over several years. The Unified Architecture has evolved as a successor of classic OPC with emphasis on platform independence, security and integration. Therefore, a product with OPC UA like the CryoMed can be easily deployed to enhance efficiency of their process. For laboratories, a real advantage applies when looking to scale for production requiring GMP. It can turn a very manual method into closely documented automatic outputs between multiple machines as it orchestrates data. OPC UA can be easily adopted but requires the same future mindset we attribute to biosamples having the potential for discovery or therapies.

ZB: How important will OPC UA functionality be in the lab of the future?

WM: With the fast-moving pace of technology and associated expenses, labs are looking to future-proof by incorporating sustainable planning into their operations. Were thinking ahead to how various instruments in the same workflow can communicate and support manufacturing with OPC UA as a framework in the industrial internet of things. Through these efforts, there will be more products developed that utilize OPC UA making it easier to exchange the compliant and contextualized data, thus maintaining high-quality at lower costs. Altogether, the lab of future will be able to use information from these physical machines for predictive analytics by modeling data to provide several paths for success.

Wilfredo Marn was speaking to Zoe Braybrook, Marketing Campaign Coordinator for Technology Networks.

See the article here:
OPC UA for Sample Process Automation Improving Data Harmonization for Biobanks and Cell and Gene Therapies - Technology Networks

Read More...

Alcyone Announces Two Oral Presentations on its Gene Therapy Platforms at the 25th American Society of Gene and Cell Therapy (ASGCT) Annual Meeting -…

May 8th, 2022 1:51 am

Abstract on Rett syndrome treatment through X-reactivation receives Excellence in Research Award

Updated preclinical safety and efficacy data will be presented for ACTX-401, a gene replacement therapy currently in a Phase 1/2 study for the treatment of IGHMBP2-related disorders

LOWELL, Mass., May 2, 2022 /PRNewswire/ -- Alcyone Therapeutics Inc. ("Alcyone"), a biotechnology company pioneering next-generation precision gene-based therapies for complex neurological conditions, today announced the acceptance of four abstracts at the 25th American Society of Gene and Cell Therapy (ASGCT) Annual Meeting, an event being held May 16-19, 2022, at the Walter E. Washington Convention Center in Washington, D.C. and virtually.

Accepted abstracts include preclinical data from its X-reactivation gene therapy platform, an approach to correct X-linked dominant genetic disorders by reactivating the silenced X chromosome; preclinical safety and efficacy data from its gene replacement platform, which utilizes viral vectors to deliver a functional gene to compensate for a cell's missing or mutated gene; and improved efficiency of AAV gene therapy manufacturing through its platform upstream process, which is scalable and easily transferrable between multiple systems.

"The oral presentations will highlight the potential of Alcyone's discrete gene therapy platforms, X-reactivation for treatment of Rett syndrome and gene replacement for IGHMBP2-related disorders, spinal muscular atrophy with respiratory distress type 1 and Charcot Marie Tooth disease type 2S, which we are advancing in partnership with the Center for Gene Therapy at the Abigail Wexner Research Institute at Nationwide Children's Hospital," said PJ Anand, Chief Executive Officer of Alcyone Therapeutics. "We also will have a poster presentation demonstrating the scalability and multi-system transferability of our AAV production process, which is a critical piece in our gene therapy platform development."

Anandcontinued, "Alcyone's multidisciplinaryapproach to addressing complex neurological conditionsis comprised of our partnered novel gene-based therapeutic platform combined with our proprietary CNS precision drug delivery and dosing technology platform, FalconTM,and leverages a scalable CMC process optimized to produce high-quality clinical material. Our three-pronged approach is designed to better address the current challenges of treating people living with severe neurological disorders."

The presentations are listed below, and the full preliminary program is available online on the ASGCT website.

Oral Presentation: A Novel Gene Therapy for Rett Syndrome through Reactivation of the Silent X Chromosome

Oral Presentation Details:

Presenting Author: Kathrin Meyer, Ph.D., Principal Investigator, Nationwide Children's Hospital and Chief Scientific Advisor, AlcyoneSession Title: Novel Therapeutic Targets to Treat CNS DisordersSession Date/Time: Wednesday, May 18, 3:45 5:30 p.m. ETPresentation Time: 4:45 5:00 p.m. ETRoom: Room 202Abstract #: 837

Samantha Powers, Ph.D., from the Center for Gene Therapy at Nationwide Children's Hospital, received the Excellence in Research Award in recognition for presenting one of the top 18 abstracts submitted for the ASGCT 25th Annual Meeting by a postdoctoral fellow or student.

Oral Presentation: Multicenter AAV Gene Therapy Studies for SMARD1/CMT2S Establish Safety and Efficacy in Multiple Animal Models and Pave the Way for Initiation of a Phase I/II Clinical Trial

Oral Presentation Details:Presenting Author: Kathrin Meyer, Ph.D., Principal Investigator, Nationwide Children's Hospital and Chief Scientific Advisor, AlcyoneSession Title: Musculo-skeletal DiseasesSession Date/Time: Monday, May 16, 10:15 a.m. 12:00 p.m. ETPresentation Time: 11:15 11:30 a.m. ETRoom: Salon GAbstract #: 33

Poster Presentation: Development of an Upstream Process and Analytics for AAV Manufacturing

Poster Presentation Details:Presenting Author: Desyree Jesus, Ph.D., Associate Director, CMC Analytics, AlcyoneSession Title: Vector Product Engineering, Development or Manufacturing IIISession date/time: Wednesday, May 18, 5:30 6:30 p.m. ETRoom: Hall DPoster Board #: W-286Abstract #: 1160

Poster Presentation: Evaluation of AAV9 Gene Therapy for SMARD1/CMT2S in Different Mouse Models Reveal Differences in Efficacy Dependent on Promoter Choice

Poster Presentation Details:Presenting Author: J. Andrea Sierra Delgado, M.D., M.Sc., Chief Research Associate in Dr. Kathrin Meyer's Lab, Nationwide Children's HospitalSession Title: Musculo-skeletal DiseasesSession Date/Time: Wednesday, May 18, 5:30 6:30 p.m. ETRoom: Hall DPoster Board #: W-198Abstract #: 1072

About Alcyone TherapeuticsAlcyone Therapeutics is a biotechnology company pioneering next-generation precision gene-based therapies for complex neurological conditions. The Company integrates innovation in neuroscience, precision dosing platforms, and manufacturing capabilities to deliver transformative therapies to patients. Alcyone leverages the synergy between FalconTM, the Company's proprietary intrathecal precision dosing and biodistribution platform that incorporates deep knowledge of cerebral spinal fluid (CSF) dynamics, computational modeling, and bioengineering, and four novel gene-based therapeutics platforms developed at the Abigail Wexner Research Institute at Nationwide Children's Hospital (AWRI). This comprehensive approach allows for the optimization of central nervous system (CNS) dosing and delivery to better target the pathophysiology and anatomy specific to various neurological diseases. Alcyone's lead programs utilize X-chromosome reactivation for X-linked disorders and targets the treatment of Rett syndrome, and gene replacement for the treatment of IGHMPB-2 related disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot Marie Tooth disease type 2S (CMT2S). For more information, visit http://www.alcyonetx.com.

About Alcyone's Strategic Collaboration with the Abigail Wexner Research Institute at Nationwide Children's HospitalAlcyone works closely with scientists from the Center for Gene Therapy at the Abigail Wexner Research Institute at Nationwide Children's Hospital (AWRI) in Columbus, Ohio, where four discrete gene therapy platform technologies, each with novel and differentiated mechanisms of action, including X-reactivation, conventional transgene replacement, vectorized exon skipping, and promoter modulation were designed, developed, and are being advanced towards the clinic. Alcyone has optioned the four programs and is funding research to explore the potential for the clinical application of these therapeutics using FalconTM, its proprietary CNS precision drug delivery and dosing technology platform, to improve the lives of people impacted by severe neurological conditions. The research is led by Kathrin Meyer, Ph.D., and Nicolas Wein, Ph.D., Principal Investigators in the Center for Gene Therapy at AWRI. Both Dr. Meyer and Dr. Wein sit on Alcyone's Scientific Advisory Board (SAB), with Dr. Meyer serving as Chief Scientific Advisor and Chair of Alcyone's SAB.

SOURCE Alcyone Therapeutics

Read more here:
Alcyone Announces Two Oral Presentations on its Gene Therapy Platforms at the 25th American Society of Gene and Cell Therapy (ASGCT) Annual Meeting -...

Read More...

Decibel Therapeutics to Present at the American Society of Gene and Cell Therapy (ASGCT) 25th Annual Meeting – GlobeNewswire

May 8th, 2022 1:51 am

BOSTON, May 02, 2022 (GLOBE NEWSWIRE) -- Decibel Therapeutics (Nasdaq: DBTX), a clinical-stage biotechnology company dedicated to discovering and developing transformative treatments to restore and improve hearing and balance, announced today that it will present at the American Society of Gene and Cell Therapy (ASGCT) 25th Annual Meeting, being held virtually and in Washington D.C. May 15-19, 2022.

The Company will present on its lead investigational gene therapy, DB-OTO, being developed to restore hearing to individuals with a mutation in the otoferlin gene. Decibel will also present two posters featuring its AAV.104 program, a gene therapy designed to restore hearing to individuals with a mutation in the stereocilin gene, and its AAV.103 program, a gene therapy designed to restore hearing to individuals with a GJB2 deficiency, the most common cause of congenital hearing loss.

Details for the oral presentation are as follows:

Development of an AAV-Based Gene Therapy for Children with Congenital Hearing Loss Due to Otoferlin Deficiency (DB-OTO)Oral Abstract Session: Pharmacology/Toxicology Studies or Assay Development IIPresenter: Orion Keifer Jr, M.D., Ph.D., Senior Medical Director, Decibel TherapeuticsDate & Time: Thursday, May 19, 2022 at 10:45 am ET

Details for the poster presentations are as follows:

M-185 | Dual Vector Mediated Gene Therapy for Restoration of STRC-Related Hearing LossPoster Session: Ophthalmic and Auditory DiseasesDate & Time: Monday, May 16, 2022 at 5:30 pm ET

M-183 | Identification of GJB2s Upstream Regulatory Elements Facilitates Design of Safe, Precision AAVs and Recovery of Hearing in a GJB2-Deficient Mouse ModelPoster Session: Ophthalmic and Auditory DiseasesDate & Time: Monday, May 16, 2022 at 5:30 pm ET

About Decibel TherapeuticsDecibel Therapeutics is a clinical-stage biotechnology company dedicated to discovering and developing transformative treatments to restore and improve hearing and balance, one of the largest areas of unmet need in medicine. Decibel has built a proprietary platform that integrates single-cell genomics and bioinformatic analyses, precision gene therapy technologies and expertise in inner ear biology. Decibel is leveraging its platform to advance gene therapies designed to selectively replace genes for the treatment of congenital, monogenic hearing loss and to regenerate inner ear hair cells for the treatment of acquired hearing and balance disorders. Decibels pipeline, including its lead gene therapy product candidate, DB-OTO, to treat congenital, monogenic hearing loss, is designed to deliver on our vision of creating a world of connection for people with hearing and balance disorders. For more information about Decibel Therapeutics, please visit http://www.decibeltx.com or follow us on Twitter.

Investor Contact:Julie SeidelStern IR, Inc.212-362-1200Julie.seidel@sternir.com

Media Contact:Chris RaileyTen Bridge Communications617-834-0936chris@tenbridgecommunications.com

Read more:
Decibel Therapeutics to Present at the American Society of Gene and Cell Therapy (ASGCT) 25th Annual Meeting - GlobeNewswire

Read More...

New treatment for infants with weakened immune systems – Sciworthy

May 8th, 2022 1:51 am

One of the most important systems in our bodies is the immune system. It defends our bodies from germs, infections, bacteria, viruses, and more. But, would you have imagined that about 1 in 58,000 babies are born with little to no Immune system? This is a very rare genetic disorder called Severe Combined Immunodeficiency (SCID). A baby can be diagnosed with SCID before birth through screenings, but most babies are diagnosed with SCID within the first six months of life.

When a child has SCID, it means they lack T cells, Natural Killer Cells, and Functional B cells. T Cells help protect the body from infection and help fight cancer. Natural Killer cells destroy cells infected with a virus. Functional B cells produce antibodies to fight bacteria and viruses.

The process of treating or curing a disease by altering a persons genes is known as gene therapy. In two previous studies conducted, SCID gene therapy consisted of two generations, both using viruses to deliver the genes.The first generation of treatment worked, but patients unfortunately developed leukemia, a cancer of the white blood cells that makes them abnormally large. The research community did deliver a second generation of gene therapies that were safer, but they did not completely restore the immune system.

To treat infants with SCID, stem cells are taken from the bone marrow of siblings, parents, or unrelated donors. Then, a bone marrow transplant introduces these healthy infection-fighting cells into the SCID infants body. The idea is that this will provide a new immune system for the patient. Generally, bone marrow stem cell transplants from family donors are effective but unavailable for more than 80% of patients in the world. This means a higher risk of the non-family donors T cells attacking and damaging the patients healthy cells.

In this study, the researchers used a type of gene therapy involving a lentiviral vector. A lentiviral vector is a type of virus called a lentivirus that inserts its RNA into the hosts cells. They took advantage of this viruss action to insert a corrected gene sequence, as an RNA strand, into the patients own bone marrow stem cells to both fix the genetic error and reduce the chance of rejection. The gene of interest is IL2RG, which instructs the body to make certain immune proteins in the bone marrow. When this gene is broken, SCID results.

The research team had successfully tried this type of treatment before in children and young adults with SCID. They combined the lentiviral vector gene therapy with a chemotherapy agent called nonmyeloablative busulfan, typically given to patients before a stem cell transplant. This drug destroys a patients bone marrow cells in preparation for new stem cells. The researchers hypothesized that lentiviral gene therapy, after a low dose of this drug busulfan, would be a safe and effective treatment for infants with recently diagnosed SCID.

First, the infants bone marrow was collected. The correct gene was inserted into the patients blood stem cells using the lentivirus vector or carrier. The cells were then frozen and went through quality testing in order to detect, reduce, and correct any problems that may have occurred. Importantly, the lentiviral vector contained protectors that prevented the gene therapy from accidentally causing leukemia. The protectors work by blocking the virus from turning on certain oncogenes (or cancer-linked genes) that happen to sit next to the IL2RG gene on the chromosome.

They recruited a group of eight infants newly diagnosed with SCID. The researchers conducted their experiment by giving the infants one to two daily doses of busulfan by injection. They customized the initial dose based on the weight and age of the patient and previous knowledge on how this drug typically moves through the body.

The results of the experiment supported the research teams prediction. Natural Killer cells were restored within the first four months in seven of the eights infants as the T cells. The eighth infant initially developed a low T cell count but improved after a boost of gene-corrected cells without needing additional busulfan pre-treatment. Several types of blood cells such as T, B and natural killer cells made in the bone marrow seemed active within 3-4 months after infusion with the viral lentiviral vector.

The combination of lentiviral gene therapy with busulfan conditioning appeared safe in all eight infants. These results aligned with what the researchers expected. Patients were followed for a range of 6-24 months after the study to assess whether their new immune system remained stable. After the 24 month period, they concluded that this treatment was more effective than current treatments for SCID patients with fewer side effects.

Originally posted here:
New treatment for infants with weakened immune systems - Sciworthy

Read More...

Page 141«..1020..140141142143..150160..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick