header logo image


Page 1,394«..1020..1,3931,3941,3951,396..1,4001,410..»

NeoStem to Present at Multiple Conferences in October

October 2nd, 2012 10:20 pm

NEW YORK, Oct. 2, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), an emerging leader in the fast growing cell therapy market, today announced that Company management and management of its subsidiary, Progenitor Cell Therapy ("PCT"), have been invited to present at multiple conferences in October.

RetailInvestorConferences.com

The RedChip 15th Annual Fall Small-Cap Conference

Regenerative Medicine Foundation 2012 Conference

2012 Stem Cell Meeting on the Mesa, 2nd Annual Investor and Partnering Forum

About NeoStem, Inc.

NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.

Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.

For more information on NeoStem, please visit http://www.neostem.com.

Forward-Looking Statements for NeoStem, Inc.

Read this article:
NeoStem to Present at Multiple Conferences in October

Read More...

Stem-cell advocacy ‘moved the needle’

October 2nd, 2012 7:11 am

A beautiful, fresh face, Sabrina Cohen can stun you with her charm.

But she is far more. This 24-year-old, who has spent 10 years in a wheelchair as a result of a car accident, is battling to raise money for research and therapies that may eventually reverse paralysis and treat central nervous system impairments.

A native of Miami Beach, she is one of five leaders being honored by the Palm Beach-based Genetic Policy Institute at its eighth annual World Stem Cell Summit Dec. 4 at the Palm Beach County Convention Center in West Palm Beach. She is receiving the Inspirational Award.

This award brings a lot of meaning to my life and the path I have chosen to follow, she says of her founding of the nonprofit Sabrina Cohen Foundation.

This provides a platform for my foundation to inspire others and to share my hope for (stem cell) regeneration.

Other honorees include CBS 60 Minutes for its hard-hitting programs on unproven stem cell treatments; Susan Solomon, CEO of the New York Stem Cell Foundation; Alliance for Regenerative Medicine; and the Nebraska Coalition for Lifesaving Cures.

We recognize the dedicated individuals and organizations that positively impact the cause of stem-cell advancement aimed at finding cures and alleviating human suffering, said Bernard Siegel, executive director of GPI.

Through their positive actions, our honorees have moved the regenerative medicine needle, bringing closer the day when patients will be safely treated through these innovative technologies.

Previous Stem Cell Action awardees have included Maryland Governor Martin OMalley, Research!America, Juvenile Diabetes Research Foundation, Michael J. Fox, Robert Klein, Sherry Lansing, Palm Beacher A. Alfred Taubman and the National Association of Biology Teachers.

This year, panels will address advancing treatments for specific diseases and conditions including cancer, diabetes, HIV/AIDS, cardiovascular disease, spinal cord injury, paralysis, multiple sclerosis, ALS, Parkinsons, eye diseases and others.

Read the original post:
Stem-cell advocacy ‘moved the needle’

Read More...

Medistem and Superview Biotechnology Co. Ltd. Initiate Collaboration on Therapeutics Development Using Antibody and …

October 2nd, 2012 7:11 am

SAN DIEGO--(BUSINESS WIRE)--

Medistem Inc (Pink Sheets:MEDS) announced today the initiation of a collaboration with Superview Biotechnology Co. Ltd, a subsidiary of Yinhuan Holding Co from Yixing, China. The joint work will be aimed at using proprietary stem cell lines developed by Medistem for screening of monoclonal antibodies for therapeutic activity in the area of regenerative medicine. As part of the collaboration, the two companies will evaluate various candidates jointly, as well as apply for grants and share research data.

To date, the majority of stem cell companies are focusing on the stem cell itself being a product. By collaborating with Superview Biotechnology, we aim to assess the feasibility of developing antibodies that can modulate the activity of stem cells that already exist in the body, said Thomas Ichim, CEO of Medistem. This approach not only provides methods of activating stem cells but also allows for the development of stem cell adjuvant therapies that could be used to resurrect stem cell candidates that failed in clinical trials.

Superview Biotechnology has developed proprietary methods of rapidly generating monoclonal antibodies to esoteric protein targets. Medistem has a history of success in the area of stem cells, being the only company to take a stem cell product from discovery to FDA clearance in the short span of 4 years.

One of the significant driving forces behind our company is to develop innovative targets for our monoclonal antibodies. Although monoclonal antibodies have generated sales of billions of dollars in areas ranging from rheumatoid arthritis, to cancer, to preventing blindness, we feel that the potential of this therapeutic tool is only beginning to be recognized, said Jiong Wu, CEO of Superview Biotechnology. Our opinion is that the barriers to entry for monoclonal antibody-based therapies modulating endogenous stem cells is lower than stem cell based therapies. We are eager to work with the Medistem team at exploring this hypothesis.

A joint grant is expected to be filed with the National Natural Science Foundation of China to support part of the proposed collaboration by end of October, 2012.

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

View original post here:
Medistem and Superview Biotechnology Co. Ltd. Initiate Collaboration on Therapeutics Development Using Antibody and ...

Read More...

Translational Regenerative Medicine: Market Prospects 2012-2022

October 2nd, 2012 7:11 am

NEW YORK, Oct. 1, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Translational Regenerative Medicine: Market Prospects 2012-2022

http://www.reportlinker.com/p0595030/Translational-Regenerative-Medicine-Market-Prospects-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Blood_Supply,_Tissue_Banking_and_Transplantation

Report Details

New study shows you commercial potential of regenerative treatments

See what the future holds for translational regenerative medicine. Visiongain's updated report lets you assess forecasted sales at overall world market, submarket, product and regional level to 2022.

There you investigate the most lucrative areas in that research field, industry and market. Discover prospects for tissue-engineered products, stem cell treatments and gene therapy.

We pack our study with information and analysis to help your work and save you time:

Access to present and predicted trends, with commercial opportunities and prospects revealed

Data and discussions - including our revenue forecasts to 2022 - for your research, analyses and decision making

See the rest here:
Translational Regenerative Medicine: Market Prospects 2012-2022

Read More...

Immune system harnessed to improve stem cell transplant outcomes

October 2nd, 2012 7:10 am

ScienceDaily (Oct. 1, 2012) A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant by making the cancer cells easier targets for the immune system.

Outlined in the British Journal of Hematology, the Phase II clinical trial was led by Amir Toor, M.D., hematologist-oncologist in the Bone Marrow Transplant Program and research member of the Developmental Therapeutics program at VCU Massey Cancer Center. The multi-phased therapy first treats patients with a combination of the drugs azacitidine and lenalidomide. Azacitidine forces the cancer cells to express proteins called cancer testis antigens (CTA) that immune system cells called T-cell lymphocytes recognize as foreign. The lenalidomide then boosts the production of T-cell lymphocytes. Using a process called autologous lymphocyte infusion (ALI), the T-cell lymphocytes are then extracted from the patient and given back to them after they undergo a stem cell transplant to restore the stem cells' normal function. Now able to recognize the cancer cells as foreign, the T-cell lymphocytes can potentially protect against a recurrence of multiple myeloma following the stem cell transplant.

"Every cell in the body expresses proteins on their surface that immune system cells scan like a barcode in order to determine whether the cells are normal or if they are foreign. Because multiple myeloma cells are spawned from bone marrow, immune system cells cannot distinguish them from normal healthy cells," says Toor. "Azacitidine essentially changes the barcode on the multiple myeloma cells, causing the immune system cells to attack them," says Toor.

The goal of the trial was to determine whether it was safe, and even possible, to administer the two drugs in combination with an ALI. In total, 14 patients successfully completed the investigational drug therapy. Thirteen of the participants successfully completed the investigational therapy and underwent a stem cell transplant. Four patients had a complete response, meaning no trace of multiple myeloma was detected, and five patients had a very good partial response in which the level of abnormal proteins in their blood decreased by 90 percent.

In order to determine whether the azacitidine caused an increased expression of CTA in the multiple myeloma cells, Toor collaborated with Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, to conduct laboratory analyses on bone marrow biopsies taken from trial participants before and after treatments. Each patient tested showed an over-expression of multiple CTA, indicating the treatment was successful at forcing the cancer cells to produce these "targets" for the immune system.

"We designed this therapy in a way that could be replicated, fairly inexpensively, at any facility equipped to perform a stem cell transplant," says Toor. "We plan to continue to explore the possibilities of immunotherapies in multiple myeloma patients in search for more effective therapies for this very hard-to-treat disease."

In addition to Manjili, Toor collaborated with John McCarty, M.D., director of the Bone Marrow Transplant Program at VCU Massey, and Harold Chung, M.D., William Clark, M.D., Catherine Roberts, Ph.D., and Allison Hazlett, also all from Massey's Bone Marrow Transplant Program; Kyle Payne, Maciej Kmieciak, Ph.D., from Massey and the Department of Microbiology and Immunology at VCU School of Medicine; Roy Sabo, Ph.D., from VCU Department of Biostatistics and the Developmental Therapeutics program at Massey; and David Williams, M.D., Ph.D., from the Department of Pathology at VCU School of Medicine, co-director of the Tissue and Data Acquisition and Analysis Core and research member of the Developmental Therapeutics program at Massey.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

Go here to see the original:
Immune system harnessed to improve stem cell transplant outcomes

Read More...

Houston Stem Cell Summit Announces Extraordinary Lineup of Keynote Speakers

October 2nd, 2012 7:10 am

HOUSTON, Oct. 1, 2012 /PRNewswire/ --The Houston Stem Cell Summit will host an extraordinary lineup of keynote speakers who represent the most accomplished stem cell scientists, clinicians and entrepreneurs in the United States. Joining these distinguished speakers will be Governor of Texas, Rick Perry, consistent champion of adult stem cell therapies.

(Logo: http://photos.prnewswire.com/prnh/20120831/NY66463LOGO )

The Houston Stem Cell Summit will be held October 26 27 in its namesake city and will highlight the latest therapeutic research regarding the use of adult stem and progenitor cell therapies. The Summit will also provide a forum for entrepreneurs to discuss their latest efforts to commercialize stem cell therapies, and to debate and discuss FDA and other legal and regulatory issues impacting stem cell research and commercialization.

Opening Keynote Address October 26, 2012 Arnold I. Caplan, PhD, Professor of Biology and Professor of General Medical Sciences (Oncology) Case Western Reserve University

Dr. Caplan has helped shape the direction and focus of adult stem cell research and commercialization. Virtually every adult stem cell company and literally tens of thousands of research papers are based on Dr. Caplan's original and ground breaking research. Professor Caplan is considered to be the "father" of the mesenchymal stem cell and first described this progenitor cell in his landmark paper; "Mesenchymal stem cells", Journal of Orthopaedic Research 1991;9(5):641-650. Since that foundational study, Dr. Caplan has published over 360 manuscripts and articles in peer reviewed journals. Dr. Caplan has been Chief Scientific Officer at OrthoCyte Corporation since 2010. In addition, Dr. Caplan co-founded Cell Targeting Inc. and has served as President of Skeletech, Inc. as its founder. He is the recipient of several honors and awards from the orthopedic research community. Dr. Caplan holds a Ph. D. from Johns Hopkins University Medical School and a B.S. in chemistry from the Illinois Institute of Technology.

Summit Keynote Address October 26, 2012 Texas Governor Rick Perry

Governor Perry is the 47th and current Governor of Texas. Governor Perry has long championed the role of medical technologies in building the future of not only Texas, but also the United States. In many ways, his strong advocacy on behalf of research and advanced medical technologies is one of his strongest and as yet underappreciated legacies. In addition to his service to the state of Texas, Governor Perry has also served as Chairman of the Republican Governors Association in 2008 and again in 2011. Despite a rigorous schedule, particularly in the teeth of this election season, Governor Perry has graciously made time to speak and encourage the researchers, patients, companies and physicians who form the fabric and future of the stem cell therapy community.

Texas Medical Center Keynote Address, October 27, 2012 James T. Willerson, MD

Over the course of his career, Dr. James T. Willerson has served as a medical, scientific and administrative leader for each of the major institutions that are the foundation of the Texas Medical Center. Dr. Willerson is currently President and Medical Director, Director of Cardiology Research, and Co-Director of the Cullen Cardiovascular Research Laboratories at Texas Heart Institute (THI). Dr. Willerson was appointed President-Elect of THI in 2004 and became President and Medical Director in 2008. He is also an adjunct professor of Medicine at Baylor College of Medicine and at The University of Texas MD Anderson Cancer Center. He is the former chief of Cardiology at St. Luke's Episcopal Hospital and the former chief of Medical Services at Memorial Hermann Hospital.

Dr. Willerson has served as a visiting professor and invited lecturer at more than 170 institutions.

Read the original post:
Houston Stem Cell Summit Announces Extraordinary Lineup of Keynote Speakers

Read More...

Experimental Stem Cell Therapy May Help Burn Victims

October 2nd, 2012 7:10 am

For more than 40 years, Lesley Kelly of Glasgow, Scotland, lived with third-degree burns that stretched over 60 percent of her body.

Kelly was 2 years old when she fell into a bathtub filled with hot water that scorched most of the right side of her body. She lost full range of motion around many of her joints.

"When you have bad scarring, the buildup is very thick and has no elasticity," said Kelly, 45, whose right elbow was most affected by the buildup of scar tissue. "The problem with thermal burn scarring [is that] it's hard to get the range of motion."

Kelly underwent numerous reparative surgeries through the years, but the scar tissue continued to grow back. The procedures did not lessen the look of her scars.

In 2011, Kelly underwent a new, experimental procedure that used stem cells from her own fat tissue to repair the buildup around her right elbow.

Surgeons cleaned the scar buildup around the elbow and used liposuction to pull fat from off Kelly's waist. They separated the fat cells from the stem and regenerative cells, which were then injected into the wound on Kelly's arm. The procedure took less than two hours.

Within months, Kelly was able to regain 40 degrees of motion that she had lost more than 40 years ago.

"If this technology was available earlier in my life, my scars would not have been as bad," said Kelly.

There are an estimated 50,000 to 70,000 burn cases each year in the U.S., according to the American Burn Association.

The stem cell therapy, approved in the U.K. to treat soft tissue wounds, is now gaining traction in the U.S.

Read the original here:
Experimental Stem Cell Therapy May Help Burn Victims

Read More...

New Therapy May Help Burn Victims

October 2nd, 2012 7:10 am

Lesley Kelly, 45, underwent stem cell therapy to repair scar tissue buildup in her right arm. (Cytori Therapeutics, Inc.)

By Lara Salahi, ABC News For more than 40 years, Lesley Kelly of Glasgow, Scotland, lived with third-degree burns that stretched over 60 percent of her body.

Kelly was 2 years old when she fell into a bathtub filled with hot water that scorched most of the right side of her body. She lost full range of motion around many of her joints.

"When you have bad scarring, the buildup is very thick and has no elasticity," said Kelly, 45, whose right elbow was most affected by the buildup of scar tissue. "The problem with thermal burn scarring [is that] it's hard to get the range of motion."

Kelly underwent numerous reparative surgeries through the years, but the scar tissue continued to grow back. The procedures did not lessen the look of her scars.

In 2011, Kelly underwent a new, experimental procedure that used stem cells from her own fat tissue to repair the buildup around her right elbow.

Surgeons cleaned the scar buildup around the elbow and used liposuction to pull fat from off Kelly's waist. They separated the fat cells from the stem and regenerative cells, which were then injected into the wound on Kelly's arm. The procedure took less than two hours.

Within months, Kelly was able to regain 40 degrees of motion that she had lost more than 40 years ago.

"If this technology was available earlier in my life, my scars would not have been as bad," said Kelly.

There are an estimated 50,000 to 70,000 burn cases each year in the U.S., according to the American Burn Association.

Here is the original post:
New Therapy May Help Burn Victims

Read More...

Celltex To Initiate New Clinical Program As It Responds To FDA Letter

October 2nd, 2012 4:22 am

HOUSTON, Oct. 1, 2012 /PRNewswire/ --Celltex Therapeutics Corp. announced today that it has received a letter, dated Sept. 24, 2012, from the U.S. Food and Drug Administration. The letter stated the agency's opinion that the process Celltex uses to multiply adult stem cells is subject to FDA regulation as biological drug manufacturing. The issue is a key one as stem cell therapy for patient care outside of an academic institution is a new frontier, yet there are a variety of technologies being used throughout the United States, often creating complex legal and regulatory questions.

David Eller, CEO and President of Celltex, stated:

Celltex makes identical copies of an individual's own stem cells and therefore should not be subject to FDA regulation as drugs. However, the FDA said our process causes the cells to be considered biological drugs and thus is subject to those regulations. We respectfully but firmly disagree with the FDA and intend to contest the agency's opinion within its administrative procedures. We are considering all options as we work with the agency toward a resolution.

FDA's letter also repeats its earlier observations from an April inspection of Celltex's laboratory. While Celltex provided detailed responses in April, May, June, July and August, now FDA tells us it needs more information. We will answer FDA's questions in whatever detail the agency requests."

We will meet FDA's requirements, no matter how high the hurdles may be, to ensure access to this technology. Celltex remains fully committed to advance the most promising new field in human health in decades regenerative medicine. We also remain committed to doing so safely, and we will continue to comply with federal and state agency requirements.

As we work with the FDA, Celltex will continue to make advances on the frontier of regenerative medicine, and we expect to have several significant announcements in the coming weeks on these matters:

"Celltex is committed to developing the promise of regenerative medicine into a reality for doctors and their patients," Mr. Eller said. "We sponsor clinical trials to better understand the therapeutic impact and monitor the safety of adult stem cell therapy, and we are confident that our research will help implement effective treatments for patients suffering from a variety of medical conditions."

Originally posted here:
Celltex To Initiate New Clinical Program As It Responds To FDA Letter

Read More...

Radiation and chemotherapy may help create dangerous cancer stem cells

October 2nd, 2012 4:22 am

Washington, October 1 (ANI): Common cancer treatments such as radiation therapy and chemotherapy may have the undesirable effect of helping to create cancer stem cells, which are thought to be particularly adept at generating new tumors and are especially resistant to treatment, according to researchers.

The finding might help explain why late-stage cancers are often resistant to both radiation therapy and chemotherapy, and it could point to new strategies to fight tumors.

Past studies hint that cancer stem cells give rise to new tumors and researchers suggested that they are ultimately responsible for the recurrence of cancers and the dangerous spread of a cancer throughout the body.

Scientists also have found that cancer stem cells are more likely than other cancer cells to survive chemotherapies and radiation therapies, probably because their "stemness" allows them to self-replenish by repairing their damaged DNA and removing toxins.

The exact origin of cancer stem cells is debated. One possibility is that normal stem cells - which are valued for their ability to give rise to other cell types in the body - mutate to become cancerous. Another is that regular cancer cells somehow acquire stem cell properties.

The new study suggests regular cancer cells can indeed give rise to cancer stem cells, and that the radiation commonly used to treat cancer can trigger their stemness.

"Radiotherapy has been a standard treatment for cancer for so long, so we were quite surprised that it could induce stemness," Live Science quoted study researcher Dr. Chiang Li, of Harvard Medical School in Boston, as saying.

The scientists exposed regular cancer cells to gamma-rays, one form of ionizing radiation. They found that under the conditions that normally foster stem cell growth, regular cancer cells formed balls of cells - a hallmark of cancer stem cells.

Additionally, analysis of these irradiated cancer cells revealed activity of genes linked with stem cell behaviors, according to the findings the scientists detailed online in the journal PLoS ONE.

Chemotherapy may have similar effects, according to previous findings that Li and his colleagues detailed in July in the journal Cell Cycle.

See the original post here:
Radiation and chemotherapy may help create dangerous cancer stem cells

Read More...

An expert talks about stem cells

October 2nd, 2012 4:21 am

(Part III)

Primum Non NocerePrimarily, do no harm. This is the principal dictum of Dr. Samuel D. Bernal, MD, PHP, JD, MBA.

Board-certified and diplomate of the American Board of International Medicine and a fellow of Harvard Medical School, this doctor of chemistry, oncology and human biochemistry, health and regulatory law (specifically medical malpractice) holds offices in Los Angeles, Prague and Manila.

His name is synonymous with personalized molecular medicine, the heart of which evolves around stem cells.

Dr. Bernal pioneered in the analysis of the electrical energy of the cell in the living state. And thus, in his regimen, which includes 300 mixes of vitamins, minerals, proteins and essential fats, the electrical production of the mitochondria is ensured.

Here is the result of our two-hour candid discussion about rejuvenation, health and beauty. While the 120-minute immersion cant give a complete understanding of the vast and complex world of the human body, it was nevertheless enough time to begin to grasp the basic truththat all the power of life rests within us all.

Q: What exactly are stem cells?

Stem cells (SC) are merely a small component of what we call regenerative medicine. And they have the ability to heal and repair the body back to a good health.

Q: Isnt it as simple as injecting stem cells into the human body?

Definitely not. There is the matter of molecular biology. No two individuals are alike. And this makes the idea of injecting a commercially-prepared stem cell solution into your body questionable and even dangerous.

See the original post here:
An expert talks about stem cells

Read More...

Whitehead Members to Help Establish International Stem Cell Research Center

October 2nd, 2012 4:21 am

Newswise CAMBRIDGE, Mass. (October 1, 2012) Three Members of the Whitehead Institute faculty are poised to play significant roles in the establishment of a new stem cell research center based at Skolkovo Institute of Science and Technology (Skolkovo Tech) in suburban Moscow.

Whitehead Founding Member Rudolf Jaenisch, and Members Richard Young and Peter Reddien, will contribute their research, educational, and entrepreneurial expertise to the Skolkovo Center for Stem Cell Research (SCSCR). The center is among the first of three core research facilities to be created at Skolkovo Tech, a private graduate research university in Skolkovo, Russia, established in 2011 in collaboration with Massachusetts Institute of Technology.

Skolkovo Techs research centersknown as Centers for Research, Education, and Innovation (CREIs) are intended to advance scientific understanding in a particular field, develop cutting-edge technologies for potential commercialization, attract world-class scientists to Skolkovo, and train the next generations of promising students. CREIs are international partnerships consisting of researchers from at least three universities or research institutes: Skolkovo Tech, a Russian university or institute, and a non-Russian university. As part of SCSCR, the Whitehead scientists will join a team under the direction of Peter Lansdorp, Director of the European Research Institute for the Biology of Aging at University of Groningen Medical Center UMCG in the Netherlands.

This is a very promising experiment, Lansdorp says. By stimulating international collaboration, it is certain to advance stem cell science while at the same time helping Russian studentstrained by leading stem cell scientists from Whitehead Institute and the Netherlandsto become productive scientists in Moscow."

Within SCSCR, Lansdorp, Jaenisch, Young, Reddien and others will tackle some of the most fundamental challenges to the development of stem-cell-based therapeutics, including optimizing methods for cellular reprogramming, pluripotent stem cell differentiation, and the identification of gene networks involved in stem cell regulation and regeneration.

Although funding details for the stem cell center are not yet final, Skolkovo officials say that a typical CREI receives about $10 million worth of funding, depending on the scope of each research program.

Skolkovos research centers are unique in their synergy between scientific knowledge and practical application, which originates through various institutes working together in a new way, says Skolkovo Tech President Edward Crawley. Russian researchers gain access to cutting edge technologies and the opportunity to integrate into the world's scientific community, our international partners will benefit from the academic knowledge and new ideas produced within Russian institutes, and Skolkovo Tech will attract the world's best scientists to create its educational and research programs.

Written by Matt Fearer

See the original post:
Whitehead Members to Help Establish International Stem Cell Research Center

Read More...

26 miles for Chris Niles

October 2nd, 2012 4:21 am

On March 3, 2011, Chris Niles was cutting down a branch in his woody backyard. The tree fell, and Niles wasnt able to get out of the way in time.

He lay in the woods for more than three hours before he was found. He was wearing a red hat that day, which he propped on a branch that allowed his family to spot him.

I remember it was late at night when my mom found out, and she told me, Just pray for him, said Elizabeth Yazbek, a Youngstown State University graduate student and Niles cousin. We werent sure if he was going to makeit or not.

The tree shattered Niles spinal cord from the sixth thoracic vertebrae, leaving him paralyzed from the chest down. Wheelchair-bound, he attends therapy three times a week to work out his upper body.

Niles was told that he would never be able to walk again. As a father of two sons and an active individual before his accident, he wasnt able to accept this.

My family researched stem cell treatment and found this place in Panama, Niles said.

He now travels to Panama a few times a year to receive stem cell treatments. So far, hes had four treatments. The treatments have been working, he said.

Niles now has limited feeling in his toes, and hes shown progress toward being able to walk again.

These treatments cost upward of $10,000 a visit.

So, to help with expenses, Yazbek plans to run a marathon; all of the money she raises will go toward her cousins treatments.

Read the original post:
26 miles for Chris Niles

Read More...

Translational Regenerative Medicine: Market Prospects 2012-2022

October 2nd, 2012 4:20 am

NEW YORK, Oct. 1, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Translational Regenerative Medicine: Market Prospects 2012-2022

http://www.reportlinker.com/p0595030/Translational-Regenerative-Medicine-Market-Prospects-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Blood_Supply,_Tissue_Banking_and_Transplantation

Report Details

New study shows you commercial potential of regenerative treatments

See what the future holds for translational regenerative medicine. Visiongain's updated report lets you assess forecasted sales at overall world market, submarket, product and regional level to 2022.

There you investigate the most lucrative areas in that research field, industry and market. Discover prospects for tissue-engineered products, stem cell treatments and gene therapy.

We pack our study with information and analysis to help your work and save you time:

Access to present and predicted trends, with commercial opportunities and prospects revealed

Data and discussions - including our revenue forecasts to 2022 - for your research, analyses and decision making

Read the original:
Translational Regenerative Medicine: Market Prospects 2012-2022

Read More...

Researchers harness the immune system to improve stem cell transplant outcomes

October 2nd, 2012 4:17 am

Public release date: 1-Oct-2012 [ | E-mail | Share ]

Contact: John Wallace wallacej@vcu.edu 804-628-1550 Virginia Commonwealth University

Richmond, Va. (October 1, 2012) A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant by making the cancer cells easier targets for the immune system.

Outlined in the British Journal of Hematology, the Phase II clinical trial was led by Amir Toor, M.D., hematologist-oncologist in the Bone Marrow Transplant Program and research member of the Developmental Therapeutics program at VCU Massey Cancer Center. The multi-phased therapy first treats patients with a combination of the drugs azacitidine and lenalidomide. Azacitidine forces the cancer cells to express proteins called cancer testis antigens (CTA) that immune system cells called T-cell lymphocytes recognize as foreign. The lenalidomide then boosts the production of T-cell lymphocytes. Using a process called autologous lymphocyte infusion (ALI), the T-cell lymphocytes are then extracted from the patient and given back to them after they undergo a stem cell transplant to restore the stem cells' normal function. Now able to recognize the cancer cells as foreign, the T-cell lymphocytes can potentially protect against a recurrence of multiple myeloma following the stem cell transplant.

"Every cell in the body expresses proteins on their surface that immune system cells scan like a barcode in order to determine whether the cells are normal or if they are foreign. Because multiple myeloma cells are spawned from bone marrow, immune system cells cannot distinguish them from normal healthy cells," says Toor. "Azacitidine essentially changes the barcode on the multiple myeloma cells, causing the immune system cells to attack them," says Toor.

The goal of the trial was to determine whether it was safe, and even possible, to administer the two drugs in combination with an ALI. In total, 14 patients successfully completed the investigational drug therapy. Thirteen of the participants successfully completed the investigational therapy and underwent a stem cell transplant. Four patients had a complete response, meaning no trace of multiple myeloma was detected, and five patients had a very good partial response in which the level of abnormal proteins in their blood decreased by 90 percent.

In order to determine whether the azacitidine caused an increased expression of CTA in the multiple myeloma cells, Toor collaborated with Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, to conduct laboratory analyses on bone marrow biopsies taken from trial participants before and after treatments. Each patient tested showed an over-expression of multiple CTA, indicating the treatment was successful at forcing the cancer cells to produce these "targets" for the immune system.

"We designed this therapy in a way that could be replicated, fairly inexpensively, at any facility equipped to perform a stem cell transplant," says Toor. "We plan to continue to explore the possibilities of immunotherapies in multiple myeloma patients in search for more effective therapies for this very hard-to-treat disease."

In addition to Manjili, Toor collaborated with John McCarty, M.D., director of the Bone Marrow Transplant Program at VCU Massey, and Harold Chung, M.D., William Clark, M.D., Catherine Roberts, Ph.D., and Allison Hazlett, also all from Massey's Bone Marrow Transplant Program; Kyle Payne, Maciej Kmieciak, Ph.D., from Massey and the Department of Microbiology and Immunology at VCU School of Medicine; Roy Sabo, Ph.D., from VCU Department of Biostatistics and the Developmental Therapeutics program at Massey; and David Williams, M.D., Ph.D., from the Department of Pathology at VCU School of Medicine, co-director of the Tissue and Data Acquisition and Analysis Core and research member of the Developmental Therapeutics program at Massey.

###

Follow this link:
Researchers harness the immune system to improve stem cell transplant outcomes

Read More...

Immune system harnessed to improve stem cell transplant outcomes

October 2nd, 2012 4:17 am

ScienceDaily (Oct. 1, 2012) A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant by making the cancer cells easier targets for the immune system.

Outlined in the British Journal of Hematology, the Phase II clinical trial was led by Amir Toor, M.D., hematologist-oncologist in the Bone Marrow Transplant Program and research member of the Developmental Therapeutics program at VCU Massey Cancer Center. The multi-phased therapy first treats patients with a combination of the drugs azacitidine and lenalidomide. Azacitidine forces the cancer cells to express proteins called cancer testis antigens (CTA) that immune system cells called T-cell lymphocytes recognize as foreign. The lenalidomide then boosts the production of T-cell lymphocytes. Using a process called autologous lymphocyte infusion (ALI), the T-cell lymphocytes are then extracted from the patient and given back to them after they undergo a stem cell transplant to restore the stem cells' normal function. Now able to recognize the cancer cells as foreign, the T-cell lymphocytes can potentially protect against a recurrence of multiple myeloma following the stem cell transplant.

"Every cell in the body expresses proteins on their surface that immune system cells scan like a barcode in order to determine whether the cells are normal or if they are foreign. Because multiple myeloma cells are spawned from bone marrow, immune system cells cannot distinguish them from normal healthy cells," says Toor. "Azacitidine essentially changes the barcode on the multiple myeloma cells, causing the immune system cells to attack them," says Toor.

The goal of the trial was to determine whether it was safe, and even possible, to administer the two drugs in combination with an ALI. In total, 14 patients successfully completed the investigational drug therapy. Thirteen of the participants successfully completed the investigational therapy and underwent a stem cell transplant. Four patients had a complete response, meaning no trace of multiple myeloma was detected, and five patients had a very good partial response in which the level of abnormal proteins in their blood decreased by 90 percent.

In order to determine whether the azacitidine caused an increased expression of CTA in the multiple myeloma cells, Toor collaborated with Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, to conduct laboratory analyses on bone marrow biopsies taken from trial participants before and after treatments. Each patient tested showed an over-expression of multiple CTA, indicating the treatment was successful at forcing the cancer cells to produce these "targets" for the immune system.

"We designed this therapy in a way that could be replicated, fairly inexpensively, at any facility equipped to perform a stem cell transplant," says Toor. "We plan to continue to explore the possibilities of immunotherapies in multiple myeloma patients in search for more effective therapies for this very hard-to-treat disease."

In addition to Manjili, Toor collaborated with John McCarty, M.D., director of the Bone Marrow Transplant Program at VCU Massey, and Harold Chung, M.D., William Clark, M.D., Catherine Roberts, Ph.D., and Allison Hazlett, also all from Massey's Bone Marrow Transplant Program; Kyle Payne, Maciej Kmieciak, Ph.D., from Massey and the Department of Microbiology and Immunology at VCU School of Medicine; Roy Sabo, Ph.D., from VCU Department of Biostatistics and the Developmental Therapeutics program at Massey; and David Williams, M.D., Ph.D., from the Department of Pathology at VCU School of Medicine, co-director of the Tissue and Data Acquisition and Analysis Core and research member of the Developmental Therapeutics program at Massey.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

Read the rest here:
Immune system harnessed to improve stem cell transplant outcomes

Read More...

World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

October 2nd, 2012 4:16 am

IRVINE, CA--(Marketwire - Oct 1, 2012) - Oct. 3 marks International Stem Cell Awareness Day, a global celebration where leading scientists, researchers and supporters will acknowledge the scientific advances of stem cell research and its ability to potentially treat a variety of diseases and injuries in the 21st century. This dedicated community is committed to unlocking the potential of stem cells and has made significant strides since the discovery of a method to grow human stem cells less than 15 years ago.

"This is a critical and historic time for stem cell research," said Peter Donovan, Ph.D., director, Sue & Bill Gross Stem Cell Research Center, UC Irvine. "We're literally on the brink of developing new treatments for some of the world's most devastating diseases and injuries. The act of simply raising awareness about this research is one of the best things people can do to help accelerate the process. This event is a great opportunity for everyone to help spread the word and build momentum through a timely mass effort."

Scientists at UC Irvine and other research facilities around the globe continue to work diligently to develop therapies to treat life threatening and debilitating conditions such as Alzheimer's disease, multiple sclerosis, macular degeneration, cancer, Huntington's disease, Parkinson's disease, brain disorders and paralysis caused by spinal cord injuries. These efforts continue to give hope to millions who suffer from these devastating conditions by offering revolutionary treatments and potential cures.

There are several research programs taking place at the Sue & Bill Gross Stem Cell Research Center at UC Irvine that continue to break down barriers and open doors to new treatments for major diseases and injuries:

Spinal Cord and Traumatic Brain Injuries: Neurobiologist Hans Keirstead, Ph.D., as well as husband and wife scientists Aileen Anderson, Ph.D., and Brian Cummings, Ph.D., are conducting stem cell studies to develop treatments for the more than 1.3 million Americans who suffer from spinal cord injuries. Their advancements have led to the world's first clinical trial of human neural stem cell-based therapy for chronic spinal cord injuries (Anderson/Cummings) and the first FDA approved clinical trials using embryonic stem cells (Keirstead). Their research is significant because no drug or other forms of treatment have been able to restore function for those suffering from paralysis. In addition, Cummings and Anderson are applying their stem research to traumatic brain injury, a leading cause of death and disability worldwide, especially in children and young adults.

Alzheimer's Disease: An estimated 35 million people worldwide suffer from Alzheimer's disease, five million of whom live in the U.S. Frank LaFerla, Ph.D., director of UC Irvine's Institute for Memory Impairments and Neurological Disorders, and Matthew Blurton-Jones, Ph.D., of the Sue & Bill Gross Stem Cell Research Center, UC Irvine, have shown for the first time that neural stem cells can rescue memory in mice with advanced Alzheimer's disease, raising hope for a potential treatment in humans. Their work is expected to move to clinical trials in less than five years.

Huntington's Disease: Huntington's disease is a degenerative and ultimately fatal brain disorder that takes away a person's ability to walk, talk and reason. It affects about 30,000 people in the U.S. with another 200,000 or more likely to inherit the disorder. Leslie Thompson, Ph.D., and her team of researchers are currently investigating new stem cell lines and techniques to support the area of the brain that is susceptible to the disease with the hope of developing a cure for future generations.

Macular Degeneration, Retinitis Pigmentosa and Inherited Blindness: Henry Klassen, M.D., Ph.D. has focused his stem cell research on regenerating damaged retinal tissue to restore sight to people suffering from retinitis pigmentosa (an inherited form of degenerative eye disease) and macular degeneration which usually affects older people and leads to loss of vision. Macular degeneration affects millions of Americans. His work hopes to find cures and treatments for corneal and retinal eye disease.

New Website Helps Spread the Word Online To commemorate International Stem Cell Awareness Day and encourage support of stem cell research, an interactive website has been created. Advocates are asked to visit http://www.StemCellsOfferHope.com and share online a wide range of key facts, downloadable images and links to other valuable resources within their social networks.

International Stem Cell Awareness Day Events at UC Irvine The Sue & Bill Gross Stem Cell Research Center at UC Irvine will celebrate International Stem Cell Awareness Day by hosting three special events. An open house will take place on Oct. 1 for high school students. A UC Irvine student, faculty and staff open house will take place on Oct. 2. Finally, an all-day science symposium on Oct. 3 will feature a "Meet the Scientist" interactive forum. The forum and symposium are open to all UC Irvine scientists, clinicians, graduate students, post-docs and members of the community. To RSVP for any these events or for more information, include the name of the event in the subject line and email stemcell@research.uci.edu.

View original post here:
World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

Read More...

Understanding aging: Stem cell dysfunction links cancer and aging

October 2nd, 2012 4:16 am

ScienceDaily (Oct. 1, 2012) Aging is a complex biological process whereby the functional capacity of the body diminishes with time, ultimately leading to the death of the individual. However, aging is also associated with the onset of many diseases, including cancer, which is often called a "disease of aging." While aging has major effects on the individual, it also represents a significant burden on society as a major healthcare cost. Therefore, it is of chief importance to understand the normal process of aging to help improve not only the lifespan of individuals, but also their healthspan; in other words, to enable people to live longer, healthier lives.

Despite significant worldwide research, the causes of aging remain poorly understood. In particular, why the body undergoes a functional decline over the course of time is not entirely clear. Now, a new study from researchers at the CRG has uncovered a significant clue in understanding how aging may occur, and how this may promote the development of diseases such as cancer.

In this study, the researchers studied the skin of young and old mice, as the skin is one of the most obvious tissues to undergo aging. Indeed many of the visible features of aging are the result of skin aging, including loss of hair growth, wrinkling and thinning of the skin and a reduced wound-healing ability.

In the skin, as in the rest of the body, the tissue is constantly in a state of turnover, replenishing itself by replacing dead and damaged cells with new healthy ones. To achieve this, each tissue relies on populations of specialized cells known as stem cells. "These cells are unique in their ability, as they are able to grow and differentiate into all the other different cells types in the tissue, as well as tolerating stress and damage better than non-stem cells. This process of rejuvenation and renewal is something that was thought to occur all throughout life" says Jason Doles, the first author on the study and a postdoctoral researcher at the CRG.

In this work, the researchers have studied skin stem cells during the aging process to see if changes in stem cell function might contribute to aging. Their major finding is that during the aging process, skin stem cells actually lose their ability to function properly. "We have discovered that major changes occur in these stem cells during aging, whereby stem cells exhibit impaired growth in older animals as compared to their more youthful counterparts. We also found that the aged stem cells are not able to tolerate stress as well as young stem cells, strongly supporting the idea that changes in stem cell function might actually drive the aging process" says Bill Keyes, group leader of the Mechanisms of Cancer and Aging lab at the CRG and lead author of the study.

The report goes further, uncovering novel processes driving skin stem cell aging, and linking the aging process with diseases such as cancer. In fact, a recent study from the same group, demonstrated that these same stem cells become deregulated during the development of squamous cell carcinoma, a deadly type of skin cancer. The current study performed high-throughput profiling of the aging stem cells and identified a likely cause of the loss of function during aging. They demonstrated that during normal aging, the entire skin changes and produces many different proteins that mediate inflammation, and that it is the abnormal production of these inflammatory-mediators that contributes to the decline of stem cell function. Given that the link between inflammation and the development of cancer has been long known, the current study uncovers important findings on how the two might be linked.

Altogether, these findings help to explain what is likely a major cause of the aging process and how this develops, opening the door for future studies that may help to alleviate aspects of the aging process. But in addition, with the identification of inflammation as a cause of stem cell dysfunction, the study also uncovers likely causes in the development of cancer.

The research has been funded by the Spanish Ministry for Science and Innovation and the Centre for Genomic Regulation (CRG).

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

View original post here:
Understanding aging: Stem cell dysfunction links cancer and aging

Read More...

Stem cells improve visual function in blind mice

October 2nd, 2012 4:15 am

ScienceDaily (Oct. 1, 2012) An experimental treatment for blindness, developed from a patient's skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.

The findings suggest that induced pluripotent stem (iPS) cells -- which are derived from adult human skin cells but have embryonic properties -- could soon be used to restore vision in people with macular degeneration and other diseases that affect the eye's retina.

"With eye diseases, I think we're getting close to a scenario where a patient's own skin cells are used to replace retina cells destroyed by disease or degeneration," says the study's principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology & cell biology. "It's often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here."

The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells. Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

No iPS cells have been transplanted into people, but many ophthalmologists say the eye is the ideal testing ground for iPS therapies.

"The eye is a transparent and accessible part of the central nervous system, and that's a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams," Tsang says. "And in the event of serious complications, removing the eye is not a life-threatening event."

In Tsang's new preclinical iPS study, human iPS cells -- derived from the skin cells of a 53-year-old donor -- were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eye's light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die -- which happens in macular degeneration and retinitis pigmentosa -- the photoreceptor cells degenerate and the patient loses vision. Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.

In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.

In many animals, the human cells assimilated into mouse retina without disruption and functioned as normal retina cells well into the animals' old age. Control mice that got injections of saline or inactive cells showed no improvement in retina tests.

Go here to see the original:
Stem cells improve visual function in blind mice

Read More...

Biotech Industry Applauds Introduction of the High Technology Small Business Research Incentives Act

October 2nd, 2012 4:15 am

NEW YORK, NY--(Marketwire - Oct 1, 2012) - The Biotechnology Industry has seen increased investor interest in 2012 as it continues to impress with strong gains. The iShares NASDAQ Biotechnology Index ETF (IBB) has gained over 35 percent this year, more than double the S&P 500 Index's gain of 15 percent. New legislation, increased mergers & acquisition activity as a result of major patent expirations have all been contributing factors to industry's rapid rise in 2012. Five Star Equities examines the outlook for companies in the Biotech Industry and provides equity research on StemCells, Inc. ( NASDAQ : STEM ) and Neuralstem, Inc. ( NYSE : CUR ).

Access to the full company reports can be found at: http://www.FiveStarEquities.com/STEM http://www.FiveStarEquities.com/CUR

The Biotechnology Industry Organization (BIO) has recently praised the introduction of the High Technology Small Business Research Incentives Act. The new legislation would allow investors of joint venture R&D projects to utilize the losses and tax credits.

"Through the tax code, Congress historically has provided opportunities that encourage private investment in pre-revenue, R&D-intensive companies. The early growth of the biotech industry in the 1980s was due in part to the ability of investors to support projects aimed at finding new cures and treatments through similar joint ventures. This legislation will help spur greater private investment in biotech and other R&D intensive industries." BIO's President and CEO Jim Greenwood said in a statement.

Five Star Equities releases regular market updates on the Biotech Industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.FiveStarEquities.com and get exclusive access to our numerous stock reports and industry newsletters.

StemCells is engaged in the research, development, and commercialization of cell-based therapeutics and tools for use in stem cell-based research and drug discovery. Shares of the company surged last Thursday after it reported it has enrolled its first patient in a Phase I/II clinical trial for the treatment of a chronic spinal cord injury.

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. The company recently reported it has been approved to commence an ischemic stroke trial in China.

Five Star Equities provides Market Research focused on equities hat offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.FiveStarEquities.com/disclaimer

View original post here:
Biotech Industry Applauds Introduction of the High Technology Small Business Research Incentives Act

Read More...

Page 1,394«..1020..1,3931,3941,3951,396..1,4001,410..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick