header logo image


Page 1,232«..1020..1,2311,2321,2331,234..1,2401,250..»

The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orange County, California

January 6th, 2015 4:44 am

Seal Beach, Laguna Hills, and Lake Forest, California (PRWEB) January 05, 2015

The Irvine Stem Cell Treatment Center announces a series of free public seminars on the use of adult stem cells for various degenerative and inflammatory conditions. They will be provided by Dr. Thomas A. Gionis, Surgeon-in-Chief.

The seminars will be held on Sunday, January 11, 2015, at 2:30pm and 4:30pm at Marie Callenders Grill, 12489 Seal Beach Blvd., Seal Beach, CA 90740; Tuesday, January 13, 2015, at 2:00pm and 4:00pm at Pollys Pies, 23701 Moulton Parkway, Laguna Hills, CA 92653; Friday, January 16, 2015, at 1:30pm and 3:30pm at Marie Callenders Grill, 12489 Seal Beach Blvd., Seal Beach, CA 90740; Saturday, January 17, 2015, at 2:30pm and 4:30pm at Dennys Restaurant, 23515 El Toro Road, Lake Forest, CA 92630. Please RSVP at (949) 679-3889.

The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, abide by investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the body's natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Irvine Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat No embryonic stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Parkinsons Disease, Stroke, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, and degenerative orthopedic joint conditions. For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Irvine Stem Cell Treatment Center, they may contact Dr. Gionis directly at (949) 679-3889, or see a complete list of the Centers study areas at: http://www.IrvineStemCellsUSA.com.

About the Irvine Stem Cell Treatment Center: The Irvine Stem Cell Treatment Center, along with sister affiliates, the Miami Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the Cell Surgical Network (CSN); we are located in Irvine and Westlake, California. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Irvine Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection; and the study is registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.IrvineStemCellsUSA.com, http://www.MiamiStemCellsUSA.com or http://www.NYStemCellsUSA.com.

Original post:
The Irvine Stem Cell Treatment Center Announces Adult Stem Cell Public Seminars in Orange County, California

Read More...

Restore and Regenerate

January 6th, 2015 4:43 am

Some people say that osteoarthritis, cartilage degradation, and chronic joint pains degenerative diseases associated with agingare conditions with no cure, but Dr. Charlie Poblete and Dr. Jae Pak say otherwise.

It is a new era of medicine, opens Dr. Jae Pak, one of Koreas premier orthopedic stem cell surgeons and a visiting expert consultant of the Stem Care Orthopedics Department under Aivee Institute (AI). He was recently in the country to shed light on stem cell therapy and how it offers more accessible treament options for patients suffering from degenerative orthopedic conditions.

Dr. Pak was joined by Dr. Charlie Poblete, one of the countrys leading orthopedic surgeon who has a special interest on regenerative medicine and stem cells. Incidentally, Dr. Poblete is the head of the Stem Care Orthopedic Department of AI. Stem cells are not really part of alternative medicine. Its part of a modern medicine because we are talking about the biochemistry that goes on in the body with stem cell treatment, Dr. Charlie relates while adding, the good thing about medicine nowadays is its starting to look at the molecular aspect of the body, the molecular and cellular side of medicine.

Over the years, stem cell therapy has been touted as one procedure that can heal multitude of bone, cartilage, and joint ailments. Stem cells are the bodys natural healing cells. They are recruited by chemical signals emitted by damaged tissues to repair and regenerate the damaged cells. Stem cells derived from an individuals tissues may well be the next major development in medicine. In the right environment, these stem cells can change into bone, cartilage, muscle, fat, collagen, neural tissue, blood vessels, and even some organs. Stem cells may also effect healing by secreting special chemical messengers that repair damaged tissue.

There are many clinical conditions that benefits from stem cell therapy: heart attack patients have shown quicker healing period, improved condition for patients with multiple sclerosis, muscular dystrophy, Parkinsons disease, ALS, and stroke. Stem cells may also be effective in the treatment of macular degeneration, Crohns disease, and numerous pulmonary conditions. Also, stem cells are now used for patients with kidney failure and in the treatment of critical limb ischemia.

Stem Cell therapy is a simple procedure. Fat is aspirated from the tummy or the thighs, and then we separate the stem cells from them. It is then activated and injected into joints to restore and regenerate, explains Dr. Jae.

Stem Care by The Aivee Group is the countrys pioneer in advanced Autologous Stem Cell Therapy with an esteemed orthopedic team of doctors and surgeons regarded with international qualifications. The institute, with its CEO and medical director Dr. Z. Teo, together with his wife dermatologist Dr. Aivee Teo, now features a stronger multifaceted protocol in treating orthopedic ailments with a faster rate of positive patient response. They are also adept in complimentary therapies to further intensify the restorative powers of stem cells through the effective use of Growth Factors, Shockwave, Radio Frequency, and Electro Magnetic Therapies. 4033245, 4031982, 09209665613, 09175210222. http://www.stemcareinstitute.com

Continued here:
Restore and Regenerate

Read More...

Mayo Clinic’s Dr. Shane Shapiro Discussing Latest in Stem Cell Research at #WSCS14 – Video

January 4th, 2015 3:47 pm


Mayo Clinic #39;s Dr. Shane Shapiro Discussing Latest in Stem Cell Research at #WSCS14
Dr. Shane Shapiro, orthopedic physician, discussing highlights of stem cell research and regenerative medicine from the Mayo Clinic in Florida campus, during...

By: Mayo Clinic

Excerpt from:
Mayo Clinic's Dr. Shane Shapiro Discussing Latest in Stem Cell Research at #WSCS14 - Video

Read More...

Ten years in, California’s stem cell program is getting a reboot

January 4th, 2015 1:47 am

Turning 10 years old may not quite mark adolescence for a human child, but for a major government research effort such as California's stem cell program, it's well past middle age.

So it's a little strange to hear C. Randal Mills, the new president and chief executive of the program known formally as the California Institute for Regenerative Medicine, say it's time to instill in CIRM "a clear sense of mission."

But that's what Mills is planning for the coming year, as he launches CIRM 2.0, a comprehensive reboot of the program.

Mills, a former biotech company chief executive, took over as CIRM's president last May. His first task, he told me, was to "take a step back and look broadly at how we do our business." He reached the conclusion that "there was a lot of room for improvement."

That's a striking admission for a program that already has allocated roughly two-thirds of its original $3-billion endowment.

Biomedical researchers are sure to find a lot to like about CIRM 2.0, especially Mills' commitment to streamline the program's grant and loan approval process for projects aimed at clinical trials of potential therapies. Reviews of applications take about 22 months on average; Mills hopes to cut that to about three months. The process can be made more efficient without sacrificing science: "We need to do it quickly and also focus on quality," he says in a videotaped presentation on the CIRM website. The CIRM board last month approved a six-month, $50-million round of funding under the new system, all to be aimed at testing new therapies.

Yet the focus on drug development shows that CIRM remains a prisoner of the politics that brought it into existence. The Proposition 71 campaign in 2004 employed inflated promises of cures for Parkinson's disease, Alzheimer's, diabetes and other therapy-resistant conditions to goad California voters into approving the $3-billion bond issue ($6 billion with interest) for stem cell research.

CIRM says it has funded clinical trials of 10 therapies and has backed an additional 87 projects "in the later stages of moving toward clinical trials." In scientific terms that's progress, but it may fall short of the public expectations of "cures" stoked by the initiative's promoters 10 years ago.

And that poses a political problem. At its current rate of grant and loan approvals of about $190 million a year, CIRM has enough funding to last until 2020. What happens after that is an open question, but any campaign to seek new public funding may depend on CIRM's having a successful therapy to show off to voters.

Mills says winning approval for more public funding isn't the goal of CIRM 2.0. "It's not our job at CIRM to extend the life of CIRM," he told me. Instead, he couches the need for urgency in terms of serving patients. As chief executive of Maryland-based Osiris Therapeutics, where he worked before joining CIRM, he says, he had "a firsthand view into the significance of stem cell treatment, and of how important urgency is in this game." Osiris received approval from the Food and Drug Administration and Canadian regulators for a stem cell drug to treat children with severe complications from bone marrow and other blood transplants.

Here is the original post:
Ten years in, California's stem cell program is getting a reboot

Read More...

Are Stem Cells in Plastic Surgery The Next Big Thing? – Video

January 3rd, 2015 7:46 am


Are Stem Cells in Plastic Surgery The Next Big Thing?
Dr. Ashley Gordon and Dr. William P. Adams Jr. discuss stem cells and their place in plastic surgery.

By: The Plastic Surgery Channel

See the original post here:
Are Stem Cells in Plastic Surgery The Next Big Thing? - Video

Read More...

Two-thirds of cancer cases are “bad luck,” study says

January 3rd, 2015 3:43 am

Chuck Bednar for redOrbit.com Your Universe Online

Two-thirds of all adult cancer cases are primarily the result of bad luck, according to the authors of a new study appearing in Fridays edition of the journal Science.

Dr. Bert Vogelstein, the Clayton Professor of Oncology at the Johns Hopkins University School of Medicine, and Dr. Cristian Tomasetti, an assistant professor of oncology at the Johns Hopkins University School of Medicine and Bloomberg School of Public Health, developed a statistical model that measured the proportion of cancer incidence across many different tissue types.

They found that two-thirds of adult cancer incidence across tissues occur when the random mutations that take place during stem cell division drive cancer through, while the remaining one-third of cases are the result of environmental factors and inherited genes.

All cancers are caused by a combination of bad luck, the environment and heredity, and weve created a model that may help quantify how much of these three factors contribute to cancer development, explained Dr. Vogelstein, who is also co-director of the Ludwig Center at Johns Hopkins and an investigator at the Howard Hughes Medical Institute.

Cancer-free longevity in people exposed to cancer-causing agents, such as tobacco, is often attributed to their good genes, but the truth is that most of them simply had good luck, he said, adding that that poor lifestyle choices can also contribute to this so-called bad luck factor.

The authors said that the implications of their model could alter the public perception about cancer risk factors, as well as impact the funding of research related to the disease.

If most cancer cases can be explained by random DNA mutations that occur as stem cells divide, explained Dr. Tomasetti, it means that lifestyle changes will be a tremendous help when it comes to preventing some forms of the disease, but will be less effective against other types.

As a result, the medical community should should focus more resources on finding ways to detect such cancers at early, curable stages, he added. He and Vogelstein said that they reached their conclusion by searching scientific literature for data on the cumulative number of total stem cell divisions among 31 tissue types that take place during a persons lifetime.

Stem cells renew themselves, repopulating cells that die off in specific organs, the researchers said. Cancer arises when tissue-specific stem cells experience mutations in which one chemical letter in DNA is erroneously swapped for another during the replication process.

See the article here:
Two-thirds of cancer cases are "bad luck," study says

Read More...

Dallas, Tx – SVF Stem Cell Therapy Testimonial – Neuropathy – Video

January 3rd, 2015 3:43 am


Dallas, Tx - SVF Stem Cell Therapy Testimonial - Neuropathy
http://www.innovationsstemcellcenter.com Call: 214.420.7970 Facebook: https://www.facebook.com/innovationsmedical Twitter: https://twitter.com/dallasdrj Instagram: http://instagram.com/drbilljo...

By: dallasdrj

Here is the original post:
Dallas, Tx - SVF Stem Cell Therapy Testimonial - Neuropathy - Video

Read More...

Stem Cell Therapy Fixes Post-Surgical Airway Abnormality

January 3rd, 2015 3:43 am

By Steven Reinberg HealthDay Reporter

WEDNESDAY, Dec. 31, 2014 (HealthDay News) -- Using stem cells derived from a patient's own bone marrow, researchers have repaired a fistula -- a potentially fatal tissue abnormality -- in the man's lower airway.

"This is another interesting new therapeutic approach for stem cells," said lead researcher Dr. Francesco Petrella, deputy director of thoracic surgery at the European Institute of Oncology in Milan, Italy.

The patient, a 42-year-old firefighter, developed the fistula after surgeons removed a lung as part of treatment for mesothelioma cancer. A fistula is abnormal tissue connecting an organ, blood vessel or intestine to another structure. In this case, the fistula developed between the lower airway and the tissue that surrounds the lungs.

"Our clinical experience supports the idea that stem cells could be effectively used to close some tissue defects developing after very complex surgical procedures, thus restoring a functioning airway," Petrella said.

A fistula that develops after chest surgery is serious and even deadly, Petrella said. Current treatments involve removing ribs and taking medications for months or years, he explained.

"Less invasive approaches like endoscopic glue injections have only poor results, so our proposed techniques could improve quality of life in these patients," Petrella said.

Sixty days after stem cell therapy, the firefighter's fistula was healed, the researchers said. The hole seen before stem cell therapy was no longer visible, having been replaced by new tissue created by the stem cell implant, they explained.

Some people are born with a fistula. Other causes of fistulas include complications from surgery, injury, infection and diseases, such as Crohn's disease or ulcerative colitis.

Petrella believes that this same stem cell technique could be used to treat fistulas that develop elsewhere in the body.

Read more:
Stem Cell Therapy Fixes Post-Surgical Airway Abnormality

Read More...

Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today

January 3rd, 2015 3:43 am

NEW YORK ( TheStreet) -- Shares of Brainstorm Cell Therapeutics (BCLI) surged more than 75% to a 52-week high of $8.47 on Fridayahead of the biotech company's data release on Monday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramer's Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

Read the rest here:
Brainstorm Cell Therapeutics (BCLI) Stock Hits One-Year High Today

Read More...

Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars

January 3rd, 2015 3:43 am

NEW YORK (TheStreet) -- Shares ofNeuralstem (CUR) continue to rise, up 6.25% to $2.89, in morning trading Friday in sympathy with peer company Brainstorm Cell Therapeutics (BCLI) , which touched a one-year high on Friday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

STOCKS TO BUY: TheStreet Quant Ratings has identified a handful of stocks that can potentially TRIPLE in the next 12 months. Learn more.

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

See the article here:
Neuralstem (CUR) Stock Rises Today as Brainstorm Cell Therapeutics Soars

Read More...

PLoS ONE : Comparison of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes with Human… – Video

January 2nd, 2015 7:42 am


PLoS ONE : Comparison of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes with Human...
KeSimpulan | Comparison of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes with Human Mesenchymal Stem Cells following Acute Myocardial Infarction. Lucas Citro et al. (2014), PLoS.

By: KeSimpulan

Go here to read the rest:
PLoS ONE : Comparison of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes with Human... - Video

Read More...

Mayo Clinic’s Abba Zubair Speaking at #WSCS14 – Video

January 2nd, 2015 7:42 am


Mayo Clinic #39;s Abba Zubair Speaking at #WSCS14
Dr. Abba Zubair, Medical Director of the Transfusion Medicine and Stem Therapy Laboratory at Mayo Clinic in Florida speaking on his topic "Application of Microgravity Expanded Stem Cells in...

By: Mayo Clinic

See the original post here:
Mayo Clinic's Abba Zubair Speaking at #WSCS14 - Video

Read More...

MS Stem Cell Medication Therapy Shows Promise – Video

January 2nd, 2015 7:41 am


MS Stem Cell Medication Therapy Shows Promise
http://www.dailyrx.com/autologous-stem-cell-transplant-after-immunosuppressive-therapy-induced-3-year-remission-relapsing Many patients with relapsing-remitting MS treated with immune system ...

By: dailyRx

Go here to read the rest:
MS Stem Cell Medication Therapy Shows Promise - Video

Read More...

‘Bad Luck’ of Random Mutations Plays Predominant Role in Cancer, Study Shows

January 1st, 2015 7:40 pm

Released: 30-Dec-2014 1:50 PM EST Embargo expired: 1-Jan-2015 2:00 PM EST Source Newsroom: Johns Hopkins Medicine Contact Information

Available for logged-in reporters only

Newswise Scientists from the Johns Hopkins Kimmel Cancer Center have created a statistical model that measures the proportion of cancer incidence, across many tissue types, caused mainly by random mutations that occur when stem cells divide. By their measure, two-thirds of adult cancer incidence across tissues can be explained primarily by bad luck, when these random mutations occur in genes that can drive cancer growth, while the remaining third are due to environmental factors and inherited genes.

All cancers are caused by a combination of bad luck, the environment and heredity, and weve created a model that may help quantify how much of these three factors contribute to cancer development, says Bert Vogelstein, M.D., the Clayton Professor of Oncology at the Johns Hopkins University School of Medicine, co-director of the Ludwig Center at Johns Hopkins and an investigator at the Howard Hughes Medical Institute.

Cancer-free longevity in people exposed to cancer-causing agents, such as tobacco, is often attributed to their good genes, but the truth is that most of them simply had good luck, adds Vogelstein, who cautions that poor lifestyles can add to the bad luck factor in the development of cancer.

The implications of their model range from altering public perception about cancer risk factors to the funding of cancer research, they say. If two-thirds of cancer incidence across tissues is explained by random DNA mutations that occur when stem cells divide, then changing our lifestyle and habits will be a huge help in preventing certain cancers, but this may not be as effective for a variety of others, says biomathematician Cristian Tomasetti, Ph.D., an assistant professor of oncology at the Johns Hopkins University School of Medicine and Bloomberg School of Public Health. We should focus more resources on finding ways to detect such cancers at early, curable stages, he adds.

In a report on the statistical findings, published Jan. 2 in Science, Tomasetti and Vogelstein say they came to their conclusions by searching the scientific literature for information on the cumulative total number of divisions of stem cells among 31 tissue types during an average individuals lifetime. Stem cells self-renew, thus repopulating cells that die off in a specific organ.

It was well-known, Vogelstein notes, that cancer arises when tissue-specific stem cells make random mistakes, or mutations, when one chemical letter in DNA is incorrectly swapped for another during the replication process in cell division. The more these mutations accumulate, the higher the risk that cells will grow unchecked, a hallmark of cancer. The actual contribution of these random mistakes to cancer incidence, in comparison to the contribution of hereditary or environmental factors, was not previously known, says Vogelstein.

To sort out the role of such random mutations in cancer risk, the Johns Hopkins scientists charted the number of stem cell divisions in 31 tissues and compared these rates with the lifetime risks of cancer in the same tissues among Americans. From this so-called data scatterplot, Tomasetti and Vogelstein determined the correlation between the total number of stem cell divisions and cancer risk to be 0.804. Mathematically, the closer this value is to one, the more stem cell divisions and cancer risk are correlated.

Our study shows, in general, that a change in the number of stem cell divisions in a tissue type is highly correlated with a change in the incidence of cancer in that same tissue, says Vogelstein. One example, he says, is in colon tissue, which undergoes four times more stem cell divisions than small intestine tissue in humans. Likewise, colon cancer is much more prevalent than small intestinal cancer.

Follow this link:
'Bad Luck' of Random Mutations Plays Predominant Role in Cancer, Study Shows

Read More...

One Reason Neuralstem (CUR) Stock is Rising Today

January 1st, 2015 7:40 pm

NEW YORK (TheStreet) -- Shares of stem cell therapy developerNeuralstem (CUR) rose 4.62% to $2.72 on higher-than-average volume in afternoon trading Wednesday in sympathy with peer companyBrainstorm Cell Therapeutics (BCLI) .

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramers Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

See the article here:
One Reason Neuralstem (CUR) Stock is Rising Today

Read More...

Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

January 1st, 2015 7:40 pm

NEW YORK (TheStreet) -- Shares ofBrainstorm Cell Therapeutics (BCLI) soared 20.88% to $4.69 on higher-than-average volume in morning trading Wednesday ahead of the biotech company's data release on Monday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramers Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

More:
Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

Read More...

[ Japan ] RIKEN: STAP cells were ES cells – Video

January 1st, 2015 4:42 am


[ Japan ] RIKEN: STAP cells were ES cells
An investigative panel under Japan #39;s RIKEN institute says samples of so-called STAP stem cells were actually embryonic stem cells. The independent panel has been investigating the claims by...

By: V English

Read more:
[ Japan ] RIKEN: STAP cells were ES cells - Video

Read More...

PLoS ONE : Live Cell Imaging of the Nascent Inactive X Chromosome during the Early… – Video

January 1st, 2015 4:42 am


PLoS ONE : Live Cell Imaging of the Nascent Inactive X Chromosome during the Early...
KeSimpulan | Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells. Aurlia Guyochin et al. (2014),...

By: KeSimpulan

Read the original:
PLoS ONE : Live Cell Imaging of the Nascent Inactive X Chromosome during the Early... - Video

Read More...

Adipose-derived Stem Cells: Current Findings and Future …

December 31st, 2014 8:40 am

Abstract: Adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided preclinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in future clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in subspecialties of medical fields such as plastic surgery, orthopedic surgery, oral and maxillofacial surgery, and cardiac surgery. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported. This review will summarize data from in vitro studies, pre-clinical animal models, and recent clinical trials concerning the use of adipose-derived stem cells in regenerative medicine.

Introduction

In the field of regenerative medicine, basic research and preclinical studies have been conducted to overcome clinical shortcomings with the use of mesenchymal stem cells (MSCs). MSCs are present in adult tissues, including bone marrow and adipose tissue. For many years, bone marrow-derived stem cells (BSCs) were the primary source of stem cells for tissue engineering applications (Caplan, 1991; Pittenger et al., 1999; Caplan, 2007). However, recent studies have shown that subcutaneous adipose tissue provides a clear advantage over other stem cell sources due to the ease with which adipose tissue can be accessed as well as the ease of isolating stem cells from harvested tissue (Schffler et al., 2007). Initial enzymatic digestion of adipose tissue yields a mixture of stromal and vascular cells referred to as the stromal-vascular fraction (SVF) (Traktuev et al., 2008). A putative stem cell population within this SVF was first identified by Zuk et al. and named processed lipoaspirate (PLA) cells (Zuk et al., 2001; Zuk et al., 2002).

There is no consensus when it comes to the nomenclature used to describe progenitor cells from adipose tissue-derived stroma, which can sometimes lead to confusion. The term PLA refers to adipose-derived stromal cells and adipose-derived stem cells (ASCs) and describes cells obtained immediately after collagenase digestion. Accordingly, the term ASC will be used throughout this review.

ASCs exhibit stable growth and proliferation kinetics and can differentiate toward osteogenic, chondrogenic, adipogenic, myogenic, or neurogenic lineages in vitro (Zuk et al., 2002; Izadpanah et al., 2006; Romanov et al., 2005). Furthermore, a group has recently described the isolation and culture of ASCs with multipotent differentiation capacity at the single-cell level (Rodriguez, et al., 2005).

Using these attractive cell populations, recent studies have explored the safety and efficacy of implanted/administrated ASCs in various animal models. Furthermore, clinical trials using ASCs have been initiated in some medical subspecialties. This review summarizes the current preclinical data and ongoing clinical trials and their outcomes in a variety of medical fields.

Characterization and Localization

ASCs express the mesenchymal stem cell markers CD10, CD13, CD29, CD34, CD44, CD54, CD71, CD90, CD105, CD106, CD117, and STRO-1. They are negative for the hematopoietic lineage markers CD45, CD14, CD16, CD56, CD61, CD62E, CD104, and CD106 and for the endothelial cell (EC) markers CD31, CD144, and von Willebrand factor (Zuk et al., 2002; Musina et al., 2005; Romanov et al., 2005). Morphologically, they are fibroblast-like and preserve their shape after expansion in vitro (Zuk et al., 2002; Arrigoni et al., 2009; Zannettino et al., 2008).

The similarities between ASCs and BSCs may indicate that ASCs are derived from circulating BSCs, which infiltrate into the adipose compartment through vessel walls (Zuk et al., 2002; Zannettino et al., 2008; Brighton et al., 1992; Canfield et al., 2000; Bianco et al., 2001). On the other hand, according to a recent theory, these stem cells are actually pericytes (Traktuev et al., 2008; Chen et al., 2009; Crisan et al., 2008; Zannettino et al., 2008; Tintut et al., 2003; Abedin et al., 2004; Amos et al., 2008). Pericytes around microvessels express alpha-smooth muscle actin (-SMA) as well as certain MSC markers (CD44, CD73, CD90, CD105); however, they do not express endothelial or hematopoietic cell markers (Chen et al., 2009). Pericytes adhere, proliferate in culture, sustain their initial antigenic profile, and can differentiate into bone, cartilage and fat cells (Chen et al., 2009). Moreover, injected MSCs migrate to the blood vessels in vivo and become pericytes (Chen et al., 2009). Considering the above-mentioned data, it can be speculated that pericytes are the ancestors of MSCs, but this does not mean that all MSCs are descendants of pericytes (Chen et al., 2009) or that all pericytes are necessarily stem cells (Lin et al., 2008; Traktuev et al., 2008; da Silva et al., 2008; Abedin et al., 2004; Tintut et al., 2003; Zannettino et al., 2008; Amos et al., 2008).

Traktuev et al. (2008) defined a periendothelial pericyte-like subpopulation of ASCs. These cells were CD34+, CD31-, CD45-, and CD144- and expressed mesenchymal cell markers, smooth muscle antigens, and pericytic markers, including chondroitin sulfate proteoglycan (NG2), CD140a, and CD140b (PDGF receptor and , respectively) (Traktuev et al., 2008; Amos et al., 2008). However, Lin et al. (2008) could not co-localize CD34 and CD104b, and thus concluded that CD34+/CD31- cells of adipose vasculature are not pericytes.

Originally posted here:
Adipose-derived Stem Cells: Current Findings and Future ...

Read More...

Stem Cells An outline CME (12-2014) by Dr Gamal Bakhaat – Video

December 30th, 2014 11:47 am


Stem Cells An outline CME (12-2014) by Dr Gamal Bakhaat
A CME on "Stem Cells" conducted in Aljouf College of Medicine by Dr Gamal Bakhaat. Graphed by: Dr Khaled A Abulfadle .

By: Dr Khaled A Abulfadle

View original post here:
Stem Cells An outline CME (12-2014) by Dr Gamal Bakhaat - Video

Read More...

Page 1,232«..1020..1,2311,2321,2331,234..1,2401,250..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick